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In the United States, high school attendance and drop-out are important policy concerns receiving
extensive coverage in the research literature. Traditionally, the focus in this work is on the summary of
dropout rates and mean attendance rates in specific schools, regions or socio-economic groups. However,
the question how stable those attendance rates are over time has received scant attention. Since instability
in attendance may affect how long individual students stay in school, the issue deserves attention. The
school districts that have begun to keep record of daily attendance rates in their schools over multi-year
periods, such as those in New York City, have created an opportunity to investigate the temporal
dimension of daily attendance, and thereby explore its stability. This paper will focus on its long-term
characteristics, specifically the following: self-similarity, meta-stability or pink noise, and the impact of
sudden departures from the central tendency of the series. Such departures can be used to estimate the
impact of exogenous influences on the behavior of the system. The findings illustrate the importance of
describing the dynamical patterns underlying attendance that remain concealed in traditional summary
measures.

Few educators would dispute that attending school is an important contributor to academic
success. The question how indicators such as these are in turn predicated on other variables is
subject to more debate. Among the likely factors affecting attendance and achievement are
socio-economic status, support from parents and/or caretakers, quality of instruction and
effective school building leadership. In our analyses of educational effectiveness, daily
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attendance rates are not often analyzed in their own right, and if attendance information is
reported at all, it is usually done in terms of weekly, monthly or yearly averages. While these
measures have their value, they conceal potentially valuable information about how daily
attendance fluctuates over time, and what these fluctuations tell us about attendance behavior.
The description and interpretation of such fluctuations are the focus of this paper.

The inadequacy of aggregated summary measures to capture the dynamical aspects of
daily attendance rates has been noted before (Koopmans, 2011; 2015). Several urban school
districts including those in New York City have begun to build data repositories of daily
attendance rates for all of their schools, thus creating an opportunity to investigate how
attendance behaves across the time spectrum and what type of patterns we might expect to
encounter. We can test specific models of change and instability that have been forwarded in
the complex dynamical systems literature and examine their applicability to the field of
education, as well as contributing to that literature by providing prototypical cases of
dynamical processes.

In addition to its theoretical relevance, a description of the time-related dependencies in
daily attendance rates also serves a practical purpose because they can help enhance
practitioners’” knowledge about cyclical patterns of attendance in their school buildings, and
while school personnel might be well able to detect weekly or monthly cycles of fluctuation in
daily attendance, it is much harder to observe the irregular cycles that capture complexity, and
therefore, some kind of statistical modeling would be required to detect them. This paper
focuses on three of those less readily observable dynamical patterns, namely self-similarity, self-
organized criticality, and meta-stability or pink noise. I also propose an approach to the
modeling of the exogenous influences on daily attendance patterns, which is generally known
in the time series literature as pulse analysis, or interrupted time series analysis.

This paper is planned as follows. First, I will review some of the basics of traditional time
series analysis, the statistical approach to the analysis of temporal variability. Subsequently, the
three aforementioned dynamical scenarios will be illustrated using daily attendance data from
two schools in New York City. I will also discuss the utility of pulse analyses in that context to
model influences exogenous to the system of interest, and reflect on how these approaches are
helping us obtain a better understanding of temporal processes in education, daily attendance
rates in particular.

Time Series Analysis — The Basic Approach

The basic idea behind time series analysis is that if one has a long string of observations whose
order reflects the passage of time, one can predict the value of future observations based on the
shape of that trajectory. For example, if there is an upward trend from time 1 to time 2 and time
3, one might predict that at time 4, this upward trend will continue, barring any additional
information about the behavior of this time series. Likewise, if a time series oscillates during a
given period, one might expect this pattern to continue going forward, again assuming that no
new information becomes available about the series. The more observations are used when
making predictions of this kind, the greater the accuracy of the prediction, and the narrower the
confidence interval will be around the predictions.
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In situations where the behavior of individuals is measured repeatedly, it is not safe to
assume that there is no relationship between the measures that are repeated, as conventional
statistics would have it, because those measures belong to the same analytic unit (individual or
other system). One of the primary concerns in a time series analysis is therefore to model these
dependencies, and remove any bias they might produce in the estimates of time effects on a
behavioral outcome such as attendance. These dependencies sometimes involve a correlation
between one observation and an immediately neighboring one or other observations that are
close by. Correlations of observations with neighboring observations are usually referred to as
autocorrelations, and in time series analysis, estimating their impact on the series enhances the
reliability of the model predictions. This estimation is one of the central aims of a time analysis.

Sometimes modeling the dependency between observations is simply done to make the
statistical corrections to enhance the accuracy of predictions. There may also be instances where
autocorrelative patterns in time series that are of substantive interest. For instance, it could be
that the data show cyclical patterns, such that observations on a given day of the week
correlated with those made on the same day in other weeks. Likewise, there could be hourly or
monthly patterns in the data. Time series analysis can model those cycles, and incorporate them
into the prediction of future occurrences. These modeling features have always been part and
parcel of the time series approach (e.g., Box, Jenkins, & Reinsel, 2008). In its contemporary form,
time series analysis is also capable of modeling more complex processes such as
unpredictability, self-similarities and self-organized criticality, processes that typically reveal
themselves over the longer range of the series (Beran, 1994). The ability to capture these unrulier
parts of the system’s behavior is important because they address the concern that in
conventional approaches to research, systems of interest are assumed to be stable, an
assumption that been subjected to challenge quite some time ago (Goldstein, 1988).

Another scenario that requires due attention is the possibility that the series is impacted
suddenly due to shocks from sources that are external to the system. Such shocks are typically
not predictable based on the previous behavior of the time series, but their impact on this series
can nonetheless be estimated. Modeling such shocks is typically done using an approach called
interrupted time series analysis, intervention analysis or pulse analysis. An example of such a
shock to a time series consisting of daily attendance rates would be inclement weather, a
situation that would temporarily disrupt the attendance pattern. Pulse analysis models such
disruptions, and it also estimates to what extent the time series recovers its original properties,
and if so, how quickly.

The ongoing pattern in the series, and the sudden perturbations thereof, characterize
different aspects of the behavior of a system. As far as daily attendance is concerned, both are
important, as the examples provided below will be meant to illustrate. The former can be used
to characterize the baseline settings of the system (i.e., the endogenous process), which describes
how the system behaves in the course of its usual adaptive cycle, while the latter models a
sudden impact of external events on the system (the exogenous process), and the resilience of the
system toward such events.
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White Noise and Pink Noise — An Illustration

When describing or predicting the future behavior of a system, the first question that time series
analysis must answer is of course is whether there is indeed a pattern that may replicate. Figure
1 illustrates two different aspects of this issue in a simulated example. The panel on the left
illustrates random fluctuation, also known as white noise. In this situation, knowing the past
behavior of the series will not help predict its future behavior, except to say that observations
are expected to continue to fluctuation randomly. The panel in the top right of the figure shows
pink noise. The pattern shown in these two panels is similar, except that there is considerable
fluctuation around the central tendency of the series in the case of pink noise, except for the fact
that this central tendency shows a nonlinear pattern over time, giving the trajectory this
undulating appearance, as well as showing irregularity in the clustering in the observations.
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Figure 1. A simulation with a string of N = 1,800 data points Y;, illustrating two scenarios. (a) Random
variability (white noise) and (b) Long range dependency (pink noise). Both distributions have a mean of
M=0.

Preliminary Data Description

The analyses presented here concern on two New York City schools whose daily attendance
rates were analyzed as part of a larger study that distinguishes small high schools (total
enrollment of 500 students or less) to large ones whose enrollment is in the thousands of
students. Both schools described in this paper are small ones. Periods in which schools were not
in session (e.g., summer vacation, winter and spring breaks) were removed and median values
were imputed when observations were missing. The series were then connected such that one
long string of observations describes the attendance rates in a given school over a multi-year
period, and that multi-year pattern was subjected to analysis. In the present study, ten years’
worth of attendance information is used. The mean attendance rate in School 1 is 76.4%, and
91.4% in School 2. Both schools serve a predominantly Hispanic student population (52.0% in
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School 1 and 78.7% in School 2), with a significant representation of African American students
as well (37.3% in School 1 and 11.4% in School 2).

a b
o o
o o
i) ® i) ® -
[0 [0
i'd i'd o
2 @ L ©
C C
[0 [0
2 e o
2 9 g S
<L <L
S &
T T T T T T T T
0 500 1000 1500 0 500 1000 1500
Time Time

Figure 2. Variability in Attendance Rates at Two schools over a 10-year Period (Sept. 2004 — June 2014). (a)
School 1 (N =1,785, M =76.4); (b) School 2 (N =1,795, M = 91.4)

Daily Attendance as a Time Dependent Dynamical Process

Figure 2 shows how the dependencies described above actually play out in two schools in New
York City (referred to here as School 1 and school 2). There appears to be a clustering of
observations as well as rising and falling fluctuation patterns over the broader range of the time
scale that is characteristic of pink noise or long range memory processes. The statistical
modeling of these attendance patterns confirms this possibility. In a statistical comparison of
models describing the data shown in Figure 2, those models that include a parameter for long
range memory processes fare better than those that rely exclusively on short range processes.
Koopmans (2017) describes the statistical modeling process in greater detail. While the presence
of pink noise points to the possibility of self-organized criticality or self-similarity, researchers
are generally careful to point at that statistically establishing pink noise does not confirm these
patterns, but merely allows us to conclude that we cannot rule them out (Beran, 1994;
Stadnitski, 2012).

While the comparison of the statistical models may not conclusively establish the presence
of self-similarity, closer inspection of the series does suggest that it might indeed be the case.
The plot in Figure 3 illustrates this point for School 2. The four panels in Figure 3 give an
impression of a self-similar process in School 2, i.e., a pattern where within a time series pattern,
the very same pattern replicates itself on a smaller time scale and then again at a yet smaller
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time scale. This pattern is also sometimes referred to as scale invariance (Mandelbrot, 1997) in
recognition of the fact that no matter how the scale is time set for the observations to be
included in the plot, one would encounter this pattern. In other words, the cycle at which these
patterns repeat themselves it not fixed, as it would be, for example, in weekly or monthly cycles.
Instead, one expects to find the same process, repeated at time scales that are different. Figure 3
shows such self-similar patterns in School 2, where initially small variability in the observations
increases, followed by a sudden drop in the attendance. In this figure, the patterns seen for the
one school year (2004-05) are replicated on progressively smaller scales in Figures 3b, c and d.
With respect to daily attendance, Koopmans (2015; 2016) suggests that these repeating patterns
may reflect increasing tension associated with the compulsory nature of attendance followed by
the occasional need for release, as shown by the significantly lower attendance rates on
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Figure 3. Self-similar patterns and scale invariance in daily attendance rates over time in School 2 for the
trajectories starting on September 13, 2004. Attendance rates through (a) June 17, 2005 (N = 185); (b)
March 11, 2005 (N = 120); (c) January 28, 2005 (N = 95); (d) November 5, 2004 (N = 40)
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particular days. Such tension-release patterns are consistent with how self-organized criticality
has been interpreted elsewhere in the dynamical literature (e.g., Beran, 1994).

The Impact of Extreme Values

One of the attractive features of time series analysis as a statistical approach is its capability of
incorporating outliers into the analysis and to model their impact on the statistical properties of
the series. The analysis presented here illustrates three of the most well- known scenarios. One
is the occurrence of extreme values that do not impact the series beyond their own time point.
These are called additive outliers. The second scenario is the occurrence of extreme values, after
which the series gradually returns to its range of original values. In other words, after the pulse,
there is a recovery period. Such observations are called transient change outliers. The third
scenario, called level shift marks a change of a more permanent nature, which is to say that there
is no recovery from the departure (Pefia, 2001). These three scenarios are illustrated in Figures 4
and 5.

Figure 4 illustrates the occurrence of level shifts in the trajectories for School 1. Figure 4a
covers the 2004-05 school year. The table shows a downward level shift toward the beginning of
the series (t = 19, October 7), as well as a transient outlier at t=58 (December 1) from which there
is a slow but decisive recovery. Figure 4b shows the daily attendance rates for the spring of
2009, with a quite sizable upward level shift at t = 816 (February 2).
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Figure 4. Modeling sudden departures in time series trajectories (School 1). (a) Daily attendance rates
from September 13, 2004 through June 10, 2005 with a Level Shift at t = 19 (October 7) and a Transient
Change outlier at t = 58 (December 1); (b) January 5, 2009 through June 12, 2009 with a Level Shift at t =
816 (February 2)
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Figure 5 shows a level shift and some additive outliers in School 2. Figure 5a shows the
trajectory in this school from January 2 through June 13, 2008. At t = 666 (March 10, 2008), the
model observed a sudden drop in the series followed by a relatively quick recovery toward its
original central tendency. A similar drop can be seen at t = 721 (June 2, 2008). The substantive
question is what specific event (policy or otherwise) triggered these sudden drop, and whether
this recovery, in conjunction with recovery rates elsewhere in the system offer a description of
the resilience of this system to perturbation.

Figure 5b shows the attendance rate trajectory in School 2 from September 9, 2013 through
June 13, 2014. As can be seen in the figure, four additive outliers were observed during this
period in the series, marking sudden changes from which the series soon recovers. Comparison
of the two periods depicted in these two figures in relation to these two types of outliers is
informative as well. In addition to the swift recovery from extreme observations, the series
depicted in the panel toward the right looks more stable in one important other regard, which is
that variability between observations is much lower than it is on the series shown on the left, in
which high degrees of variability are observed and clearly are not captured by the predictions
made by the pulse models.
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Figure 5. Modeling sudden departures in time series trajectories (School 2). (a) January 2 through June 13,
2008 with Transient Outliers at t=666 (March 10, 2008) and t=721 (June 2, 2008); (b) September 9, 2013
through June 13, 2014 with Additive Outliers at t=1708 (January 22, 2014), 1713 (February 5, 2014), 1719
(February 13, 2014) and 1790 (June 6, 2014).

Discussion

The analyses presented above indicate that critical information is lost if daily high school
attendance is reported in terms of weekly, monthly or yearly averages instead of a time
dependent phenomenon. The trajectories presented here show turbulence, patterns that repeat
in unpredictable ways, and unexpected departures of individual observations from the central
tendency of the series. While teachers and school building administrators may be familiar
enough with the predictable patterns such as weekly cycles and similarities between attendance
rates on subsequent days, the clustered variability patterns that constitute the pink noise in the
series may not be familiar, nor easy to predict. Therefore, the statistical confirmation of such
patterns adds to our knowledge and understanding of how attendance behaves over time.
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The modeling of sudden departures is an analytical approach that is particularly suitable to
address the impact of external factors (e.g., inclement weather) on attendance behavior in a
school building. More importantly, such modeling efforts can be used to address the impact of
specific policy events on the attendance trajectory. Such policy initiatives may or may not be
directly related to attendance, but the most important thing is that their impact on attendance
rates can be directly measured. There are two aspects of this impact. One is the departure of
individual observation from the central tendency of the series, and the second is the degree and
extent to which the original statistical properties of the trajectory are fully recovered afterward.
Examples of this recovery process are shown in Figure 4a for School 1, and in Figure 5a for
School 2. The estimation of this recovery has policy implications because it tells us how quickly
schools go ‘back to normal’ after sudden perturbations. Also important, is the possibility that
lasting change is produced in a time series (for better or worse). In such instances, the departure
of an individual observation from the series marks the beginning of the shift of the series to a
new level, and in policy research, the question is pertinent what the size is of the change, as is
the question whether these shifts constitute a change predicted by policy events. With respect to
sudden departures, it should be remembered that they do not necessarily imply a response to
an external stimulus to the system, but may also be due to the internal dynamics. An
exploration of such departures across the full time spectrum leaves that question in the middle,
while analyses that pinpoint specific policy events on the timeline to study their hypothesized
consequences to the system specifically seek to explain the systems’ behavior in terms of
external pressures.

When interpreting these results, it is important to remember that they concern school level
information, without discriminating individual students or grade levels, and thus, it is a very
crude measure. We also need approaches such as those described here, approaches that were
originally developed to handle linear processes, and extend them to the modeling of nonlinear
ones. The examples presented here illustrate some of the nonlinearity that can occur in strings
of repeated observations, as well as suggesting underlying dynamical processes. Particularly
the tension-release patterns that replicate unpredictably across the time spectrum are of
importance here because they provide an important qualifier to what we know about the daily
attendance of our high school students and the processes that might impact it. Triangulation of
findings such as these with the analyses of external factors and events is important, because it
would enable us to better understand how we can have a favorable impact on attendance
behavior and, by extension, their life and career trajectories.
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