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Abstract  The paper discusses some interesting, mainly 
philosophical paradigms of the modeling and control areas, 
which are still partly unsolved and/or only partially studied. 
First the possible introduction of a prejudice free control - 
similar to the term for the modeling introduced by Rudi 
Kalman – is investigated. Next the real constraints in real 
control systems are discussed. It seems that these are the 
amplitude limit for the actuators in practical systems. Then 
the application of the HEISENBERG-type uncertainty 
relationship in control is discussed, combining the 
robustness of control and quality of modeling. Finally a 
special irregularity in the classical LQR control 
methodology is treated investing some unreachable poles 
in the anomaly. The paper constitutes a review of a few 
specific problems in the control theory. They are 
enumerated in keywords and discussed on the basis of the 
references. The authors aim at least to invite further authors 
to continue such a discussion. 
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1. Introduction
Some scientists believe that everything has been solved 

in control, consequently nothing remained to study and/or 
research. The purpose of this paper is to recall some 
interesting philosophical paradigms in the areas of 
modeling and control to prove the contrary. 

Only a few questions are discussed here, but there are 
many. Our aim is to encourage scientists to find further 
unsolved problems, blazes and interesting paradigms partly 
based on the modeling and control literature, partly on 
other disciplines. 

If we can invite only a few further authors to continue 
our discussions then this effort is worth while. 

In the sequel the YOULA parameterization [1], [2], [4], [5] 

will be used to discuss regulator and control system design. 
We found that this is very good basis for education, too. 

The YOULA Parameterization 
The YOULA- (Y or ) -parameterization is a classical 

method for linear time invariant control system to 
characterize all realizable stabilizing regulators (ARS) by 

C =
Q

1− QP
(1) 

for open-loop stable plant , where  is the closed 
set of all stable proper real-rational systems, having all 
poles within the closed unit disc. The parameter" 

Q =
C

1+ C  P
;   Q ∈S (2) 

ranges over all proper (Q ω = ∞( ) is finite), stable transfer 
functions [1], [5]. Observe that  is the transfer function 
from the r  to u  in the closed-loop (see Fig. 1), where 

 is the output disturbance (or noise) signal in a SISO 
(Single Input Single Output) system. 

Figure 1.  Closed-loop with an ARS regulator 

The transfer characteristics of the closed-loop can be 
easily computed 

(3) 

where yt  is the tracking (servo) and yd  is the regulating 
(or disturbance rejection) independent behaviors of the 
closed-loop response, respectively. 

Because the ARS regulator represented in Fig. 3 was 
formulated for an one-degree of freedom (1DF) control 
system, it is not surprising that the tracking part yt  of the 
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transfer characteristics between y  and r  can not be set 
independently of the regulating behavior yd , i.e. 
independently of Q . 

 

Figure 2.  The modified control system with an ARS regulator opening 
the closed-loop 

The Y-parameterization "almost" opens the closed-loop. 
Here "almost" means that  is obtained instead 
of a real open-loop case with . So we need a Q−1 
prefilter shown in Fig. 2, when the ARS regulator really 
"virtually" opens the closed-loop as 

   (4) 

 

Figure 3.  The K-B-parameterized 2DF system with an ARS regulator 

An important and new observation of the authors was 
that the scheme in Fig. 2 is equivalent to the special control 
system given in Fig. 4 and its parameterization has been 
named as Keviczky-Bányász-(KB) parameterization [1], [2]. 
Since in the case of the special structure presented in Fig. 3 
we have , i.e., (3) holds, it is easy to introduce a 
new general form of any 2DF control systems providing 

   (5) 

if a serial compensator Qr  is applied additionally as the 
Fig. 5 shows. 

 

Figure 4.  The general form of the K-B-parameterized 2DF control 
system 

Here and in the sequel the general notation   yr  will be 
used for the reference signal for general 2DF systems. 
Equation (5) shows that the tracking properties 

 can independently be designed from the 
regulating behavior  by Qr .  

The last scheme was later named as a generic 
two-degree of freedom (G2DF) system [1], [2]. The K-B 
parameterization for closed-loop control is not so widely 
known as the Youla-Kucera- (Y-K) parameterization [4] 

however, it is much closer to a control engineering view 
and its most important advantage in 2DF systems is that it 
virtually opens the closed-loop. However, this 
parameterization can only be applied for open-loop stable 
processes. 

 

Figure 5.  The generic 2DF (G2DF) control system 

A G2DF control system is shown in Fig. 5, where 
yr , u, y  and  are the reference, process input, output 
and disturbance signals, respectively. The optimal 
discrete-time ARS regulator of the G2DF scheme [1], [2] is 
given by 

  
Co =

Rn Kn
1− Rn Kn P

=
Qo

1− Qo P
=

RnGn P+
−1

1− RnGn P− z−d
 (6) 

where 

  (7) 

is the associated Y-parameter [1], furthermore 

 

 ;    (8) 

assuming that the continuous-time process is factorable as 

  P = P+ P− = P+ P−e−sTd    (9) 

and a discrete-time process is factorable as 

 G = G+G− = G+G− z−d
   (10) 

where  P+ ,  means the inverse stable (IS) and ,  
the inverse unstable (IU) factors, respectively. Here  is 
the continuous time delay and z− d  corresponds to the 
discrete time delay, which is the integer multiple of the 
sampling time . 

It was shown [1], [2] that the optimization of the G2DF 
scheme can be performed in   H2  and   H∞  norm spaces by 
the proper selection of the serial  and embedded  
filters (compensators). These optimizations are reduced to 
the optimal computation of the Gr  and  embedded 
filters. If Gr  and  are optimally selected, then  
denotes the optimal ARS regulator in (6). It is interesting to 
see how the transfer characteristics of this system look like: 

( )

( )d d

r r r n n n

r r r n n n t d

1

1sT sT

y R K Py R K P y

R G P e y R G P e y y y− −
− −

= − − =

= − − = +
 (11) 

or 

u y

-

r +

+
+ eQ−1

 

Q
1− QP

 

P

 

C

 

yn

 

yt = Q P r

 

yt = P r

 

y = P r − 1− Q P( ) yn = yt + yd

u y

-

r +

+
+ e

+

+

 
 INTERNAL MODEL

 
 LINEAR PLANT

 

Q
1− QP

 

P

 

C

 

yn

 

P

 

yt = P r

 

y = Qr P yr − 1− Q P( ) yn = yt + yd

u y

-

+

+
+ e

+

+yr

 
  INTERNAL MODEL

rQr

 
  LINEAR PLANT

 

Q
1− QP

 

C

 

P

 

P

 

yn

 

yt = Qr P yr

 

yd = 1− Q P( )yn

yr yu
+

+ +

+
+

-r

 

RnK n
1 − RnK nP

 

P

 

P

 

Rr

 

K r

 

yn

 

Co

 

yn

 

Qo = Qn = RnK n = RnGnP+
−1

 

Qr = R rKr = R rGr P+
−1

 

Kn = Gn P+
−1

 

Kr = G r P+
−1

 

G+

 

P−

 

G−

 

Td

 

Ts

 

Kr

 

Kn

 

Gn

 

Gn

 



2198 Some Philosophical Paradigms in Education of Modeling and Control  
 

( )
( )

r r r n n n

r r r n n n t d

1

1d d

y R K Gy R K G y

R G G z y R G G z y y y− −
− −

= − − =

= − − = +
 (12) 

Here  and  are stable and proper transfer 
functions, that are partly capable to place desired poles in 
the servo and the regulatory transfer functions, furthermore 
they are usually referred as reference signal and output 
disturbance predictors. They can even be called as 
reference models, so reasonably  and 

 are selected. In this case the obtained 
regulator is always an integrating one. 

2. Prejudice Free Control 
The knowledge of a process is never exact, independent 

of the method how its model is determined, whether 
measurement-based identification (ID) or  
physico-chemical theoretical considerations are used. The 
uncertainty of the plant can be expressed by the absolute 
model error 

ˆP P P∆ = −     (13) 

and the relative model error 
ˆP P P

ˆ ˆP P
∆ −

= =    (14) 

where P̂  is the available nominal model used for 
regulator design and  P  is the real plant. 

The parameters of the plant may change in terms of their 
nominal values in a given range. The closed-loop control 
system needs to be stable under the given uncertainty 
ranges of the parameters. 

Suppose that the open loop is stable. The regulator 
designed for the nominal plant ensures the stability of the 
nominal closed-loop control system. Let us analyze 
whether the system remains stable with the parameter 
uncertainties of the open loop. Stability is maintained if the 
NYQUIST diagram of the modified open loop does not 
encircle the   −1+ 0 j  point. 

If there is an uncertainty  ∆P  (or parameter change) in 
the transfer function of the plant, then if we apply the same 
regulator this uncertainty appears in the absolute error 
 ∆L = C∆P  of the loop transfer function, whereas its 
relative model error is 

L

ˆ ˆ ˆL L L CP CP P P
ˆ ˆ ˆ ˆL L CP P

∆ − − −
= = = = =   (15) 

Here L̂  denotes the nominal and  L  denotes the real 
loop transfer function. 

 

Figure 6.  Change in the NYQUIST diagram of an uncertain system 

Robust stability means that the closed-loop control 
system should not display unstable behavior even in the 
“worst case” parameter changes. The bound for  ∆L  can 
be formulated based in Fig. 6 by taking the simple 
geometrical considerations into account: the NYQUIST 
diagram will not encircle the   −1+ 0 j  point, if the 
following relationship is satisfied for all frequencies: 

( ) ( ) ( ) ( )1ˆ ˆL j j L j L j∆ ω = ω ω < + ω    ∀ω  (16) 

With further straightforward manipulations the 
necessary and sufficient condition for robust stability is 
obtained as 

( ) ( )
( ) ( )

1 1L̂ j
j ˆ ˆL j T j

+ ω
ω < =

ω ω
    ∀ω   (17) 

or 

( ) ( ) 1T̂ j jω ω <    ∀ω    (18) 

where ( )1ˆ ˆ ˆT L L= +  is the nominal complementary 

sensitivity function. 
This form is also called the dialectic relationship of 

robust stability. In the design the first factor ( )T̂ jω  is 

calculated for the supposed (known) nominal parameters of 
the plant, and thus it depends on the designer. The second 
factor 


 does not (or only partly) depends on the designer, 

as it contains the uncertainties in the knowledge of the 
plant or its unexpected parameter changes. In those 
frequency ranges where the uncertainty is large, 
unfortunately only small transfer gain can be designed for 
the closed-loop. Where ( )T̂ jω  is high, very accurate 

information is needed to reach a small error. The higher the 
absolute value of the complementary sensitivity function, 
the smaller the permissible parameter uncertainty. 
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The robust stability condition (4), (5) and (6) can be 
rearrange in the form of 

1 11
1

ˆ ˆC P P− −≤ η =
− 

   (19) 

where the ( )η   function is plotted in Fig. 7. The 
interpretation of this function is very interesting. For small 


 modeling error a model based controller design is 

suggested, which usually based on the inverse of the 
nominal model 1P̂− . For very large errors no regulator 
design is advised. However, in the midrange domain, 
where the error is around 100 %, the regulator design 
practically does not depend on our knowledge of the 
process. This area can be called “prejudice free” domain 

 

Figure 7.  The η  in the function of   

Prejudice Free Control for YOULA Parameterized 
Systems 

The condition of robust stability for the YP control loops 
can be further simplified so the expression (18) becomes 

d1
n n n n

n n n n 1

ˆsTˆ ˆ ˆ ˆ ˆQP R G P P R G P e

ˆ ˆR G P R G P

−−
+ −

− −

= = =

= = <

  

 

   ∀ω  (20) 

where dT̂  is the dead time of the model and d 1
ˆsTe− = . 

The inequality (17), limiting the relative error, is now 

( )
n n

1j ˆR G P−

ω <      ∀ω    (21) 

If the process is IS, i.e., 1P̂− = , then   Gn = 1  can be 
chosen and the condition of robust stability can be further 
simplified as 

  
l jω( )<

1
Rn

      ∀ω       (22) 

i.e., it does not depend on the model P̂  but only on the 
reference model or the design goal. 

The reference model is an important parameter of the 
general YOULA design, by means of which the condition of 
robust stability (22) can be guaranteed. Let 

  
Rn =

1
1+sTn

         (23) 

then the constraining condition of the right side of (22) can 
be seen in Fig. 8. Given the latter condition and choosing 
first-order reference model  Rn , we see that robust stability 
can be ensured even in the case of 100 % relative model 
error. Furthermore for the high frequency domain a real 
prejudice free case is obtained, 

 

Figure 8.  Condition constraining the relative model error in the case of 
the first-order reference model 

If the process is IU, even the factor n
ˆG P−  appears in 

(21), can significantly modify (22). Fig. 9 shows the case 
when two unstable zeros seriously decrease the prejudice 
free character of the stability. The worst case is when this 
factor has a large value in the region of the cut-off 
frequency. 

 

Figure 9.  Conditions constraining the relative model error in the case of 
two unstable zeros 

KALMAN was who tried to investigate the possibility of a 
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prejudice free identification/modeling methodology [6]. 
He could not find any general applicable results, however 
many interesting, almost philosophical statements were 
developed. 

3. What are the Real Constraints in 
Control Systems 

Process Behaviors Constraining the Control 

It was always an important question in the control theory 
papers what are the real constraints strongly effecting the 
result of the controller design. 

We will discuss here the invariant process factors and 
the actuator operating signal domain here below. These 
factors are independent of the designer and of the available 
methods being either theoretically or experimentally 
founded. 

One class of the constraints, which appear in the 
controller design is that the invariant factors of the real 
process, i.e., the unstable zeros and the time delay can not 
be eliminated with any control algorithm. So the best 
reachable closed–loop performance partly depends only on 
the process itself. If someone wants to change these 
elements only the redesign and rebuilt of the technology 
helps. 

The ideal design goals formulated by the reference 
models   Rr  and   Rn  can be reached only for stable and 
inverse stable delay free processes. In case of inverse 

unstable processes only the approximate   RrGr P− e−sTd  and 

  RnGn P− e−sTd  goals can be reached [1]. For discrete time 

systems these goals are   RrGrG− z−d  and   RnGnG− z−d , 
respectively. 

The influence of the unstable zeros can be somewhat 
attenuated using the   Gr  and   Gn  embedded filters. So 
only in case of stable process zeros we can obtain optimal 
controller independent of invariant process factor(s). 

So before designing a control systems it is better to 
clarify what the process will allow us to reach and the final 
result will not depend on our skill or on the applied 
theoretical approach and/or methodology. 

Actuator Behaviors Constraining the Control 

There is another class of constraints which is 
independent on the applied regulator design and/or control 
systems applied. These are the always existing amplitude 
limits in the real actuators. Sometimes the theoretical 
control people forget about these constraints, because in 
their platforms, which is almost always computer 
technology, their life is limited only by the very big 
floating point number representations available at different 
software environments. Unfortunately the real actuators do 
not know these internal representation in spite of the fact 

that the modern control algorithms are based on discrete 
time computer control nowadays. The amplitude limit for a 
real actuator is always finite and we must not forget this 
reality. If we want to speed up a slow process by modern 
control, the result does not depends on the theoretical 
strength of the applied algorithm, it depend primarily on 
the available amplitude limit which can be applied at the 
output of the actuator. 

The regulators always invoke zeros to accelerate the 
process. To demonstrate this let us investigate the case 
shown in Fig. 10, where a phase-lead element is connected 
in serial before the first-order lag element. In the first 
moment, a signal value of 10 appears at the output of the 
phase-lead element and at the input of the first-order lag 
element for the effect of a unit step signal. The first-order 
lag starts with a high gradient in order to reach this value as 
soon as possible with its time constant and by the time the 
input signal is settling down the output has almost reached 
its steady-state value. The cost of the acceleration is the 
so-called over-excitation, i.e., the ratio of the initial and 
final signal values at the input of the lag. The acceleration 
can be reached only by over-excitation greater than one. In 
many cases, it is worth applying pole cancellation, when 
zeros are invoked to cancel the undesirable poles which 
cause slow operation, and instead a pole ensuring more 
favorable behavior is inserted. 

 

Figure 10.  Insertion of a zero may accelerate the system at the cost of 
over-excitation 

Thus it is obvious that the over-excitation means the 
control equipments will have an initial peak at their output 
as a response to unit step commands or disturbances. The 
problem is that the output of the regulators in the 
closed-loop control, or the output of the actuators gaining 
the signal for the proper level are always 
amplitude-restricted. 

  
u t( )≤ Umax     (24) 

The sensitivity function of the real closed-loop can be 
written in the following decomposed form: 

( ) ( ) ( )
perf

des real mod

n n des real mod1

S

S S S

ˆ ˆS R R T T T S S S= − + − − − = + + =




 

 

( ) ( ) ( )

( )
des perf contr

des real

n n des perf mod

mod contr mod

1 1

1

S S S

S S

ˆR R T S S T S

T̂ S S S

+

= − + − = + = − + =

= − + = +

 





(25) 
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Here 
  
Sdes = 1− Rn( )  is the design loss, 

( )real n
ˆS R T= − is the realizability loss, 

( )mod
ˆ ˆS T T T T= − − = −  refers to the modeling loss in the 

sensitivity function. In its other form ( )contr 1 ˆS T= −  

means the decomposed term referring to the control loss, 

  
Sperf = Rn − T( )to the performance loss. Each term can be 
interpreted and explained very easily. 

The above triple decomposition of the sensitivity 
functions gives a good insight into the limit-optimality 
(limits of the optimality) of closed-loop control systems, 
i.e., the characterization of the best control achievable. As 
regards this distinction optimality criteria need to be 
created for each term, i.e., 

  

Jdist ≤ Jdes
n + Jreal

n + Jmod
n = Sdes + Sreal + Smod

J track ≤ Jdes
r + Jreal

r + Jmod
r = Sdes

r + Sreal
r + Smod

r  (26) 

both for the tracking and disturbance rejection behaviors. 
Here the notation 


  is used to express the optimality 

criterion. In strict mathematical analysis this notation is 
used to refer to the chosen norm of the transfer function. It 
is not an easy task to optimize all three terms 
simultaneously. In practice iterative techniques are used, 
whereby the optimization problem is solved step-by-step. 

The optimization of the first term in the decomposition 
of the sensitivity function (25) means the determination of 
the best (fastest) reachable reference models   Rr = Rr

opt  

and   Rn = Rn
opt , i.e., the solution of the task under the 

constraints  

( )
r r

opt r
r des rarg min arg min 1

R Ru u
R J R

∈ ∈

      = = −   
      U U

 

( )
n n

opt n
n des narg min arg min 1

R Ru u
R J R

∈ ∈

      = = −   
      U U

(27) 

where the chosen criteria 
  
Jdes

r = 1− Rr  and 

  
Jdes

n = 1− Rn  state that each reference model should 
approach the ideal unity. This task must be solved under 
the constraints for the regulator output   u ∈U . Here  U  
means the allowable region for  u , i.e., 

   
U : u ≤ 1  (see 

(24)). 

Redesign of the Reference Model 

The optimization task (27) is very difficult because the 
solution is always on the border of the limited region. 
There is no analytical solution except for some low-order 

simple cases. The optimal reference models are usually 
determined by simulation (CAD tools). Note that under the 
given constraints faster reference models cannot be used to 
solve the task (27). Vice versa, if under the constraints and 
design goal there is no solution for the reference models 
then the only option is to prescribe a less demanding 
(usually slower) model. Thus the best (fastest) reachable 
response of the closed system basically depends on the 
constraints of the control output. Of course, equation (27) 
contains the applied regulator and also the process in a 
complex way; thus it is a closed-loop. Therefore the 
optimality of the regulator depends on the process, the 
model and the invariant factors. 

Even in the case of a very careful design it can happen 
that the over-actuated output of the obtained regulator is 
beyond the acceptable signal domain. Then the original 
design goals need to be reduced. The advantage of the KB 
parameterization of generic 2DF control loops is that only 
the problematic (over-demanding) reference models   Rr  
and   Rn  need to be changed to accommodate less 
demanding design conditions. Usually this can be 
performed only step by step via an iterative procedure. The 
steps can contain model simulation and also experiments 
on the real process. Therefore the optimization is often 
termed the redesign of the reference model. In the case of 
low-order reference models the time constant of the model 
(i.e., the bandwidth) can be determined by explicit design 
expression if the process model and the amplitude 
constraint   Umax  are known. 

Let the process be given by the pulse transfer function 

( )
( )( )

1 1

1 1

0 125 1 1 6

1 0 5 1 0 8

. z . z
G

. z . z

− −

− −

+
=

− −
   (28) 

Apply a combined iterative identification and control 
test [12]. The following reference models of unity gain are 
used for the design 

  
Rr =

0.9z−1

1− 0.1z−1
 and 

  
Rr =

0.9z−1

1− 0.1z−1
  (29) 

At the start of the iteration the model 

( )
( )( )

1 1

o 1 1

0 1 1 4 0

1 0 2 1 0 9

. z . z
Ĝ

. z . z

− −

− −

+
=

− −
   (30) 

is assumed. A square signal with periodic time of 40 
samples is applied as reference signal. In the simulation it 
is assumed that the additive noise yn  is white noise, 
whose variance is 

  
σ yn

= 0.01 . The number of the 

processed samples is   N = 100 . Because of the small 
output noise the identification is performed by a simple 
off-line LS method. The regulator is designed by the YP 
method, assuming an IU process. 
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Figure 11.  Response of the YP regulator before the iteration 

 

Figure 12.  Response of the YP regulator after the iteration 

The output of the regulator is presented in Fig. 11, where 
it is seen that the over-excitation is very high at 900 %, i.e., 

  ut = 9 . Assume that the actuator can realize only   ut = 5 . 
This requires the redesign of the reference model   Rr . 

 

Figure 13.  Output of the reference model and the process 

The condition   ut ≤ ut = 5  needs to be prescribed for the 
reference model redesign iteration. It can be seen in Fig. 12 
that the control output is according to the prescribed over 

actuation by the end of the iteration. The obtained 
redesigned reference model is 

  
Rr =

0.5022z−1

1− 0.4978z−1
    (31) 

Figure 13 shows the time function of the output of the 
reference model (continuous line) and the closed system 
(dashed line). Fig. 14 presents the BODE diagram of the 
original (continuous line) and the redesigned (dashed line) 
reference model. The prescribed over-excitation could be 
reached only by substantially slowing down the closed 
system. 

 

Figure 14.  BODE diagram of the original and the new reference model 

The final conclusion is that the control quality can never 
be prejudice free, more exactly never process independent 
and never the installed actuator independent property of the 
final control system. 

 

Figure 15.  Illustration of the inequality of (9.5.1) 

4. The HEISENBERG-Type Uncertainty 
of Control 

The condition of robust stability (18) already contains a 
product inequality. Here ( )T̂ jω  (although it is usually 

called a design factor) can be considered as the quality 
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factor of the control. The other factor, however, can be 
considered as the relative correctness of the applied model. 
In the light of practical experience control engineers favor 
applying a mostly heuristic expression 
(quality of the control) × (robustness of the control) ≤ limit 

This product inequality can be simply demonstrated by 
the integral criteria of classical control engineering. Let   I2  
be a square integral criterion (Integral Square of Error: ISE) 
whose optimum is   I2

*  when the regulator is properly set, 
and the NYQUIST stability limit (i.e., robustness measure) is 

 ρm . The well-known empirical, heuristics formula is 

  

I2
*

I2
ρm ≤ limit        (32) 

The inequality is illustrated in Fig. 15. The fact that the 
quality of the identification (which is the inverse of the 
model correctness) can have a certain relationship with the 
robustness of the control, is not very trivial. This can be 
observed only in a special case, namely in the identification 
technique based on KB parameterization [1] [2] when 

  εID = − %e . Introduce a new relationship for the 
characterization of the quality of the control 

( ) ( )
( )n

1 1
1 1

e jˆ,C ˆy j CP L

− ω
δ = δ ω = = =

ω + +





 (33) 

Notice that δ  is the absolute value of the sensitivity 
function. Obviously,  δ ρ = 1  for all frequencies (here 

1 Lρ = +  ). Of course, the same equalities are valid for the 

minimum and maximum values, i.e., 

( ) ( ) ( )

( ) ( ) ( )

m

M

min min

max max

ˆ ˆC ,C

ˆ ˆC ,C

ω ω

ω ω

 ρ = ρ ω = ρ 
 δ = δ ω = δ 

; i.e., their  

product is unity:  δM ρm = 1 (34) 
Denote the worst value of these measures by 

( ){ } ( )

( ){ } ( )

m

M

M m

max min max min

min max min max

1

ˆ ˆC C

ˆ ˆC C

ˆ,C

ˆ,C

ω ω

ω ω

  ρ = ρ ω = ρ    
  δ = δ ω = δ    

δ ρ =









  (35) 

The above three basic relationships can be summarized 
in the inequalities below 

M m M m1; 1; 1δρ = δ ρ = δ ρ =


    (36) 

where the following simple calculations prove the 
existence of (34) and (35) 

( )

( )

m

M

1 1min 1
1 1max

1 1

1

ˆ ˆC CP

ˆ ˆCP CP

Ĉ

ω

ω ∞

ρ = + = = =

+ +

= δ

  (37) 

M
1 1min max

11 max max
1

Ĉ

Ĉ

ĈP
ĈP

ω

ω

 
δ = = = 

 + 
 

+ 



 

{ } m1 max min 1 1
Ĉ

ĈP
ω

= + = ρ
         (38) 

Given (34), (35) and (36) further basic, almost trivial, 
inequalities can also be simply formulated 

( ) ( )
( ) ( )

( ) ( )

M M m m

M M
m m

m m
MM

;

1 1

1 1

ˆ ˆC C

Ĉ
Ĉ

Ĉ
Ĉ

δ ≤ δ ρ ≤ ρ

= δ ≤ δ =
ρ ρ

= ρ ≤ ρ =
δδ













    (39) 

The above results are not surprising. The fact, that they 
are valid even for the modeling error in the case of 
KB-parameterized identification methods makes them 
special. So it can be clearly seen that when the modeling 
error decreases, the robustness of the control increases. 
Namely, if the minimum of the modeling error Mδ



 is 
decreased, then the maximum of the minimum robustness 
measure mρ

  is increased, since M m 1δ ρ =


 . 
Similar relationships can be obtained if the   H 2  norm of 

the “joint” modeling and control error is used instead of the 
absolute values. Introduce the following relative fidelity 
measure 

ID 2 2

n n2 2

e
y y
ε

σ = =


 ; 
  

yn 2
≠ 0    (40) 

The upper limit for this measure can be formulated as 

( )ID 2 2
M

n n2 2

1
1

e
Ĉˆy y CP

ε
σ = = ≤ = δ

+



  (41) 

so it is very easy to find similar equations for σ . Let 

( ) ( )M maxˆ ˆC ,C σ = σ 


  and 

( ){ }M min max
Ĉ

ˆ,C σ = σ 




 . 

Using these definitions and the former equations we 
obtain the following interesting relationship 

( ) ( ) ( )M M M
m

1ˆ ˆC C
Ĉ

σ ≤ σ ≤ δ =
ρ

     (42) 

for the relative quadratic identification error. 
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Use the first-order reference model 

  
Rn =

bn1z−1

1+ an1z−1     (43) 

for the design of the noise rejection in the IS process. Here 
the maximum of the robustness measure is 

o o
m m,IS 0 9.ρ = ρ =
   according to 

( )o
m,IS m,IS

n n

1 10 min
1 1R Rω

∞

ρ = ρ = = =
− −

 

     (44) 

and 

n1o
m,IS

1
2

a −
ρ =
     (45) 

This gives a robust measure of o
m,IS 0 9.ρ =
  under the 

parameters   bn1 = 0.2  and   an1 = −0.8  chosen for 
reference models with unity gain (same as in (29)). 

The values of the typical variables (see above) are 

o
M o

n1m

1 2 1 1111
1

.
a

δ = = =
−ρ





 ⇒  o o
M m 1δ ρ =


  (46) 

o
M o n1m

1 2 1 054
1

.
a

σ = = =
−ρ



 ⇒  

o o o o
M m M m0 9486 1.σ ρ = ≤ δ ρ =



     (47) 

 

Figure 16.  Illustration of uncertainty relationships (41) 

Considering the data of (46) and applying again the 
relative sampling time   x = Ts Tn , the different measures 

in (42) are illustrated in Fig. 16. Here   Tn  is the time 
constant of the continuous time (CT) first-order reference 
model. 

Introduce the following coefficient for the excitation 
caused by the reference signal 

  
ξ =

yr 2

yn 2

 ; 
 

yn 2
≠ 0    (48) 

which represents a signal/noise ratio. Investigate the 
product σ ρ  (which is called the uncertainty product) in 
an iterative procedure where the relative error  of the 
model is improved gradually. For simplicity, let us assume 
an IS process. It can be simply derived that 

n no
m m

n n 0
o

o m

1 1
min 1+ 1

1

R R
R R

∞ ∞ ∞

∞ ∞ →

+ ξ + ξ
σρ ≤ σρ ≤ ≤ =

− ξ

= σ ρ =


 



 



 (49) 

i.e., 
o o

m m o m0
1

→
σρ ≤ σρ ≤ σ ρ =



 

 or 

o
o M Mo

m

1 1
σ ≤ σ = = δ ≤ δ =

ρρ





   (50) 

where ( )o 0σ = σ = . Similarly to the notations 

( )M Ĉσ  and Mσ  applied above, the notations 

( ) ( )m min ˆ,C σ = σ 


   and ( )o
m m 0σ = σ =  can also be 

introduced. It is not an easy task, however, to derive the 
relationship between  σm

o  and  σo  or Mσ  and ( )M Ĉσ . 

The simplest case to investigate (50) is when 0= , since 
then 

( ) ( ) ( )
o o o
m M M o

m

1ˆ ˆC C
Ĉ

σ ≤ σ ≤ δ =
ρ

  (51) 

This equation gives a new uncertainty relationship, 
according to which 

2
0n 2

min 1 1
Ĉ

e
ĈP

y →
+ ≤





   (52) 

The product of the modeling accuracy and the robustness 
measure of the control must not be greater than one, when 
the optimality condition 0=  is reached. The obtained 
uncertainty relation can be written in another form, since 

2
0n 2

sup min 1 1
Ĉ

e
ĈP

y =

   + = 
   



  (53) 

The earlier results of control engineering referred only 
for the statement that the quality of the control cannot be 
improved, only at the expense of the robustness, so this 
result, which connects the quality of the identification and 
the robustness of the control, can be considered novel. 

This phenomenon can arguably be considered as the 
HEISENBERG-type uncertainty relationship of control 
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engineering, according to which 

  

1
∆z

1
∆ p

≤ 1    (54) 

Here  ∆z  and  ∆ p  are the alterations of the canonical 
coordinate and the impulse variables, respectively, and 
thus their inverse corresponds to the generalized accuracy 
and “rigidity” which are known as performance and 
robustness in control engineering. 

The consequence of the new uncertainty relation is very 
simple: KB-parameterized identification is the only method 
where the improvement of the modeling error also 
increases the robustness of the control. With other methods, 
and other identification topology, modeling and control 
errors are interrelated in a very complex way, and in many 
cases this relation cannot be given in an explicit form. This 
is the main reason why it is difficult to elaborate a method 
which guarantees, or at least forces, similar behavior by the 
two errors, though some results can be found in [3]. 

 
Figure 17.  Relationship between the control and identification error in 
the general case 

 

Figure 18.  Relationship between the control and identification error in 
the case of the KB-parameterized identification method 

There is a myth in the literature concerning the 

antagonistic conflict between control and identification. A 
“good” regulator minimizes the internal signal changes in 
the closed loop and therefore most of the identification 
methods, which use these inner signals provide worse 
modeling error, if the regulator is better. The exciting 
signal of KB-parameterized identification is an outer signal 
and therefore the phenomenon does not exist. The relevant 
feature of this relationship is shown in Figs. 17 and 18 for a 
general identification method and a KB-parameterized 
technique. 

In Fig. 17, there is no clear relation between  δID  and δ , 
or  σ ID  and σ , and therefore there it is not guaranteed 

that minimizing  δM  increases  ρm . In Fig. 18  δID = δ  
and  σ ID = σ , and thus the minimization of  δM  directly 

maximizes  ρm . Thus if during the iterative identification 

the condition 0k k∞ →∞
=  is guaranteed then, at the same 

time, the convergences o
M M
k

k→∞
δ = δ
 

 and o
m m
k

k→∞
ρ = ρ
   are 

ensured. 

5. Irregularities in Classical Control 
Methods 

A further myth in the control literature is that everything 
is right and errorless in the classical works of theory. This 
is unfortunately (or fortunately ?) is not right. T. Keviczky 
recognized that the solution of the classical LQR paradigm 
does not provide full pole placement and some areas can be 
considered as irregularities of this classical theory. 
Keviczky and Bányász [9], [10] gave a detailed analysis 
proving that there are some poles, it is interesting that the 
slower poles, which can not be allocated by the classical 
methodology. In some earlier references it was also studied 
that some poles are unreachable in the LQR theory by 
Johnson [11]. Finally Bokor and Keviczky [12], [13] 
presented a possible method, which solves the irregularity 
of this paradigm. 

The LQR (Linear system - Quadratic criterion - 
Regulator) problem 

This optimization paradigm was formulated by the 
general, quadratic criterion [7], [8] 

( ) ( ) ( )T 2
x u

0

1 d
2

I t t w u t t
∞

 = + ∫ x W x  (55) 

where 
  
x t( ) is the state vector, 

 
u t( ) is the input of the 

process, respectively. The positive definite   Wx  stands for 

penalizing the variations in the state space,   wu  is for 
penalizing the energy of the control action. The classical 
solution, minimizing (55) is a negative state feedback (SF) 
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u t( )= −kLQ

T x t( )   (56) 

where 
  
kLQ

T  is given by 

   
kLQ

T =
1

wu
bTP    (57) 

The symmetric positive semi definite matrix  P  can be 
obtained from the solution of the algebraic RICCATI 
equation [4] 

   
P A + AT P −

1
wu

P b bTP = −Wx   (58) 

Analytic solution is not possible, because this equation is 
nonlinear in  P , therefore only numeric solution can be 
obtained by MATLAB and other CACSD programs. 

Introducing the orthogonal factorization 

  Wx = GTG     (59) 

the closed-loop system is stable if the auxiliary process 

 v = G x      (60) 

is observable. 
The Frequency Domain Solution of the LQR Problem 
The LQR approach is widely used for control problems 

in all over the world, however, in a practical problem it is 
not an easy task to find the best   Wx  and   wu  weights, 
which are usually obtained by trial and error iterative 
methods. The LQR problem has an almost forgotten 
frequency domain solution, too, which will give us a 
deterministic design process to find useful relationships 
between the classical pole placement SF solution and the 
LQR paradigm. It can be shown that the simpler dyadic 
factorization [7] 

  Wx = g gT ; T
1 1n ng , ,g ,g−=   g   (61) 

can also be used. The frequency domain condition of the 
minimum of (55) is called the KALMAN equation [7], [8] or 
sometimes it is named frequency domain identity 

   
wu 1+ kTΦ s( )b

2
= wu + gTΦ s( )b

2
  (62) 

Assuming unity weight   wu ≡ 1  the equation becomes 
even simpler 

( ) ( ) ( )
2 2 2T T T

2
1 1 1s s s+ = + = +k b g b g bΦ Φ Φ  (63) 

Using the well known relationship of complex functions 

( ){ } ( ) ( ) ( )2 2
Z s Z s Z s Z s= = −   (64) 

and introducing the 
  

n − 1( )th order polynomial ( )s  as 
the numerator of 

( ) ( ) ( )
( ) ( )

1
T 1 1

n
n ns g s g s g

H s s
s s

−
−+ + +

= = =


g bΦ

 

(65) 

the equation (63) can be rearranged into a new form 

( ) ( ) ( ) ( ) ( ) ( )T Ts s s s s s   − = + − + − =   k b k bΨ Ψ   
 

( ) ( ) ( )
( )

( )
( )

T T

s s

s s s s

−

   = − + −   


g b g bΨ Ψ

 

      (66) 

which provides the quadratic polynomial solution of the 
KALMAN equation. Thus the final quadratic equation, 
ensuring relationship between the process ( )s , design 

( )s  and weighting ( )s  polynomials, is 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2 2 2
or

s s s s s s

s s s

− = − + −

= +

     

  
 (67) 

or in the general form 

( ) ( ) ( )2 2 2
u uw s w s s= +     (68) 

Observe that the solution tends to ( ) ( )s s=   if 

  wu → ∞  and   g
T x = 0  if   wu → 0 . Do not forget that 

( )s  and ( )s  are   
n − 1( )th order [8]. 

Some Anomalies in the LQR Problem 
The solution of the polynomial equation can be a direct 

coefficient comparison or a spectral factorization approach 
[8]. Consider some examples in the sequel. 

Example 1 
Consider a first order example with 

( ) 1s s a= + ; ( ) 1s s r= +  thus ( ) 1s g=  (69) 

The two sides of (67) are 

  −s2 − r1s + r1s + r1
2 = −s2 − a1s + a1s + a1

2 + g1
2  (70) 

and the solution is 

  r1
2 = a1

2 + g1
2 > 0     (71) 

and 

  
k1 = r1 − a1 = a1

2 + g1
2 − a1 > 0   (72) 

If we want to ensure (place) a required pole then the 
necessary weight in the LQR problem is 

  
g1 = r1

2 − a1
2     (73) 

It is easy to see that only such   r1  can be placed, which 
fulfills the condition 
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r1

2 > a1
2 ⇒ r1 > a1 ⇒ r1 > a1    (74) 

for stable design polynomial ( )s . 
So this example shows that only a faster pole can be 

placed by the LQR optimization comparing to the original 
process pole. 

Example 2 
Consider a second order example with 

( ) ( )
( )

2 2
1 2 1 2

1 2

;

thus

s s a s a s s r s r

s g s g

= + + = + +

= +

 


 (75) 

The two sides of (67) are now 

( )( ) ( )
( ) ( )( )

2 2 2
1 2 1 2 1 2

2
1 2 1 2 1 2

s r s r s r s r s a s a

s a s a g s g g s g

+ + − + = + +

− + + + − +
 (76) 

and the solutions are 

  
r2 = a2

2 + g2
2 > a2     (77) 

( ) ( )
( ) ( )

2 2 2 2
1 2 2 2 1 1

2 2
2 2 1 1 1

2

2 0

r a g a a g

r a a g a

= + − + + =

= − + + > >
  (78) 

The SF to be applied is given by 

  k1 = r1 − a1 > 0  ;   k2 = r2 − a2 > 0   (79) 

For pole placement the necessary LQR weights are 

  
g2 = r2

2 − a2
2         (80) 

and 

  
g1 = r2

2 − a1
2 − 2 r2 − a2( )= 2 µr

2 − µa
2( ) (81) 

where 

( ) ( )2 2r r2 1 22 1 2
r

2
2 2

s sr r +−
µ = =    (82) 

and 

( ) ( )2 2a a2 1 22 1 2
a

2
2 2

s sa a +−
µ = =     (83) 

It is easy to see that there are such 
  

r1 ,r2{ } domains, 

which can not be reached by any 
  

g1 ,g2{ } selection !!! 
These conditions are 

  
r2

2 > a2
2 ⇒ r2 > a2 ⇒ r2 > a2   (84) 

and 

( )
2 2

2 21 1
2 a 1 22 2

2 2
r rr a a≥ − µ = − −   (85) 

 

Figure 19.  Unreachable design parameter domains 

These conditions are graphically demonstrated on Fig.19, 
where the shaded area shows the unreachable design 
parameters for the case of open-loop process parameters 

  
a2 = 0.8  and   2µa

2 = 0.5 . 

One can check these results either via the solution of the 
RICCATI equation (very time consuming method) or by the 
spectral factorization approach 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s s s s s

s s s s

+

−

 − = − + − 

 − + − 

     

   
 (86) 

as the solution of (67), i.e., by 

( ) ( ) ( ) ( ) ( )s s s s s
+

 = − + −       (87) 

Solutions for LQR-pole placement 
A new criterion 

   
I =

1
2

xT t( )Wx x t( )+ xT t( )wxuu t( )+ Wuu2 t( )





0

∞

∫ dt (88) 

was proposed by Bokor and Keviczky, which solves the 
problem and offers a possible way to overcome this 
anomaly of the standard method. 

The full pole-placement solution can be obtained only if 
the criterion (86) is used, which penalizes interaction of the 
state vector and the control action by the 

   
xT t( )wxuu t( ) 

cross-term. The optimal state feedback can be provided by 

   
k = −wu

−1 wxu + P b( ) or 
   
kT = −wu

−1 wux + bTP( ) (89) 

introduced in [11] and [12]. 
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6. Conclusions 
The purpose of this paper is to highlight some interesting, 

may be philosophical, paradigm of modeling and control as 
the extended abstract indicated. 

Such special and not widely known problems are 
discussed here, which are worth further study and 
investigation. 

“I believe that the progress of science should be rather 
measured by the raised and not by the solved problems !” 
as Eddington stated !!! 
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