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Abstract

Student Growth Percentiles (SGPs) increasingly are being used in the United States for
inferences about student achievement growth and educator effectiveness. Emerging
research has indicated that SGPs estimated from observed test scores have large mea-
surement errors. As such, little is known about ‘‘true’’ SGPs, which are defined in terms
of nonlinear functions of latent achievement attributes for individual students and their
distributions across students. We develop a novel framework using latent regression
multidimensional item response theory models to study distributional properties of true
SGPs. We apply these methods to several cohorts of longitudinal item response data
from more than 330,000 students in a large urban metropolitan area to provide new
empirical information about true SGPs. We find that true SGPs are correlated 0.3 to 0.5
across mathematics and English language arts, and that they have nontrivial relationships
with individual student characteristics, particularly student race/ethnicity and absentee-
ism. We evaluate the potential of using these relationships to improve the accuracy of
SGPs estimated from observed test scores, finding that accuracy gains even under opti-
mal circumstances are modest. We also consider the properties of SGPs averaged to
the teacher level, widely used for teacher evaluations. We find that average true SGPs
for individual teachers vary substantially as a function of the characteristics of the stu-
dents they teach. We discuss implications of our findings for the estimation and inter-
pretation of SGPs at both the individual and aggregate levels.
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A Student Growth Percentile (SGP) is the percentile rank of a student’s current

achievement among students with similar prior achievement (Betebenner, 2009). For

example, a student whose current achievement is at the 70th percentile among stu-

dents matched to him/her with respect to prior achievement would have an SGP

equal to 70. Two features of this definition make SGPs appealing. First, the percen-

tile rank scale is familiar and interpretable, and remains well-defined even if test

scores are not vertically or even intervally scaled (Betebenner, 2009; Briggs &

Betebenner, 2009; Castellano & Ho, 2013). Second, ranking students against other

students with similar prior achievement is perceived as more fair and relevant to

evaluating both individual student progress and educator effectiveness than simply

examining unadjusted achievement levels (Betebenner, 2009). These benefits have

contributed to the increasing use of SGPs in the United States.

However, recent research has demonstrated that SGPs estimated from standar-

dized test scores suffer from large estimation errors (Akram, Erickson, & Meyer,

2013; Lockwood & Castellano, 2015; McCaffrey, Castellano, & Lockwood, 2015;

Monroe & Cai, 2015; Shang, Van Iwaarden, & Betebenner, 2015). Both the prior

and current test scores used in SGP calculations are error-prone measures of their

corresponding latent achievement traits due to the finite number of items on each test

(Lord, 1980). These errors combine to make estimated SGPs noisy measures of the

‘‘true’’ (or latent) SGPs, defined for each student as the percentile rank of his/her

current latent achievement among students with the same prior latent achievement

(Lockwood & Castellano, 2015).

These errors jeopardize the validity of inferences made from estimated SGPs.

For example, stakeholders and other consumers of SGP data are likely to be inter-

ested in students’ true SGPs as indicators of academic progress. However,

McCaffrey et al. (2015) demonstrate that under typical testing conditions, 95%

confidence intervals for true SGPs given estimated SGPs often cover much of the

entire 0 to 100 percentile rank range. Thus, estimated SGPs typically are only

weakly informative about actual academic progress for individual students.

Moreover, the errors in estimated SGPs contain a component that is positively

related to students’ true prior achievement levels (McCaffrey et al., 2015). This is

problematic for interpreting SGPs aggregated to teacher or school levels as indica-

tors of educator effectiveness, because it implies that aggregated SGPs for equally

proficient educators who serve students of different prior achievement levels will

tend to be different.

Understanding whether alternative ways of estimating SGPs from observed data

could mitigate such problems depends on distributional properties of true SGPs that

are currently unknown. For example, if true SGPs are correlated across tested sub-

jects and/or with auxiliary data such as student background characteristics, shrinkage

estimators that exploit these relationships can be used to improve accuracy of esti-

mated SGPs (Efron & Morris, 1973). de la Torre (2009) makes analogous arguments

for estimating latent abilities using testing data from multiple academic subjects, and
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Sinharay, Puhan, and Haberman (2011) review the extensive literature on the use of

shrinkage to improve the accuracy of estimated subscores. However, the potential

accuracy gains from shrinkage depend in part on the strength of the relationships

among the latent quantities and auxiliary information, and we currently do not know

how strongly correlated true SGPs are across academic subjects, nor do we know to

what extent true SGP distributions vary as a function of student background charac-

teristics. This information cannot be learned simply by studying estimated SGPs

because of the random and systematic measurement errors they contain.

Distributional properties of true SGPs also have implications for the ability of

alternative estimation methods to improve fairness of SGP measures. As noted, one

of the purported advantages of SGPs is that by comparing conditional achievement

status relative to students with similar prior achievement, they provide a fair assess-

ment of student progress. Understanding to what extent true SGP distributions vary

with respect to student background variables is important for understanding to what

extent they actually level the playing field, and whether improvements in tests, SGP

estimation methods, or both could ultimately remove any undesirable correlations of

the measures with student background characteristics. For example, Shang et al.

(2015) suggest the SIMEX method of measurement error correction to reduce the

bias in teacher-level aggregated SGPs due to measurement error in the prior test

scores. However, if true SGPs are correlated with student background characteristics

such as ethnicity and economic status, corrections for test measurement error alone

would be insufficient to remove potentially undesirable relationships between teacher

performance indicators and student background.

To study these issues, we apply latent regression (e.g., Mislevy, Beaton, Kaplan,

& Sheehan, 1992; von Davier & Sinharay, 2010) multidimensional item response

theory (MIRT; e.g., Adams, Wilson, & Wang, 1997) models to longitudinal item

response data from several cohorts of students from a large urban metropolitan area.

In the Statistical Model section, we develop a model for latent achievement across

grades and subjects that includes regressions on student covariates, and show how

the model can be used to estimate population joint distributions of true SGPs. In the

Data section, we describe our data sources and estimation cohorts, which include

item response data from Math and English language arts (ELA) assessments in

Grades 3 to 8 as well as a variety of student covariates. We then consider three

research aims: (1) describe the properties of true SGPs, namely, cross-subject corre-

lations and relationships with student covariates, by estimating latent regression

models and true SGP distributions; (2) evaluate the potential gains in accuracy for

estimating individual student true SGPs by using their relationships to other observa-

ble information; and (3) evaluate to what extent true SGPs aggregated to the teacher

level would demonstrate relationships with student background characteristics. We

address each of the aims in turn, describing their relevant methods and results in their

own sections. Finally, we discuss further implications, limitations, and next steps in

the Discussion section.
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Statistical Model

This section specifies a model for latent achievement attributes, defines true SGPs

under this model, and shows how their distributional properties can be assessed from

data.

Latent Regression MIRT Model

For i = 1, . . . , N students in a target grade level g, we observe a vector Ri of item

responses as well as a vector Xi of M covariates, and we denote the observed values

for student i by (ri, xi). We assume each student also has a vector of K latent

achievement traits Θi = (Y1i, . . . ,YKi)9. We assume each k = 1, . . . , K corresponds

to a particular grade and subject test that measures Yki for each student. In our appli-

cations, K = 4 where k = 1, 2 corresponds to Grade g � 1 ELA and math, respec-

tively, and k = 3, 4 to Grade g ELA and math, respectively. We assume that

(Θi, Xi, Ri) are independent and identically distributed with joint distribution PΘ, X, R

in a target population.

The joint distribution PΘ, X, R can be factored as PRjΘ, XPΘjXPX. We assume that

item responses are conditionally independent of the covariates given Θ so that

PRjΘ, X = PRjΘ. We specify PRjΘ with a MIRT model with item parameters a, and

use the notation PRjΘ;a to make clear the dependence on the item parameters. We

specify PΘjX using latent regression models for k = 1, . . . , K:

Yki = X0ibk + dki, ð1Þ

where b1, . . . , bK are vectors of latent regression coefficients and di = (d1i, . . . , dKi)9

is assumed to satisfy E½dijXi� = 0 and di;N (0, S) where S is a (K3K) positive defi-

nite covariance matrix. Thus, PΘjX depends on the parameters b = ½b1, . . . , bK �, a

(M3K) matrix, as well as S, and we use the notation PΘjX; b, S to make this depen-

dence clear. Finally, PX is the distribution of the covariates in the population.

This model specification is typical for latent regression in a MIRT context. For exam-

ple, it is used by de la Torre (2009). Also, although the National Assessment of

Educational Progress involves a complex sampling and assessment design as well as a

large number of covariates, it too uses the same latent regression MIRT model specifica-

tion assumed here (Mislevy, Johnson, & Muraki, 1992; von Davier & Sinharay, 2010).

SGP Definition

The true SGPs are defined as functions of Θ, where the functions are derived from

conditional distributions determined by the distribution PΘ of Θ in the population.

Let c be an element of f1, . . . , Kg and p be any other subset of f1, . . . , Kg that does

not contain c. For example, c may correspond to a current math score (c = 4 in our

example) and p may correspond to a prior year math score (p = 2 in our example).

We define the true SGP for c given p as hc, p(uc, up) = FYcjΘp
(ucjup), where FYcjΘp

is
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the conditional cumulative distribution function (CDF) of Yc given Θp, and (uc, up)

are specific values of (Yc, Θp). In other words, 100hc, p(uc, up) is the percentile rank

of uc in the conditional distribution of Yc among individuals in the population for

whom Θp = up. By standard properties of CDFs (e.g., Theorem 2.1.4 of Casella &

Berger, 1990), the random variable hc, p(Yc, up) is uniformly distributed for each up,

and therefore hc, p(Yc, Θp) is also uniformly distributed.

Our interest is in more complicated properties of the distribution of hc, p(Yc, Θp),

such as its relationships with covariates X. We thus require a method for computing

this random variable. Standard probability manipulations give that

hc, p(uc, up) = Pr (Yc � ucjΘp = up) =

ð
Pr(Yc � ucjX = x, Θp = up)dPXjΘp

(xjup):

ð2Þ

Conditioning on X in Equation 2 simplifies the computations because Y has a multi-

variate normal distribution conditional on X. The appendix shows how this distribu-

tional property permits hc, p(uc, up) for any (uc, up) to be computed easily given PX

and PΘjX;b, S. As described in the following section, the ability to compute hc, p as a

function of Y allows us to infer distributional properties of true SGPs from PΘ, X, R.

Estimating Distributional Properties

Given data (ri, xi) for i = 1, . . . , N , the likelihood function for the unknown para-

meters (a, b, S) of the latent regression MIRT model is

L(a, b, Sjr1, x1, . . . rN , xN ) }
YN
i = 1

ð
PRjΘ;a(rijui)PΘjX;b, S(uijxi)dui: ð3Þ

This can be used to compute maximum likelihood estimates (â, b̂, Ŝ). The distribu-

tion PRjΘ;a can be estimated by plugging in â for a, and we denote this estimated

distribution by PRjΘ;â. Likewise, the distribution PΘjX;b, S can be estimated by plug-

ging in (b̂, Ŝ) for (b, S), and we denote this estimated distribution by P
ΘjX;b̂, Ŝ

. The

data also provide an empirical distribution P̂X of the covariates that serves as an esti-

mate of PX. Thus, the joint distribution PΘ, X, R can be estimated by

P̂
Θ, X, R

= P
RjΘ;â

P
ΘjX; b̂, Ŝ

P̂
X

, ð4Þ

and this estimated distribution can be used to evaluate distributional properties of any

functions of Θ, X, R, including true SGPs.

We use Monte Carlo methods to assess distributional properties because they are

simple to implement. To describe these methods, let h refer to a vector of true SGPs

of interest. In our application, we are primarily interested in h4, 2 corresponding to

math SGPs and h3, 1 corresponding to ELA SGPs, so that h = (h4, 2, h3, 1). We can
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obtain samples from the estimated joint distribution of the true math SGPs, the true

ELA SGPs, the covariates, and the item response data, denoted by P̂h, X, R, as follows.

First, we obtain samples f(u, x, r)bg
B
b = 1 from P̂Θ, X, R by sampling xb from P̂X, then

sampling ub from PYjX;b̂;Ŝ
( � jxb), and then sampling rb from PRjΘ;â( � jub). Second,

we compute hb from ub for each sample, providing f(h, x, r)bg
B
b = 1 from P̂h, X, R. We

can use these samples to compute any properties of P̂h, X, R, or any of its subdistribu-

tions such as P̂h, X, with arbitrary accuracy determined by the Monte Carlo sample

size B. For example, we can use the samples to compute conditional expectation

functions such as E½hjX� or E½hjXm� so that we can see to what extent groups of indi-

viduals with different covariates vary with respect to mean true SGPs under the

model. We can likewise use the samples to compute cor(h4, 2, h3, 1). Finally, we can

use them to compute conditional expectation functions for true SGPs given X and/or

various functions of R to evaluate accuracy gains for estimating SGPs. These strate-

gies, detailed in later sections, are used for all three of our research aims.

Data

For all analyses, we use longitudinal item-level data from a large, diversely popu-

lated city in the northeastern United States. We focus on the two most recent years

of available data over which the testing program was stable: 2008-2009 (2009) and

2009-2010 (2010). We model data from both ELA and math to study the relationship

of SGPs for the same student across these academic subjects. To address our aim of

understanding the extent that true SGP distributions vary by student background vari-

ables, we consider key background variables that are supported by the available data.

We subset the data by students’ grade levels in 2010 for Grades 4 to 8, represent-

ing five 2010 grade-level cohorts. Each subset was a 2-year by 2-subject block with

current and prior year data for both math and ELA. Table 1 summarizes the student

distributions by our background covariates of interest for each cohort. None of the

student background variables we consider vary by subject, and thus for each cohort,

the frequencies and percentages refer to both ELA and math. We subset each cohort

to students with item-level data for both subjects and years and with nonmissing

records for each covariate, which resulted in attrition of between 9.5% and 11.4% of

students by cohort. The final student sample sizes by cohort, at the bottom of Table 1,

ranged from 65,093 to 67,343. Note that the table lists all covariates that we include

in the latent regression model, and thus for each type of background variable, one of

the categories is not shown but can easily be computed from the available frequencies

in the table. For instance, for the Grade 4 cohort, 23% speak Spanish at home and

16% speak another non-English language at home, leaving 61% of students whose

primary home language is English. For race/ethnicity, we combined Hispanic and

Other as there was a relatively small proportion of students who identified themselves

as ‘‘Other,’’ and preliminary analyses revealed they had similar performance across

grades and subjects as Hispanic students.
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We classify covariates as time-invariant or time-varying. The time-invariant cov-

ariates describe personal characteristics that remain static over time, including gender

(female), race or ethnicity (Asian, Hispanic or Other, and Black), and home language

spoken (Other Home Language and Spanish Home Language). The frequencies and

percentages for these covariates, shown in the top half of the table, are thus the same

for each year within each cohort. In contrast, the time-varying covariates that describe

student statuses or group memberships can fluctuate over time. These covariates,

shown in the bottom half the table, include English language learner (ELL) status,

Special Education status, Disability status, Free or Reduced Price Lunch (FRL) status,

and excessive school absences ( . 10%).

Generally, the distributions of time-varying covariates do not fluctuate substan-

tially across the 2 years within a cohort with the exception of FRL status and Special

Education status. The percentage of students coded as participating in FRL increased

by between 17 and 24 percentage points for each cohort from 2009 to 2010, while

the percentage of students coded as participating in Special Education programs

increased by between 7 and 9 percentage points for each cohort from 2009 to 2010.

Such changes were not explained in the data documentation, but perhaps shifts in

eligibility and identification criteria were implemented over these years, resulting in

increased participation in these programs.

Estimating Latent Regression Models and True SGP
Distributions

In this section, we present details of how we fit the latent regression MIRT models to

our data, and how we used the resulting parameter estimates to estimate properties of

true SGP distributions. We then summarize these results.

Method

We model the latent achievement traits for the two years (2009 and 2010) and two

subjects (ELA and math) jointly by covariates of interest (see Table 1) with a

latent regression four-dimensional MIRT model. Separate models were fit for each

of the five cohorts. The achievement tests include both dichotomously scored mul-

tiple choice and polytomously scored constructed-response items, which we model

with a 2-parameter-logistic (2PL) and Generalized Partial Credit model (Muraki,

1992), respectively. No items are common across grade levels, so items for a par-

ticular grade-level and subject area load only on their corresponding dimension.1

That is, we have ‘‘between-item’’ MIRT models (Adams et al., 1997) for each cur-

rent Grade g cohort (g = 4, 5, 6, 7, 8) with K = 4 dimensions for achievement in

ELA Grade g � 1 (2009), math Grade g � 1 (2009), ELA Grade g (2010), and

math Grade g (2010).

We used the mixedmirt function in the mirt package (version 1.14; Chalmers,

2012) for the R environment (R Core Team, 2015) to compute maximum likelihood
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estimates (â, b̂, Ŝ) for each cohort using the likelihood function in Equation 3. We

used the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm, which is well

suited for large numbers of dimensions, items, and examinees (Cai, 2010).2 These

conditions hold for our case, where for each cohort, there are K = 4 dimensions,

between 125 and 147 items across all four tests, and more than 65,000 students. To

identify the model, we fixed all of the diagonal elements of S to 1. We also grand-

mean centered all covariates, precluding the need to estimate an overall intercept.

Because the MH-RM algorithm is stochastic, its parameter estimates will not be

identical across estimation runs for different starting seeds and values. To facilitate

convergence, we fine-tuned modeling options (following correspondence with the

mirt package author, Phil Chalmers), including using informed starting values for

the latent regression coefficients. Specifically, we first fit separate unidimensional

latent regression models for each latent trait and used their coefficient estimates as

starting values in the full latent regression MIRT model.

As noted, the covariates for each student include both time-invariant and time-

varying components. All time-invariant covariates (gender, race/ethnicity, home lan-

guage) were included in each of the K = 4 latent regressions in Equation 1. For the

time-varying covariates (e.g., FRL and ELL status), we needed to decide whether the

values from Grade g � 1 would be included in only the math and ELA equations for

Grade g � 1, or whether they would be included in all four equations. We needed to

make an analogous decision for the values from Grade g. We compared the

‘‘restricted’’ specification (where values of time-varying covariates were included in

the equations for only their corresponding time point) to the ‘‘full’’ specification

(where values of time-varying covariates from both time points were included in all

four equations) using the Akaike Information Criterion (AIC). The AIC results over-

whelmingly favored the full model for all five cohorts. Thus, we report all results

using the full model.

For each cohort, we used the estimated model parameters and the Monte Carlo

methods described previously to obtain samples f(h, x)bg
B
b = 1 from P̂h, X. We used

B = 1, 000, 000 samples for each cohort. There are three main sources of uncertainty

in our inferences about P̂h, X conditional on the model specification. The first is sam-

pling error in (b̂, Ŝ) and P̂X due to the particular sample of students used for each

cohort. The second is Monte Carlo error in (b̂, Ŝ) due to the MH-RM algorithm. The

third is Monte Carlo error in quantities computed from B = 1, 000, 000 samples from

P̂h, X. The combination of these sources of uncertainty has negligible consequences

for the inferences reported in the rest of the article. Supporting evidence is provided

in the appendix.

Latent Regression Results

Because we were using test score data that had already been calibrated for a state

testing program, there were no apparent issues with the item parameter estimates or

a need to drop misbehaving items. The latent regression coefficients, representing
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average group differences holding other covariates constant, generally followed pat-

terns seen with test scores. For instance, we found negative relationships to latent

achievement for Hispanic or Other, Black, ELL, Special Education, FRL, and exces-

sive absences across all cohorts. For Asian, Other Home Language, and Spanish

Home Language, we generally found small to moderate positive coefficients for both

subjects. For females and Disability, relationships were not as consistent across sub-

jects or time points: females generally had small negative coefficients for Math but

small to moderate positive coefficients for ELA at both time points, and Disability

tended to have positive coefficients for both subjects at Time 1 but negative coeffi-

cients at Time 2. Complete tables of the estimated latent regression coefficients by

cohort and dimension are provided in the Supplemental Material (available online).

The covariates explain between 37% and 46% of the variance in the latent

traits, depending on cohort and dimension. We compute this for each latent trait

Yk by

R̂2
k =

Var(X0ib̂k)

Var(X0ib̂k) + Var(dki)
=

Var(X0ib̂k)

Var(X0ib̂k) + 1
,

where Var(dki) = 1 for all k due to the model identification constraint, and Var(X0ib̂k)

is computed with respect to P̂X. The Supplemental Material (available online) pro-

vides R̂2 by cohort and dimension. The covariates tend to explain a larger percentage

of the achievement variation for higher grades. For example, the average R̂2 for the

Grade 7 and 8 cohorts is 0.44, while that for the Grade 4 cohort is 0.39. It is worth

noting that the relationships between the covariates and latent traits could be due in

part to students with different background characteristics being taught by schools and

teachers of different quality, a point we revisit later when trying to interpret relation-

ships between true SGPs and student background.

The Ŝ for each cohort are provided in Table 2. As the models were identified by

fixing the residual variances to 1, the latent trait residual covariance matrices are also

correlation matrices. The six pairwise correlations are ordered by pairs of residuals

for latent traits with subject in common, then year in common, and last, nothing in

common. Not surprisingly, residual correlations for traits that have something in com-

mon are higher than those with nothing in common (neither year nor subject) and are

higher for common subjects (different years) than common years (different subjects).

True SGP Distribution Results

We used samples f(h, x)bg
B
b = 1 from P̂h, X for each cohort to understand features of

the true SGP distributions that may have implications for fairness of the measures as

well as estimation accuracy. First, we are interested in the cross-subject correlations

of the true SGPs, such as the correlation between Grade 4 ELA SGP given Grade 3

ELA achievement and Grade 4 math SGP given Grade 3 math achievement. These

correlations are estimated to be 0.50, 0.52, 0.49, 0.30, and 0.36 for Grades 4 to 8,
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respectively. The positive correlations are consistent with the patterns from Table 2,

which suggest a time-specific source of variance that affects both math and ELA

achievement from the same grade. For example, if a student is having a particularly

good year, he or she is likely to have true SGPs for both math and ELA that are above

average. The smaller Grades 7 and 8 correlations may be due in part to the higher

within-subject, cross-year correlations of the latent achievement traits in these grades

compared to earlier grades, although the true SGP correlations are a complicated

function of PΘ and so other factors are likely to be contributing.

The other key attribute of P̂h, X we examined was the extent to which true SGP

distributions vary as a function of student characteristics. It is important to reiterate

that the true SGPs rank students against other students with the same prior achieve-

ment without regard to other background characteristics. Therefore, while true SGPs

have a marginal uniform distribution by definition, their conditional distributions

given other student covariates have no such restriction. In our data, the mean true

SGPs vary by student background variables, and the directions of the group differ-

ences are generally consistent with the directions of the group differences on achieve-

ment itself.

Table 3 summarizes the group mean differences in true SGPs by cohort and sub-

ject, with math in the top half of the table and ELA in the bottom half. The rows are

ordered from most negative to most positive by the mean SGP differences in math

averaged over cohort (last column), although these averaged differences tend to be

similar across the two subjects. For the gender, race/ethnicity, and home language

variables, the group mean differences contrast students who are in the given group to

all other students. For the time-varying covariates, the group mean differences con-

trast students who are in the given group for both years to those who are not in the

given group in either year. For example, the FRL row of Table 3 for math indicates

that on average across cohorts, students who participate in the FRL program for two

consecutive years have true math SGPs 5.1 percentile points lower than students who

do not participate in the FRL program for either of the two years. The table shows

that the most negative differences tend to be for students with excessive absences

relative to students who attend regularly, ranging from 211.5 to 25.7 percentile

Table 2. Estimated Residual Correlations for Each Cohort.

Cohort

Common subject Common year Nothing in common

ELA 2009,
ELA 2010

Math 2009,
Math 2010

ELA 2009,
Math 2009

ELA 2010,
Math 2010

ELA 2009,
Math 2010

ELA 2010,
Math 2009

4 0.81 0.82 0.74 0.77 0.67 0.66
5 0.83 0.82 0.72 0.75 0.64 0.66
6 0.84 0.81 0.70 0.73 0.63 0.63
7 0.87 0.87 0.68 0.73 0.66 0.67
8 0.88 0.85 0.72 0.67 0.60 0.70
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points for math and 211.4 to 26.5 for ELA. In contrast, the Asian and Other Home

Language groups have true SGPs that are on average 9 to 10 percentile points higher

than other students. The mean differences for the Other Home Language group track

the Asian group because there is a large overlap in these populations, with most stu-

dents who indicated speaking a language other than English or Spanish at home also

identified themselves as Asian.

Although the mean differences generally are similar in sign and magnitude across

cohorts within a subject, there are notable exceptions, including Special Education

and Disability in Grade 6 math, ELL in Grade 8 math, FRL in Grade 8 ELA, and

Asian and Other Home Language in Grade 7 ELA. The exact sources of these devia-

tions from the general patterns are unknown. They could result from idiosyncratic

features of different cohorts of students, idiosyncratic features of the tests from par-

ticular grades and subjects, or unobserved interventions targeting specific subpopula-

tions of students. We observed qualitatively similar patterns for the deviant cases

Table 3. Group Mean Differences in True SGP for Math and ELA for Each Covariate and
Cohort.

Covariate
Grade 4
cohort

Grade 5
cohort

Grade 6
cohort

Grade 7
cohort

Grade 8
cohort Average

Math
. 10% Absent 25.7 27.4 210.2 28.5 211.5 28.7
Black 25.4 27.4 24.4 25.8 24.1 25.4
FRL 29.9 27.1 25.7 26.3 3.7 25.1
Special Education 22.4 23.5 211.4 23.5 23.5 24.9
Disability 22.1 23.2 29.6 23.7 23.5 24.4
Hispanic or Other 24.2 21.6 24.0 22.4 20.5 22.5
Spanish Home Language 23.3 20.4 22.8 22.2 2.4 21.3
ELL 22.0 20.1 23.7 22.3 10.7 0.5
Female 23.0 0.2 2.5 0.0 5.9 1.1
Other Home Language 8.7 8.7 10.2 8.9 10.2 9.3
Asian 9.3 9.6 10.7 9.1 10.1 9.8

ELA
. 10% Absent 28.8 28.3 29.4 26.5 211.4 28.9
Black 29.6 29.1 24.6 23.3 27.4 26.8
FRL 27.1 24.9 25.3 210.9 1.4 25.4
Special Education 25.6 21.9 211.7 28.9 212.8 28.2
Disability 23.7 22.1 210.2 27.1 210.9 26.8
Hispanic or Other 21.1 20.3 24.3 23.4 1.8 21.5
Spanish Home Language 1.7 2.9 21.2 23.9 4.6 0.8
ELL 3.5 5.7 20.3 22.0 4.8 2.3
Female 22.1 1.5 5.7 3.2 5.5 2.8
Other Home Language 12.2 12.4 11.2 4.0 10.0 10.0
Asian 13.3 11.6 13.4 2.2 11.8 10.5
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with SGPs estimated from the observed scale scores. Thus, they are not a result of

modeling the item-level data.

Finally, although some of the group differences are large, collectively the stu-

dent background variables do not explain much of the variance in true SGPs for

students. In a linear regression of the true SGPs on main effects for the covariates,

the R2 range from only 0.04 to 0.07 across grades and subjects. These are mark-

edly lower than the R2 from a regression of the true SGP for one subject on the

true SGP for the other subject, which from squaring the true SGP correlations

reported previously, would range from 0.09 to 0.27. This suggests that cross-

subject information may be more useful than student background variables for

shrinkage estimation.

Implications for SGP Estimation Accuracy

The previous section established that true SGPs for students are correlated across

math and ELA, and that they are related to student background characteristics. These

are descriptive properties of the distribution P̂h, X. Here we shift focus to the problem

of evaluating to what extent the accuracy of SGPs estimated for individual students

could be improved by exploiting these relationships. For example, suppose the goal

is to estimate h4, 2, i, the true math SGP for student i. One could use only the current

and prior math test scores for student i to estimate h4, 2, i. However, the results of the

previous section suggest that both student background variables and ELA test scores

may provide information about h4, 2, i beyond what is provided by the math test scores

alone. In this section, we estimate how much accuracy could be improved by using

such auxiliary information.

Method

We consider the use of conditional means for estimation. Conditional means would

correspond, for example, to estimates obtained via a Bayesian analysis where true

SGPs were estimated using their posterior means given the observed data (Lockwood

& Castellano, 2015; McCaffrey et al., 2015). We thus refer to these estimators as

expected a posteriori (EAP) estimators. To describe the methods, it is useful to parti-

tion the item response data Ri as (R1i, R2i, R3i, R4i) corresponding to the four differ-

ent tests. We use Di to denote an arbitrary subset of (Xi, R1i, R2i, R3i, R4i), and we

use di to denote the corresponding observed values for student i. We then consider

using E½h4, 2, ijDi = di� as an estimator for h4, 2, i. For example, using only the math

test data to estimate h4, 2, i would correspond to taking Di = (R2i, R4i) and estimating

h4, 2, i by E½h4, 2, ijR2i = r2i, R4i = r4i�. Setting Di to (Xi, R1i, R2i, R3i, R4i) would use

the conditional mean of h4, 2, i given all the observed information for student i to esti-

mate h4, 2, i. It is worth noting that in this case, even though the definition of h4, 2, i

involves only latent math achievement, the item responses from the ELA tests con-

tribute to the estimator for h4, 2, i. At the other extreme, taking Di to be the null set
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would correspond to estimating h4, 2, i by its marginal expectation of 50, regardless of

the information observed for the student.

Two properties of EAPs make them convenient for calibrating the potential value

of auxiliary data in this context. The first is that the function E½h4, 2, ijDi� has the smal-

lest mean squared error (MSE), E½(h4, 2, i � E½h4, 2, ijDi�)2�, of any function of Di (see,

e.g., Casella & Berger, 1990). The second useful property is that if D1i and D2i are

two sets of information such that D1i � D2i, then the MSE of E½h4, 2, ijD2i� is less than

or equal to the MSE of E½h4, 2, ijD1i� (see, e.g., Billingsley, 1995). That is, condition-

ing on more information cannot decrease the accuracy of the EAP.

Because the estimated distribution P̂h, X, R can be computed from the estimated

distribution P̂Θ, X, R, and because conditional expectation functions E½h4, 2, ijDi� under

P̂h, X, R can be computed for any choice of Di, the EAP is a feasible estimator with

real data for any choice of Di. We could thus investigate the MSE performance for

different choices of Di either using direct evaluation of integrals under conditional

distributions determined by P̂h, X, R, or using operations on samples f(h, x, r)bg
B
b = 1

from P̂h, X, R. However, this would provide information about the performance of dif-

ferent estimators given the exact set of test items available in our data. It would be

useful to investigate the value of conditioning on auxiliary information under more

general circumstances. One of the factors that affects the value of conditioning on

auxiliary information is how much information the item responses contain about Y.

If a scalar test score Yki is computed from Rki, a common measure of the amount of

information that Yki provides about Yki is the reliability of Yki (Lord, 1980). We thus

conducted analyses that allowed us to investigate how the value of using auxiliary

information to estimate true SGPs changes as test reliability changes.

Our analyses followed three general steps: (1) generating samples from the appro-

priate distribution; (2) using 80% of the samples to approximate E½h4, 2jD� and

E½h3, 1jD� for various choices of D; and (3) using the remaining 20% of the samples

to evaluate the MSE of E½h4, 2jD� and E½h3, 1jD� as estimators of h4, 2 and h3, 1,

respectively. For Step (1), we started with the samples f(u, x)bg
B
b = 1 from our esti-

mated distributions P̂Θ, X. We specified a reliability l. We then generated synthetic

test scores y�l = (y�l, 1, y�l, 2, y�l, 3, y�l, 4)9 by adding independent, mean zero, normally

distributed errors to u. The error variance for dimension k was set to

((1� l)=l)Var(Yk) so that each component of y�l measures its corresponding com-

ponent of u with a common reliability l. This procedure results in f(u, x, y�l)bg
B
b = 1

sampled from P̂Θ, X, Y�
l
. Applying the SGP functions to each sample results in

f(h, x, y�l)bg
B
b = 1 sampled from P̂h, X, Y�

l
.

For Step (2), we used a random 80% of the samples f(h, x, y�l)bg
B
b = 1 to approxi-

mate E½h4, 2jD� and E½h3, 1jD� for various choices of D, where D is any subset of

(x, y�l, 1, y�l, 2, y�l, 3, y�l, 4). For example, when estimating the true math SGPs h4, 2, set-

ting D = (y�l, 4, y�l, 2) corresponds to using only the math scores to estimate h4, 2,

whereas setting D = (x, y�l) corresponds to using the math scores, the ELA scores,

and all student covariates to estimate h4, 2. We approximated the conditional mean
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functions for each choice of D as follows. Because h4, 2 is bounded between 0 and 1,

we computed F�1(h4, 2), where F�1 is the inverse standard normal CDF that maps

(0, 1) to (� ‘, ‘). We then fit flexible regressions using the random 80% of

fF�1(h4, 2, b)gB
b = 1 on the appropriate components of (x, y�l) determined by the choice

of D, and used the smearing method of Duan (1983) to estimate E½h4, 2jD� from the

model fitted to the nonlinear transformation of h4, 2. We followed analogous proce-

dures for the ELA SGPs h3, 1. The substantive results for both true SGPs were not

sensitive to alternative modeling decisions to compute Ê½hc, pjD�, including the use

of a logit rather than probit function to transform hc, p, and the use of a flexible linear

regression specification for hc, p itself.

Finally, for Step (3), we used the estimated functions Ê½h4, 2jD� and Ê½h3, 1jD� to

estimate h4, 2, b and h3, 1, b for each of the remaining 20% of the samples

f(h, x, y�l)bg
B
b = 1. We then estimated the MSE of Ê½h4, 2jD� by averaging the squared

difference between h4, 2, b and the predictions of it based on Ê½h4, 2jD� across the

20% of samples. We did this for each choice of D. We followed analogous proce-

dures for h3, 1.

We repeated this procedure for a sequence of different values of l ranging from

0.50 to 0.95 for each cohort and subject. The variation by subject was small and so

we focus only on results for math SGPs. There was some variation by cohort, with

MSEs slightly larger in higher grades. However, the results were not distinct enough

to make pooling results across cohorts misleading, so we pooled across cohorts to

simplify presentation. Results for individual cohorts and subjects are provided in the

Supplemental Material (available online).

Results

The main results are summarized in Figure 1(a). The reliability l is on the horizontal

axis, and the vertical axis is the square root of the MSE (denoted ‘‘RMSE’’) for con-

ditional mean estimators of h4, 2, i based on conditioning on different amounts of

data. We express the estimates and their corresponding errors on the scale of 0 to

100, consistent with SGP applications. The topmost curve (with circles) corresponds

to conditioning on only the math scores, as would be typical in practice. Obviously,

the RMSE decreases as the reliability increases, but it is important to note that the

absolute magnitude of the error is quite large for reliabilities of typical standardized

assessments. For example, with l = 0.90, the RMSE is nearly 20 percentage points,

meaning that 95% confidence intervals based on even the most accurate SGP estima-

tors will cover much of the entire 0 to 100 scale for many students. These results are

consistent with those reported by McCaffrey et al. (2015). The main result evident in

Figure 1(a) is that conditioning on additional information provides little benefit for

improving accuracy. In addition to RMSEs for EAPs conditional on only the math

scores, the plot provides RMSEs for EAPs based on the math scores plus student
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covariates (curve with triangles), the math scores plus the ELA scores (curve with

+ ) and the math scores plus both the covariates and the ELA scores (curve with 3).

Using the covariates during the estimation provides minimal benefit. The relative
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Figure 1. (a) Approximate RMSE of EAP estimators for math SGP conditioning on different
amounts of information, as a function of test reliability. (b) Approximate percentage reduction
in MSE for different math EAP estimators, relative to the EAP estimator that conditions only
on math scores, as functions of test reliability. Values are averaged across Grades 4 to 8.
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value of covariates increases as the test reliability decreases, which makes sense

because the covariates provide relatively more information than test scores in such

cases. Conditioning on the scores from the opposite subject provides somewhat more

benefit, although still not much.

Figure 1(b) calibrates the improvements in terms of percentage reduction in MSE

(Haberman, 2008; Sinharay et al., 2011) relative to the default EAP estimator that

conditions only on math scores. Adding covariates alone (curve with triangles) pro-

vides only a few percentage point improvement, with benefits increasing as the test

reliability decreases. Adding ELA scores alone (curve with + ) provides somewhat

more benefit, but the relationship is not monotonic with the test reliability.

Conditioning on both sources of information (curve with 3) leads to percentage

reductions in MSE that are at best 6%. The corresponding maximum for ELA (not

shown) is 7%. Curiously, the percentage reduction is maximized with reliability

between 0.85 and 0.90, typical values for actual standardized assessments. This

means that given the state of the world, the relative benefit provided by conditioning

on auxiliary information is about as large as it could be, even though in absolute

terms the accuracy gains will not be large.

It is important to clarify that our calculations here hold constant the definition of

the true SGP as conditioning on only the matched-subject prior year achievement.

For example, the true math SGP h4, 2 is defined as a function of the current and prior

year math achievement. This is true even as we consider using both current and prior

ELA scores in addition to the math scores to estimate it. This is in contrast to the case

where the definition of the true SGP is changed to include additional prior achieve-

ment attributes in the conditioning. Monroe and Cai (2015) consider this issue and

find that including additional scores in the conditioning set when defining true SGPs

tends not to improve estimation accuracy, and actually can decrease it under some

circumstances. We consider true SGPs conditioning on multiple prior year scores in

the following section as part of our investigation of SGPs aggregated to the teacher

level.

Implications for Aggregating SGPs to the Teacher Level

Previous results established that distributions of true SGPs vary as a function of stu-

dent covariates. Here we consider the implications of this fact for the behavior of

aggregates of SGPs to the teacher level, currently used for teacher evaluations (e.g.,

Colorado Department of Education, 2013; Georgia Department of Education, 2014).

Specifically, we use P̂h, X to estimate the expected true SGPs as a function of student

covariates X. We then use student-teacher links in our data to study the variability

across teachers in expected true SGPs based on the characteristics of the students

they teach.

Such variation indicates a correlation between the background characteristics of

the students a teacher teaches and the average of these students’ true SGPs. The var-

iation results from the combination of the unequal distribution of student covariates
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across classrooms and the relationships of true SGPs with these covariates. There are

at least three distinct mechanisms for these relationships. First, they could result

from student-level factors (e.g., motivation, skills, or family circumstances) that

are related to both true SGPs and the observed student covariates. Second, they

could result from contextual effects, where students have more or less growth as a

result of contextual factors (e.g., neighborhoods or classroom dynamics) that are

correlated with the observed student covariates. Either of these two mechanisms

would pose a problem for interpreting aggregate SGPs as teacher performance

indicators because they would cause teachers of equal effectiveness, but who teach

different types of students, to receive systematically different aggregate SGPs.

The third possible mechanism for relationships of true SGPs with student covari-

ates is the sorting of more or less effective teachers to schools and classrooms that

vary systematically with respect to our student background variables. That is, if

more effective teachers are more likely to teach students with particular back-

ground characteristics, then such students on average may have higher true SGPs

simply because they are taught by better teachers. In our investigations of true

SGPs aggregated to the teacher level, we conduct some analyses that try to shed

light on the contributions of these different mechanisms.

Method

Our analysis of aggregated expected SGPs consisted of four steps. First, for each

cohort, we used samples f(h, x)bg
B
b = 1 from P̂h, X to compute estimates Ê½h4, 2jX� and

Ê½h3, 1jX� of the conditional expectation functions of the true math and ELA SGPs

given student covariates. We estimated these functions using linear regressions of

F�1(h4, 2, b) and F�1(h3, 1, b) on xb and again using the smearing method of Duan

(1983). The substantive results were not sensitive to alternative modeling decisions

to compute the functions, including the expansion of the regression model to include

two-way interactions among the covariates, the use of a logit rather than probit func-

tion to transform h4, 2 and h3, 1, and the use of linear regression specifications for

h4, 2 and h3, 1 directly.

In the second step, we computed Ê½h4, 2jX = xi� and Ê½h3, 1jX = xi� for each student

in the analysis sample for a given cohort. That is, we evaluate the conditional expec-

tation functions estimated from our Monte Carlo samples for each student in the anal-

ysis sample, so that each student in that sample is assigned an expected true math

SGP and an expected true ELA SGP based on his/her covariates xi.

In the third step, we restricted the analysis sample for each cohort to students for

whom we observed either a math teacher link or an ELA teacher link for Grade g.

Because part of the appeal of SGPs is their invariance to scale, we then pooled the

data across cohorts and both subjects, consistent with common practice in state

teacher evaluation systems in which teachers receive a single aggregated ‘‘growth’’

score across all their students (e.g., Georgia Department of Education, 2014). Thus,

in the pooled data set, each unique teacher is associated with the expected true math
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SGPs of the students to whom they teach math, and the expected true ELA SGPs of

the students to whom they teach ELA, regardless of those students’ grade levels.

Finally, in the fourth step, we averaged all these expected SGPs to the teacher

level for each teacher. If the average for a particular teacher is 60, for example, it

indicates that given the background characteristics of the students he or she teaches,

we would expect that the teacher would receive an average SGP of 60 (on the 0-100

scale) if there were no measurement error in either the prior or current year tests. We

then restricted attention to teachers with 15 or more expected SGPs contributing to

the teacher-level mean to mitigate the impact of small samples on the estimated dis-

tribution, resulting in 12,103 teachers with ‘‘class’’ sizes ranging from 15 to 221 with

a median of 46. For middle school teachers who tend to teach either math or ELA

but not both, the restriction generally means that teachers needed to be linked to at

least 15 students. For elementary school teachers who teach both subjects, the num-

ber of actual students might be as small as 8 because each student contributes both a

math and ELA expected SGP.

Results

Figure 2 provides a histogram of the teacher-level averages of the expected true SGPs

for the sample of teachers described above. The distribution has some low outliers

below 40, and a heavier right tail that extends above 60. The 0.10 and 0.90 quantiles
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Figure 2. Histogram of estimated expected true SGP at the teacher level based on student
covariates for teachers with at least 15 expected SGPs.
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are 44.8 and 55.4, respectively. Other authors have noted that SGPs estimated from

test scores and then aggregated to the teacher level can be correlated with aggregated

student background characteristics solely as a result of measurement error in the prior

test scores used to estimate SGPs (McCaffrey et al., 2015; Shang et al., 2015). Our

results go further: they indicate that such relationships would exist even if true SGPs

could be measured perfectly through tests with no measurement error.

The variability of the distribution is striking, but as noted in the previous section,

there are multiple mechanisms that could be responsible for the correlation between

true SGPs and student covariates that ultimately leads to the type of variability evi-

dent in Figure 2 when teachers vary with respect to the types of students they teach.

We conducted several analyses that probed these mechanisms. First, we investigated

whether we obtained distributions similar to Figure 2 if we considered expected

SGPs given lag-1 prior achievement in the other subject or given additional years of

prior achievement from the same subject. Conditioning on additional prior achieve-

ment attributes is a common strategy for matching students more closely with respect

to prior achievement (Lockwood & McCaffrey, 2014), potentially reducing the mag-

nitude of relationships between other student covariates and student progress. That

is, if part of the relationship between true SGPs and observed student covariates is

due to unobserved student-level factors correlated with both, then conditioning on

additional information that may proxy for such factors can help to reduce the correla-

tion between true SGPs and observed student covariates.

We can easily obtain true SGP distributions for, say, current math achievement

given both prior math and ELA achievement using the models presented to this

point. For true SGPs given additional lagged prior achievement, we ran additional

latent regression models where the four dimensions were 4 years of achievement for

a single subject (e.g., math achievement in Grades 3 [2007] to 6 [2010]), which

allowed us to examine distributional properties of true SGPs conditional on up to

3 years of prior achievement. In summary, using these true SGP distributions and

the methods described above for obtaining average expected SGPs for teachers

given student background covariates, we found only a modest reduction in var-

iance. Specifically, versions of the distribution in Figure 2 based on including

additional prior achievement attributes would have a standard deviation ranging

from 78% to 85% as large as that of the distribution in Figure 2. Thus, the large

spread evident in Figure 2 is not removed simply by conditioning on more prior

achievement traits.

We also conducted analyses that tried to isolate the part of the observed relation-

ships between expected SGPs and student covariates that are due only to individual-

level relationships. These analyses are described in the appendix. The results are sum-

marized in Figure 3, which is analogous to Figure 2 but is based on only individual-

level relationships between background characteristics and true SGPs, and does not

reflect variation due to either contextual effects or sorting of teachers of different

effectiveness to different types of students. The standard deviation of the distribution

in Figure 3 is 63% as large as that of the distribution in Figure 2. In addition, spread
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between the 0.10 and 0.90 quantiles in Figure 3 is (46.9, 53.5), compared with (44.8,

55.4) for Figure 2. Thus, our analyses suggest that even if part of the spread in Figure

2 is due to contextual effects or teacher sorting, variation across teachers in expected

aggregated SGP would remain due to individual student-level relationships and varia-

tion across teachers in the types of students they teach.

Discussion

Studying properties of true SGPs only through the lens of estimated SGPs is difficult

due to excessive estimation error in estimated SGPs. Modeling longitudinal item-

level data with latent regression MIRT models is an efficient and effective alterna-

tive. The latent regression specification leads directly to model-based true SGP func-

tions, and the parameters required to specify these functions can be estimated

straightforwardly in the MIRT framework. Monte Carlo methods can then be used to

study features of the joint distribution of multiple true SGPs, student covariates, and

test scores that, to date, have not been investigated.

Our results raise concerns about using and interpreting estimated SGPs at both the

student and aggregate levels. A substantial research base already notes that SGP esti-

mates for individual students have large errors (Lockwood & Castellano, 2015;

McCaffrey et al., 2015; Monroe & Cai, 2015; Shang et al., 2015). Our findings indi-

cate that joint models capitalizing on relationships of true SGPs both across subjects
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Figure 3. Histogram analogous to Figure 2, but based on within-group latent regression
coefficients.
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and with student covariates would provide only modest benefits for estimation accu-

racy. Although this accuracy problem manifests with SGPs, it is not unique to SGPs:

it is an intrinsic problem with trying to use typical standardized assessments to mea-

sure growth accurately (Harris, 1963). Our findings underscore that using multiple

features of the observed data to learn about true growth cannot overcome this funda-

mental limitation. Thus, estimated SGPs may not be accurate enough to support

inferences or decision making for individual students.

The fact that SGPs apparently are related to student background characteristics

even in the absence of test measurement error, with directions of the relationships

generally echoing those observed with achievement status, creates further interpreta-

tion problems. On the one hand, our finding that excessive absence is a strong predic-

tor of true SGPs provides some reassurance that tests can be sensitive to time-varying

factors that we would hope to have causal impacts on student progress. On the other

hand, relationships with persistent characteristics such as race/ethnicity suggest that

the process of conditioning on prior achievement, even if it could be measured accu-

rately, will result in achievement progress measures that carry with them some part of

the gaps seen with achievement status. This creates a dissonance between some of the

rhetoric surrounding the fairness of growth measures such as SGPs, and the reality of

how such measures are likely to behave. Our finding that these relationships exist

with latent achievement attributes, not just with observed test scores, makes clear that

improving the reliability of standardized assessments would be insufficient to solve

this problem.

The relationships of true SGPs to student characteristics also creates a clear prob-

lem for interpreting estimated SGPs aggregated to the teacher or school levels. One

of the putative benefits of aggregating estimated SGPs is that it overcomes the exces-

sive measurement error problem at the individual level. However, the variability in

the distribution in Figure 2 is troubling, and our evidence that a nontrivial part of that

variability may be due to individual-level relationships between student characteris-

tics and true SGPs is even more troubling. It suggests that SGPs aggregated to the

teacher level may contain a source of variance that is due solely to the fact that teach-

ers do not teach the same types of students. This source of variance represents bias if

the goal is to interpret aggregated SGP as an indicator of teacher effectiveness. This

bias is easy to avoid in a value-added model that regresses student test scores on

teacher fixed effects, prior test scores, and student background variables because such

a model removes variance due to the individual-level relationships from the esti-

mated teacher effects (see, e.g., Wooldridge, 2002). Our results thus suggest that the

interpretation and transparency benefits provided by aggregated SGPs need to be

weighed against the costs of allowing a source of bias in performance indicators that

is removed by alternative modeling approaches.

Our results come with a number of caveats. The main limitation results from the

specification of the latent regression model in Equation 1. Although such a specifica-

tion is standard in MIRT modeling, and is useful for analyzing aspects of the statisti-

cal structure of achievement attributes and their relationships to student
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characteristics, it falls short of being a structural (causal) model for the evolution of

student achievement. Such models specify student achievement as a cumulative

function of the history of educational inputs (e.g., teacher and school effects), peer

effects, and effects of both observed and unobserved individual and family attributes

(see, e.g., Todd & Wolpin, 2003). Provided the many assumptions required to esti-

mate such models with real data are appropriate, they have the advantage that they

permit the sorts of decompositions needed to fully interpret, for example, the distri-

bution in Figure 2 because they disentangle the causal effects of various inputs to

student achievement. We have no reason to think that our second-stage analyses

probing the decomposition provide misleading results. However, more refined infer-

ences would be possible if the latent regression part of the MIRT model was speci-

fied as something closer to a structural model for longitudinal student achievement.

Such modeling introduces a number of challenges, including data requirements,

model specification decisions (e.g., how to deal with the cross-classification of stu-

dents to teachers over time as well as missing student-teacher links), and software

limitations that are beyond the scope of this article. Future work along these lines

could build on our framework under more complex model specifications.

Other modeling decisions may have affected our results. For example, our latent

regression included only main effects for the covariates. Preliminary analyses with

the scale scores suggested some evidence for two-way interactions, but the increase

in R2 for such model terms was 0.01 or less, and including them in the MIRT models

would have substantially increased computation time and complicated interpretation

of the model parameters. It is unlikely that accounting for these interactions would

change any of the substantive findings, but it still may be useful to consider the sen-

sitivity of our findings to such model specification changes. Similarly, our choice of

item response model could affect our results, warranting additional analyses to deter-

mine the extent that a different model, such as the three-parameter-logistic model for

dichotomously scored items, fits the data better and changes our findings, if at all.

Finally, it is unlikely that the assumption that the latent trait residuals di are indepen-

dent with a multivariate normal distribution with a constant variance-covariance

matrix S holds exactly. There is no reason to think that the misspecification of the

model is so severe that fitting a more authentic model would lead to drastic changes

in the findings, but it would be useful to relax these assumptions and investigate the

extent to which our findings are robust.

Some of our findings also may be due to peculiarities of our data set. For instance,

in preliminary analyses, we found that student background covariates still had rela-

tively large coefficients when included in a regression of current year (2010) scores

on several prior year scores. Thus, for our data, student background covariates seem

to explain additional variation in current test scores over and above prior achieve-

ment. This may not be typical, which could contribute to the several large group dif-

ferences in true SGPs we find.

Finally, the inferences from our EAP analyses may also be sensitive to several

choices we made beyond those made in the latent regression MIRT model. For
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example, we approximated EAPs under the assumption of homoscedastic measure-

ment error, which does not generally hold with IRT-based ability estimates based on

linear test forms. We suspect that our substantive conclusions are not sensitive to

allowing for heteroskedastic error but future research may consider to what extent it

does matter. It may lead to shrinkage being more important for students in the tails of

the test score distributions because their test scores are typically noisier.

Although such future research would be useful to investigate the robustness of our

findings, this study serves as an important step in investigating the properties of the

underlying quantities attempting to be measured by SGPs computed from error-prone

test scores, and the implications of those properties for the validity of SGPs as indi-

cators of student achievement growth and educator effectiveness.

Appendix

Details on True SGP Computation

Equation 2 is straightforward to evaluate when PX and PΘjX;b, S are known. The term

Pr(Yc � ucjX = x, Θp = up) requires only the evaluation of a univariate normal CDF

with mean and variance determined by x, b, and S using standard formulas for condi-

tional distributions from multivariate normal variables (see, e.g., Anderson, 1984).

The second term dPXjΘp(xjup) covers the case where PX is discrete or continuous. In

our application, all covariates are discrete and so PX is discrete. In this case, Equation

2 reduces to

XH

h = 1

Pr(Yc � ucjX = xh, Θp = up)Pr(X = xhjΘp = up),

where x1, . . . , xH are the possible values of X with probabilities PX(xh). For

instance, for the data from our Grade 4 cohort, there are H = 1,630 distinct groups

defined by the observed unique combinations of the student covariates used in our

model. The terms Pr(X = xhjΘp = up) are straightforward to evaluate using Bayes

rule. They are obtained by multiplying the prior probabilities PX(xh) by PΘpjX(upjxh),

and then normalizing the products so that they sum to one over h = 1, . . . , H. Each

term PΘpjX(upjxh) is simply a (possibly multivariate) normal density with parameters

determined by xh, b, and S.

Assessing Uncertainty

We conducted the following analyses to assess how much uncertainty there is in var-

ious inferences reported in the article due to the three sources of uncertainty noted in

the ‘‘Estimating Latent Regression Models and True SGP Distributions’’ section. To

keep computations manageable, we focused on the Grade 7 cohort. This cohort has

the smallest sample size (N = 65,093) among the five cohorts and so should have the

most estimation error; however, the cohort sizes are extremely similar and so it rea-

sonable to assume that what is learned from the Grade 7 cohort regarding uncertainty
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would generalize to all cohorts. We drew J = 10 bootstrap samples from the Grade 7

cohort (Efron & Tibshirani, 1993) and estimated the MIRT model for each. This

resulted in estimated parameters (b̂j, Ŝj) for each of the j = 1, . . . , 10 bootstrap sam-

ples. Variability among these estimates reflects both sampling variability due to the

sample of students and Monte Carlo variability in the MH-RM solutions. The total

variability was small. The average bootstrap standard error for the regression coeffi-

cients was 0.023, with an average absolute magnitude of the coefficients themselves

of 0.36. The average bootstrap standard error for the R2 of the covariates in the latent

regressions for the Grade 7 cohort was only 0.003. Likewise, the average bootstrap

standard error for the correlation parameters was only 0.0025. Thus, the resulting

95% confidence intervals for these quantities are sufficiently narrow to not affect the

substantive conclusions.

The inferences regarding true SGPs have additional uncertainty due to the Monte

Carlo samples used to compute them. For each j, we independently drew B =

1,000,000 samples from P̂h, X, j where P̂h, X, j was based on (b̂j, Ŝj) and P̂X, j, the

empirical distribution of the covariates in bootstrap sample j. Thus, these samples

reflect all three sources of uncertainty. The bootstrap standard error for the correla-

tion between the true math and ELA SGPs was 0.008. The average bootstrap stan-

dard error for the mean differences in true SGP by covariate group was 0.41 (on the

0-100 SGP scale).

Auxiliary Analysis to Investigate Possible Sorting Bias

Our goal was to investigate how much of the variation in Figure 2 might be due to

individual-level relationships of student covariates to SGPs, rather than due to either

contextual effects or relationships of true teacher effectiveness to student background

characteristics (i.e., systematic teacher sorting). The MIRT model in Equation 1 does

not decompose covariate effects into within-teacher and between-teacher compo-

nents. We thus conducted analyses that used such a decomposition to isolate the

within-teacher latent regression coefficients and created a version of Figure 2 where

expected true SGPs were based only on these coefficients rather than the marginal

coefficients.

Our analyses proceeded as follows. For each cohort, we began with the analysis

samples used for the main MIRT models and summarized in Table 1. For each of the

four dimensions in a cohort, we merged teacher links onto the data for the corre-

sponding grade level and subject. For example, for dimension k = 1, we merged ELA

teacher links for Grade g – 1, whereas for dimension k = 4, we merged math teacher

links for Grade g. We then restricted the data for each dimension to records from stu-

dents linked to teachers with at least 10 students. For this restricted sample, and for

each model covariate, we computed both the teacher-level mean and the deviation

from the teacher-level mean. Thus, for each dimension, the original vector of covari-

ates xi for each student is replaced with the vector (x0j(i), x0i � x0j(i))
0, where xj is the

vector of teacher-level mean covariates for teacher j and j(i) is the index j of the

teacher to whom student i is linked for the appropriate grade and subject. We then fit
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a one-dimensional latent regression IRT model to the data from each dimension and

recovered the coefficients on the within-teacher deviations (xi � xj(i)), which we

denote by b̂kw to indicate that these are the coefficients on the within-teacher devia-

tions for dimension k. We then let b̂w = ½b̂1w, b̂2w, b̂3w, b̂4w�. These coefficients are

unaffected by either contextual effects or teacher sorting since both teacher and con-

text are assumed to be constant among students sharing a teacher. In this sense, they

reflect only the individual-level relationships between latent achievement traits and

student background variables. We used separate one-dimensional models rather than

a single four-dimensional model to avoid collinearity and sample restriction issues

that arose when fitting the four-dimensional model with the augmented covariates

due to the cross-classification of students to teachers both across subjects and across

grades.

We then replicated the calculations that led up to Figure 2, but when we generated

samples ub from the latent regression model, we used b̂w rather than b̂. Thus, the

latent achievement traits are simulated from a distribution where their relationships

to the covariates are based only on within-teacher relationships rather than the mar-

ginal relationships. All remaining computations proceeded as before. The resulting

distribution of expected true SGPs aggregated to the teacher level is given in Figure

3. The 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 quantiles of this distribution are

46.2, 46.9, 48.2, 49.6, 51.5, 53.5, and 54.9. The corresponding values from the distri-

bution in Figure 2 are 43.5, 44.8, 46.7, 49.1, 52.6, 55.4, and 56.9. The distribution is

thus more concentrated when b̂w is used. However, there is still substantial variabil-

ity among teachers in this distribution. The SD of the distribution using b̂w is 63%

as large as the SD of the distribution in Figure 2, as reported in the text.
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Notes

1. Note that our model of interest is distinct from IRT growth curve models that rely on com-

mon items across time points and model change in achievement over time. SGPs do not

model absolute change in achievement over time. Rather, they are a normative measure of

growth, or as Castellano and Ho (2013) describe them, measures of ‘‘conditional status’’ in

that they describe a student’s current status relative to students with the same prior status.

2. We also ran all latent regression models with Haberman’s (2015) mirt software that uses

adaptive quadrature and obtained essentially identical parameter estimates. Details are

available on request.
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