
Volume 8, Number 48 http://isedj.org/8/48/ July 12, 2010

In this issue:

Programming Proficiency in One Semester: Lessons Learned

Don Colton Aaron Curtis
Brigham Young University Hawaii Brigham Young University Hawaii

Laie, Hawaii 96762 USA Laie, Hawaii 96762 USA

Abstract: Programming is a fundamental skill for Information Systems and Information Technology
students. It is also a subject that some students fear, avoid, fail, retake, and fail again. An effective,
inexpensive, one-semester approach is presented. Early indications suggest dramatically improved
student interest and performance compared to our previous two-semester approach. Key features
include heavy use of web-based online programming, use of a scripting language (Perl), development
of general-purpose programming skills, and a free textbook (PDF).

Keywords: programming, curriculum, Perl, online programming, free textbook

Recommended Citation: Colton and Curtis (2010). Programming Proficiency in One Semester:
Lessons Learned. Information Systems Education Journal, 8 (48). http://isedj.org/8/48/. ISSN:
1545-679X. (A preliminary version appears in The Proceedings of ISECON 2009: §1535. ISSN:
1542-7382.)

This issue is on the Internet at http://isedj.org/8/48/

ISEDJ 8 (48) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2010 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington

EDSIG President 2009-2010

Alan R. Peslak
Penn State

Vice President 2010

Scott Hunsinger
Appalachian State
Membership 2010

Michael A. Smith
High Point Univ
Secretary 2010

Brenda McAleer
U Maine Augusta
Treasurer 2010

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Michael Battig
St Michael’s College
Director 2010-2011

Mary Lind
North Carolina A&T
Director 2010-2011

Albert L. Harris
Appalachian St
JISE Editor ret.

S. E. Kruck
James Madison U

JISE Editor

Wendy Ceccucci
Quinnipiac University

Conferences Chair 2010

Kevin Jetton
Texas State

FITE Liaison 2010

Information Systems Education Journal Editors

Don Colton
Professor

BYU Hawaii
Editor

Thomas N. Janicki
Associate Professor

Univ NC Wilmington
Associate Editor

Alan R. Peslak
Associate Professor
Penn State Univ
Associate Editor

Scott Hunsinger
Assistant Professor
Appalachian State
Associate Editor

Information Systems Education Journal 2009-2010 Editorial and Review Board

Samuel Abraham, Siena Heights
Alan Abrahams, Virginia Tech
Ronald Babin, Ryerson Univ
Michael Battig, St Michael’s C
Eric Breimer, Siena College
Gerald DeHondt II, Grand Valley
Janet Helwig, Dominican Univ
Mark Jones, Lock Haven Univ
Terri Lenox, Westminster Coll
Mary Lind, NC A&T University
Cynthia Martincic, St Vincent C

Brenda McAleer, U Maine Augusta
Fortune Mhlanga, Abilene Christian
George Nezlek, Grand Valley St U
Anene L. Nnolim, Lawrence Tech
Monica Parzinger, St Mary’s Univ
Don Petkov, E Conn State Univ

Steve Reames, American Univ BIH
Jack Russell, Northwestern St U

Sam Sambasivam, Azusa Pacific U
Bruce M. Saulnier, Quinnipiac

Mark Segall, Metropolitan S Denver
Patricia Sendall, Merrimack Coll
Li-Jen Shannon, Sam Houston St
Michael Smith, High Point Univ
Robert Sweeney, South Alabama

Karthikeyan Umapathy, U N Florida
Stuart Varden, Pace University

Laurie Werner, Miami University
Bruce A. White, Quinnipiac Univ

Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

This paper was in the 2009 cohort from which the top 45% were accepted for journal publication.
Acceptance is competitive based on at least three double-blind peer reviews plus additional single-
blind reviews by the review board and editors to assess final manuscript quality including the
importance of what was said and the clarity of presentation.

c© Copyright 2010 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 3

Programming Proficiency in One Semester:

Lessons Learned

Don Colton
doncolton2@gmail.com

Aaron Curtis
aaron.mosiah.curtis@gmail.com

Computer and Information Sciences
Brigham Young University Hawaii

Laie, Hawaii 96762 USA

Abstract

Programming is a fundamental skill for Information Systems and Information Technology stu-

dents. It is also a subject that some students fear, avoid, fail, retake, and fail again. An effec-

tive, inexpensive, one-semester approach is presented. Early indications suggest dramatically

improved student interest and performance compared to our previous two-semester approach.

Key features include heavy use of web-based online programming, use of a scripting language

(Perl), development of general-purpose programming skills, and a free textbook (PDF).

Keywords: programming, curriculum, Perl, online programming, free textbook

1. INTRODUCTION

Programming is a fundamental skill for in-

formation systems and information technol-

ogy students and professionals. Although

some professionals seldom write a program,

the skills can come into play in understand-

ing what subordinates do, in writing spread-

sheets, and in automating processes.

Accreditation standards (ABET, 2008) and

model computing curriculum recommenda-

tions emphasize the importance of pro-

gramming proficiency, (Shackelford, 2005;

Gorgone, 2002). However, many of our stu-

dents in IS and IT seem to consider pro-

gramming to be a CS activity, and one they

would rather avoid. Programming is not

something these students visualize them-

selves as doing in their future careers. Stu-

dents within the IS and IT programs, there-

fore, have difficulty maintaining engagement

in computer programming courses.

Introductory students in these programs of-

ten find programming to be boring and diffi-

cult (Jenkins 2002) and experience high

rates of failure (Bennedson and Casperson,

2007). Many students respond to these chal-

lenges by concluding that they are simply

incapable as programmers (Jenkins 2001).

These perceptions of incompetence result in

significant dropout / failure rates in introduc-

tory programming courses and poor perfor-

mance in subsequent programming courses

(Guzdial and Soloway, 2002).

Educator responses to these failings include

believing some students really cannot pro-

gram, thereby lowering expectations of stu-

dent performance (Evans and Simkin 1989),

attempting to innovate in their teaching

techniques to promote greater engagement

(e.g., Leutenneger and Eddington 2007),

and blaming poor performance on “unmoti-

vated” students (Gill and Holton, 2006).

In this paper, we outline our experience in

developing a one-semester approach that

meets the standards and curriculum recom-

mendations of teaching programming fun-

damentals while creating a learning envi-

ronment in which students can develop

competence and confidence as emerging

programmers. The preliminary results of this

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 4

approach suggest that student performance

and perceptions of computer programming

have improved significantly. We anticipate

that the lessons learned in our experience

will be helpful to educators attempting to

address these issues in their local institu-

tions.

2. THE WAY WE WERE

Many of our students in IS and IT seem to

consider programming to be a CS activity,

and one they would rather avoid (much like

Calculus). Despite accreditation standards

and model curriculum recommendations, it

is not something they visualize themselves

doing as part of their job. We have to sell it

well for students to decide to really engage

in learning.

Some years ago we set the bar fairly low.

Students read and discussed simple pro-

grams but did not actually write them. Some

teachers were afraid that students would

fail, become discouraged, and change ma-

jors. Such an overview did not give students

adequate programming skills to actually do

even small-scale projects.

We tried setting the bar higher, with a long,

shallow learning curve, using a two-

semester approach and numerous micro-

projects (Colton et al, 2005; Colton et al

2006). It worked much better. Most students

developed skills but were not eager to use

them. For them programming was tedious

instead of fun.

We looked at other approaches but were put

off by the high proportion of “magic” that

seemed to be involved. By magic we mean

that students developed skills that work

marvelously well in a small number of set-

tings but did not transfer to more general

settings. This felt like “training” instead of

“education.”

Finally we abandoned a key element of our

two-semester sequence, creating in its place

a new two-semester sequence. As the

change worked its way through the system,

we discovered some useful economies that

led eventually to the development of a sin-

gle, one-semester programming course.

2.1 The Two-Semester Sequence

Our department hosts three majors: Com-

puter Science, Information Systems, and

Information Technology. Where possible,

courses are made to serve more than one

major. The introductory programming class

is taken by students in all three majors.

(One goal of the introductory programming

class is to help computing students select

the major that will best suit them. As fresh-

men, students often do not understand the

differences between CS, IS, and IT. Seeing

all three types of students in the same class

helps students self-identify more accurate-

ly.)

We used C in CIS 101 as our foundational

language. This choice was motivated by sev-

eral factors. First, C is well known and highly

respected. Second, C is small enough to be

well understood. Third, programming skills

seem to transfer well from C to other lan-

guages students may need to learn later.

Fourth, the class was to be taught by CS

faculty and C or C++ or Java was their lan-

guage of choice. C (C++) seemed easiest.

The learning objective from the CIS 101

course was that students be proficient with

variables and data types (int, float, char)

and be introduced to arrays, and that they

be proficient with if/else and loops (while, do

while, for) and be introduced to subroutines.

We used Perl in CIS 201 as our follow-on

language. (For those unfamiliar with Perl,

Appendix B gives a few short example pro-

grams written in this language.) This choice

was also motivated by several factors.

Scripting languages (like Perl, Python, and

Ruby) are much faster for completing small-

to medium-sized programming projects.

Scripting skills are important for CS, IS, and

IT students. Among scripting languages, Perl

is well known and highly respected. It is not

small like C, but it has a large body of open

source shared archives (since 1995, the

Comprehensive Perl Archive Network at

http://CPAN.org/).

The learning objective from the CIS 201

course was that students transfer all their

CIS 101 skills to Perl, thus seeing how easy

it is to learn a second language, and in addi-

tion become skilled at database access and

online programming (CGI) on a Linux plat-

form. This also created the opportunity to

introduce and develop skill with regular ex-

pressions. The capstone project was to build

from scratch a small online store complete

with shopping cart and inventory system.

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 5

2.2 Mistaken Assumptions

We assumed that after learning C for a

semester, students would find it easy to

learn Perl. They would conclude that it would

be easy to learn additional languages later,

as needed. This confidence was a major goal

of using two different languages.

Unfortunately, for IS and IT students the

single semester of C did not result in ade-

quate programming skills on which to

springboard into another language. Students

had to relearn everything and the learning

speed was only slightly faster than the first

time they learned it.

In CIS 201, it was too easy to become fru-

strated by the slowness of students in de-

monstrating skills they should have already

mastered. It was too easy to blame the CIS

101 teacher for failing to teach. It was too

easy to blame the students for being stupid.

In retrospect, it appears the problem was

the course design in CIS 101. There was a

mismatch between the expectations in CIS

101 and the abilities and interests of the

students in CIS 101.

It was not immediately obvious, but instead

of having two semesters of programming,

students were having one semester of pro-

gramming, twice. The synergy was missing.

3. TIPPING POINT

There were other frustrations with the exist-

ing programming sequence. The CS faculty

did not see enough value in the CIS 201

class and wanted to remove their students

from it, substituting an additional semester

of Java. CS was one of the longest majors

on campus in terms of credit hours, and felt

the need to add new courses but also

wanted to abandon old courses of limited

value.

This gave rise to the question of whether CS

students should learn a scripting language at

all. It was decided that there was still a real

need for scripting in CS. A suggestion was

then made by CS to convert the CIS 101

class over to scripting. It was a totally unex-

pected suggestion, but it quickly developed

broad support. The new approach would be

to teach scripting in CIS 101 to all students,

and more advanced scripting in CIS 201 to

just the IS students. IS students would fore-

go the learning of C.

The Resulting Curriculum

Starting August 2008 we converted the CIS

101 course into Perl and merged in the ma-

jor features of the old CIS 201 class.

Under the old plan, the 201 class spent 1/3

of its time reviewing basic concepts from

101 but recasting them in the light of Perl.

The next 1/3 of the course was online pro-

gramming. The final 1/3 of the course was

database using mySQL and simple queries

(select, insert, update, no joins). Under the

new plan it was hoped that the first 1/3 of

the course would no longer be needed and

new material could be added.

Because there were already students in the

pipeline, in Fall 2008 both 101 and 201 were

taught in Perl. In Winter 2009 the 201 stu-

dents included some who had learned Perl

before as well as some that had only learned

C before. But over the course of Fall and

Winter we made some interesting discove-

ries.

The immediate results were very interesting.

During the first semester after the change,

CIS 101 and CIS 201 were taught by the

same instructor. CIS 101 students learned

Perl as their first language, and CIS 201

students learned Perl for the first time, but

as their second language. Remarkably, the

101 students did nearly as well as the 201

students. 201 students continued to perform

largely as before. Also, CIS 101 students

gave the teacher high ratings and CIS 201

students gave the teacher lower ratings.

Table 1 (in the Results section below)

presents results in terms of learning objec-

tives mastered by 101 and 201 students re-

spectively. It shows that for many objec-

tives, the top 90% of 101 students per-

formed at the same level as 201 students.

Several theories emerged to explain this

phenomenon. (1) Perhaps 201 students

were frustrated that they were being asked

to learn a second language when their first

language had been boring. This frustration

was realized as push-back against the

course and decreased learning. (2) Perhaps

201 students had not learned C well enough

that the programming skills were transferra-

ble to a new language yet.

Whatever the reason (both seem to be

plausible), it called into question our old

theories about how best to teach program-

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 6

ming. It was concluded by the faculty that if

101 students could perform at roughly a 201

level, then the 201 course was not needed.

It was decided to do away with CIS 201 and

create instead a new capstone CIS 401 web

programming course involving additional

prerequisites and featuring the PHP lan-

guage. The new course would have as pre-

requisites courses in webpage development

(xhtml, css) and in database (SQL including

join). This would allow greater development

of marketable skills for our students.

CIS 201 was taught for the last time in May

2009. CIS 401 is being taught for the first

time in September 2009.

4. PROGRAMMING IN ONE

SEMESTER

The new model is for all things programming

to be taught in CIS 101 such that students

emerge with programming proficiency to the

degree expected of IS graduates. That is a

tall order, but we try to deliver on it by using

the following approach.

First, students learn a single language. We

teach them Perl but keep it simple, at least

at first, in hopes that the skills will be trans-

ferrable to any other language they may

need to learn. There is a great emphasis on

portability of approach, skills, and know-

ledge. (For those unfamiliar with Perl, ap-

pendix B gives a few small sample pro-

grams.)

Second, we wrote our own textbook. This

was a major step, not undertaken lightly,

and not something we recommend to every-

one. But the book, version 1.0, is in use and

freely available to other schools for adoption

as a primary text or as a supplement.

Third, we strongly emphasized online pro-

gramming. We found that students respond

enthusiastically to having their programs run

on the web and being able to share them

with friends near and far. At the same time

we were very cautious to not delve too much

into magic, where students do not really un-

derstand what they are doing but look up

recipes in some index. This was greatly faci-

litated by having our own textbook.

4.1 Single Language

Ideally we might teach the language that all

future employers will demand. Unfortunate-

ly, employers have not converged on a stan-

dard. Fortunately there are some favorite

languages among employers, and most of

these are similar to one another. We hope to

teach a language that will be an easy basis

for students to go on to other languages as

their circumstances may demand.

We generally agree that any of several

scripting languages could be used effective-

ly. Our current choice is Perl. Factors in lan-

guage selection include being typical, power-

ful, well known, portable, and well sup-

ported.

Typical: By this we mean that skills transfer

well to other programming languages.

Powerful: By this we mean useful programs

can be written fairly easily with the level of

skill our students would achieve.

Well Known: By this we mean employers

have heard of it, so it could be meaningfully

listed on a resume.

Portable: By this we mean programs writ-

ten for the Linux platform will also work on

Microsoft or Macintosh and vice versa.

Well Supported: By this we mean there is

a large user community that is actively help-

ing each other and there are large collec-

tions and archives of program libraries avail-

able to everyone.

4.2 Textbook

Our textbook, Introduction to Programming

Using Perl, is available free online as a PDF

file at http://ipup.doncolton.com/.

The book is designed to support an introduc-

tory (100-level) college course that meets

for about forty hours during a semester or

quarter.

The book contains about 60 chapters divided

into eight units for a total of about 340 pag-

es. Most of the early chapters are designed

to be read at the rate of one to two chapters

per hour of time in the classroom.

We assume that students are not yet con-

vinced of the importance of programming

and may be taking the class simply because

it is required. We motivate their study by

emphasizing questions of “why” as well as

showing “how.” We focus on introductory

issues.

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 7

Advanced topics are usually mentioned brief-

ly but with enough detail that students can

follow up by searching the Internet. We as-

sume the students of today are skillful at

using search engines and other tools to get

in-depth answers on topics of interest to

themselves, once they know the topics exist

and what they are called.

4.3 Online Programming

Our students turned out to be VERY enthu-

siastic about online programming. We be-

lieve this is for two reasons. (a) It allows

them to share their work with friends and

family anywhere in the world. (b) It allows

them to integrate graphical elements easily.

During the first semester of our new course,

we deferred online programming until almost

the end of the semester because of the diffi-

culty of parsing online input. Enthusiastic

student response to online programming

made us to look for ways to teach online

skills earlier in the course.

The downsides of online programming are

(a) the difficulty of maintaining state (con-

versation), and (b) the difficulty of working

with “open set” input. (Restricted, “canned,”

or “closed set” input turns out to be easily

handled.)

We reorganized the course to give students

very early success at creating online pro-

grams, starting from a simple graphics pro-

gram that rolls dice or tosses a coin, and

continuing closed set inputs, and finally

reaching open set inputs through regular

expressions.

Rolling dice or tossing coins requires very

little beyond the “Hello, World” level of pro-

gramming. We need only include a lesson on

random numbers. The results are imme-

diately impressive. Students have something

to show off within the first two weeks of the

semester. If/else is not required. Loops are

not required. Subroutines are not required.

Closed-set input allows programs to respond

to button presses. Because there are only a

few possible inputs to consider, they can be

handled through an explicit series of if/else

statements. One classic game we program is

Rock Paper Scissors, where the human

pushes a button for one of the three, the

computer program randomly selects one of

the three, and a series of if/else statements

resolve the winner. Graphics are included to

improve the appeal of the program. We find

this can be done by around the fourth week

of a 14-week class.

Open-set input requires the use of myste-

rious library functions or an understanding of

regular expressions. We take advantage of

the opportunity to introduce regular expres-

sions. However, because of the complexity

involved, we feel this cannot be well done

until about week 10 of a 14-week class.

5. LEARNING OBJECTIVES

Our learning objectives have been designed

to be realistic for 80 percent of our students.

We do not assume any prior programming

knowledge or experience. We do assume

students have math skills to do simple alge-

bra (solve x - 7 = 3) and that they have

access to a computer with Perl installed.

5.1 Basic Expectations

Our standard is that basic material must be

mastered so later courses can build on it.

This is not a survey course or a high-level

overview like, say, Art Appreciation. It is a

“do it” class like, say, Drawing.

Because programming must become a basis

on which other courses can build, we meas-

ure student performance on closed-book

programming tests.

Mastery is divided into five topics: basics,

decisions, iteration, arrays, and subroutines.

By the end of the semester, students must

master the first two topics to pass the class

(with a D). They must master the first three

to get a C. They must master all five to get a

B. They must also demonstrate ability with

some advanced material to earn an A.

Basics: Students write correct programs

that use standard input and output to get

information into and out of the computer.

Programs run from a Graphical User Inter-

face (GUI) or from a Command Line Inter-

face (CLI). Students demonstrate the ability

to use normal (scalar) variables to do calcu-

lations such as inches to centimeters. Stu-

dents use fundamental mathematical opera-

tors including add, subtract, multiply, divide,

and parentheses. Students understand that

statements are executed in order, one after

another, and that later statements can

change the values of variables from what the

earlier statements established. We introduce

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 8

style rules including naming of variables and

spacing of written programs.

Decisions (if/elsif/else): Students write

correct programs that deal differently with

alternate cases, such as whether to put AM

or PM after the time, or whether a check will

be honored or will bounce. This includes skill

with Boolean operators (those yielding a

True or False answer) such as comparatives

(less than, greater than, equal to, not equal

to) and conjunctives (and, or). This also in-

cludes following style rules of indentation

and spacing to make complex programs

more readable.

Loops (Repeated Actions): Students write

correct programs that deal with repetition of

actions, such as filling out a table. Style is

also emphasized. Operators like ++ and +=

are mastered. next, last, and redo are in-

troduced.

Arrays/Lists (Repeated Data): Students

write correct programs that deal with lists of

information. The foreach loop is mastered.

push, pop, shift, unshift, and indexing

([1] and [-1]) are mastered.

Organizing (Subroutines, Functions, Me-

thods, Objects): Students correctly write

subroutines to better organize and structure

their code. Local and global scope of va-

riables is understood.

5.2 Proving Mastery

To prove mastery students are given a Final

Exam that has five sections (one per topic

area) each with several programs of varying

difficulty. Students must correctly write

those programs in a topic area before we

consider it to be mastered.

(We chose to do this instead of having eve-

ryone do a major project for the unfortunate

reason that too many students were turning

in project work they did not understand.

They were apparently turning in someone

else’s work as their own. However, once a

student demonstrates adequate mastery on

exams, we DO utilize a term project as a

way to motivate the A students and separate

them from the B students.)

A large number of sample problems from the

Final Exams are given in the free PDF text-

book.

Because students do not all learn at the

same rate, we do not care when students

demonstrate mastery as long as it is by the

last day of class. The jury is still out on how

much this simply invites students to procras-

tinate.

The course grade is based almost totally on

the final exam, so little else really matters.

This takes the teeth out of midterms and

homework assignments. What do we do

about that? An all-or-nothing final can be

pretty scary. So we compromise by giving

the Early Final.

5.3 The Early Final

About once a week we offer an actual final

exam. The questions are different each time,

but are basically the same or of the same

difficulty. The rule is that if a student passes

any section of the exam, they don't have to

take that section again. This gives them a

reason to take the tests and to make

progress. The entire final is too much to take

on the last day of class. Knowing that part of

the final is completed seems to be a good

motivator.

Toward the start of the semester, the weekly

exam covers only material already studied in

class, so it is much shorter than it will even-

tually become. We allow about ten minutes

for the test for the first few weeks. As more

material is covered in class, new sections

are added, making the test longer. Student

performance also spreads out, with some

students having completed the early sec-

tions while other students continue to strug-

gle. We increase the amount of time allowed

to 20 or 30 minutes. The last few weeks of

the semester we allow the full class period

once a week for the exam.

Because each Early Final is actually the real

final, all the normal rules apply. The exams

are closely proctored and performance must

be at a final-exam level. Toward the start of

the semester very few students pass any-

thing. Toward the end many students are

passing things.

The unit tests throughout the textbook give

actual test questions that have been used in

the Finals to assess mastery of each topic.

Students are also allowed to keep a copy of

the exam and the work they did. One day

later they can share their efforts with each

other.

During the exams we allow the students to

test their work by running it at their local

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 9

machine. However, they are not allowed to

use any notes or outside resources, includ-

ing web pages. They are only allowed to test

their programs by running them locally. If

there are reference materials we wish to

make available, we put them in the test it-

self.

Scoring: We grade programs “by hand,” vi-

sually examining the student code. In addi-

tion to working, we expect student programs

to demonstrate the requested programming

style (indentation, spacing, comments, nam-

ing) to make the programs easy to read and

understand.

6. RESULTS

It is probably not possible to give definitive

results given the small sample size, but pre-

liminary results are encouraging. The follow-

ing table gives the percentage of students

achieving 100% in each level of skill during

our Winter 2009 term. Winter represents the

main transitional term, where students in

201 had a previous term probably in a dif-

ferent language. We do not have directly

comparable performance metrics for 101

students under the old plan.

Nearly identical final exams were used

across all sections of both courses. The

same textbook was used in all courses. The

same instructor taught all sections. The

101/201 column tells how well the 101 stu-

dents did as a group compared to the 201

students.

Table 1: Mastery of Learning Objectives

Skill 101 201 101/201

Basics 93% 96% 97%

if / else 83% 92% 90%

Iteration 72% 80% 90%

Arrays 29% 32% 91%

Subroutines 9% 16% 56%

Online Skills 28% 24% 117%

Term Project 3% 20% 15%

N (students) 58 25

Performance on basics, if/else, iteration, ar-

rays, and online skills was all at the 90% or

better level for the group of 101 students

compared to the 201 students.

With subroutines, only half as many 101

students performed at the 201 level. With

term projects, only a small fraction per-

formed at the 201 level.

The online skills section is noticeably better

for the 101 students, but this may not be

statistically significant given the small sam-

ple size. It seems however to suggest that

101 students may have been riding a wave

of excitement while 201 students were fight-

ing pre-conceived notions of whether it

would be interesting.

7. INSTRUCTOR RESPONSE

The primary author of this paper also wrote

the textbook. His experience has been that it

is wonderful to control the textbook in such

an intimate way because it allows the book

to be adjusted from time to time to match

the performance of the students and to re-

spond to the difficulties they face. However,

writing a textbook is a major commitment

and takes a lot of time.

Another instructor to teach a full course us-

ing the book responded: “I really liked the

format and pace of the class. I would like to

extend [the book’s coverage] into [the next

CS class] as well.”

8. CONCLUSIONS

Online programming is HIGHLY motivational

to students because it facilitates sharing

their achievements and allows graphical and

other creative elements to be involved.

Programming proficiency seems to be

achievable in a one-semester course that is

well structured and adequately supported.

A free textbook (PDF) is available for use as

a primary text or as a supplementary text in

classes such as this.

9. REFERENCES

ABET Computing Accreditation Commission,

(2008). Criteria for Accrediting Compu-

ting Programs, Effective for Evaluations

During the 2009-2010 Accreditation

Cycle. PDF accessed 2009-07-30 from

http://abet.org/forms.shtml

Colton, Don, 2009. Introduction to Pro-

gramming Using Perl. Available at

http://ipup.doncolton.com/

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 10

Colton, Don, Leslie Fife, and Andrew Thomp-

son. 2006. A Web-based Automatic Pro-

gram Grader. ISEDJ 4(114).

http://isedj.org/4/114/

Colton, Don, Leslie Fife, and Randy Winters,

2005, Building a Computer Program

Grader. ISEDJ 3(6). http://isedj.org/3/6/

Evans, Gerald E., and Mark G. Simkin. 1989.

What best predicts computer proficiency?

Commun. ACM 32, no. 11: 1322-1327.

doi:10.1145/68814.68817.

Gill, T. G, and C. F Holton. 2006. A self-

paced introductory programming course.

Journal of Information Technology Educa-

tion 5: 95–105.

Gorgone, John T, Gordon B. Davis, Joseph S.

Valacich, Heikki Topi, David L. Feinstein,

Herbert E. Longenecker, Jr, (2002). Mod-

el Curriculum and Guidelines for Under-

graduate Degree Programs (IS2002),

ACM, AIS, AITP.

Guzdial, Mark, and Elliot Soloway. 2002.

Teaching the Nintendo generation to pro-

gram. Commun. ACM 45, no. 4: 17-21.

doi:10.1145/505248.505261.

Jenkins, AMJ, and Davy, JR. 2001. Diversity

and motivation in introductory program-

ming. Innovations in Teaching And Learn-

ing in Information and Computer

Sciences 1.

Jenkins, T. 2002. On the difficulty of learning

to program. In Proceedings of the 3rd

Annual Conference of the LTSN Centre for

Information and Computer Sciences, 53–

58.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-

Matti Järvinen. 2005. A study of the diffi-

culties of novice programmers. In Pro-

ceedings of the 10th annual SIGCSE con-

ference on Innovation and technology in

computer science education, 14-18. Ca-

parica, Portugal: ACM.

doi:10.1145/1067445.1067453.

http://portal.acm.org/citation.cfm?id=10

67445.1067453.

Leutenegger, Scott, and Jeffrey Edgington.

2007. A games first approach to teaching

introductory programming. SIGCSE Bull.

39, no. 1: 115-118.

doi:10.1145/1227504.1227352.

Shackelford, Russell, James H. Cross II,

Gordon Davies, John Impagliazzo, Reza

Kamali, Richard LeBlanc, Barry Lunt,

Andrew McGettrick, Robert Sloan, Heikki

Topi, comprising the Joint Task Force for

Computing Curricula 2005 (ACM, AIS,

IEEE-CS), (2005). Computing Curricula

2005, The Overview Report covering un-

dergraduate degree programs in Com-

puter Engineering, Computer Science, In-

formation Systems, Information Technol-

ogy, Software Engineering. (30 Sep

2005)

http://www.acm.org/education/curricula-

recommendations

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 11

APPENDIX

Free IPUP Textbook

http://ipup.doncolton.com/

Detailed Table of Contents

(First Edition)

0 Preface 17
0.1 Why This Book? 17
0.2 Why Programming? 18
0.3 Why Perl? 18
0.4 Coverage 19
0.5 Passing the Class 19
0.5.1 Basic Expectations 20
0.5.2 Proving Mastery 21
0.5.3 Advanced Expectations 23
0.6 Advanced Material* 24
0.7 Installing Perl on Your Personal Computer 24
0.8 Suggestions? 24
0.9 Exercises 25

I Basics 26

1 Output: Hello, World! 27
1.1 Our First Program 27
1.2 Making it Run 27
1.3 Making it Wait 28
1.4 Making it Wait Temporarily 28
1.5 The Language of Computers 29
1.6 Narrow-minded Wording 30
1.7 Exercises 31

2 Syntax and Semantics 32
2.1 Communication 32
2.2 Semantics is Meaning 33
2.3 Do What I Mean, Not What I Say 34
2.4 Syntax is Wording 35
2.5 Computers Are Stupid (But Fast) 35
2.6 Key Points 36
2.7 Exercises 36

3 Input: Hello, Joe! 37
3.1 Standard In 37
3.2 Line Breaks 37
3.3 NewLine 39
3.4 Exercises 39

4 Simple Variables 41
4.1 What's Simple? 41
4.2 Variable Names 42
4.3 Putting Something Into a Variable 42
4.4 Printing a Variable 44
4.5 Calculating with a Variable 45
4.6 Use Meaningful Names 45
4.7 Summary 46
4.8 Exercises 46

5 Basic Calculation 48
5.1 Add 48
5.2 Subtract 48
5.3 Multiply 48
5.4 Divide 49

5.5 Precedence and Parentheses 49
5.6 Assignment 49

6 Names, Parsing, Scanning 51
6.1 Computers Are Stupid 51
6.2 Robust 52
6.3 Parsing 52
6.4 Summary 53
6.5 Exercises 54

7 Style 55
7.1 Whitespace 55
7.2 Spaces 56
7.3 Separate Lines 57
7.4 Blank Lines 57
7.5 Names 57
7.6 Comments 58

8 Sequence 60
8.1 Equations 60
8.2 Steps 61
8.3 Sequence 62
8.4 Later 62
8.5 Exercises 62

9 Crafting Formulas 64
9.1 Coin Purse 64
9.2 Rough Formula 64
9.3 Improved Formula 65
9.4 Test Your Formula 66

10 Debugging 67
10.1 Syntax Errors 67
10.2 Run-Time Errors 68

11 Going Online 70
11.1 Using a Browser 71
11.2 Static Web Page 71
11.3 Hippopotamus Offline, Online 72
11.4 All on One Line? Adding Markup 73
11.5 Errors: What Could Go Wrong? 74
11.6 Roll The Dice 75
11.7 Putting Images on Web Pages 76
11.8 Summary 77

12 Games and Projects 79

13 Unit Test: Basics 81
13.1 Vocabulary 81
13.2 Exercises: Strings 83
13.3 Exercises: Numeric 84
13.4 Exercises: Numeric Story Problems 84

II Making Decisions 86

14 The If Statement 87
14.1 Syntax 87
14.2 Coordinated Alternatives 88
14.3 Exercises 88

15 Numeric Comparison 89
15.1 Numeric Operators 89
15.2 Exercises 90

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 12

16 Two Alternatives: The Else Statement 92
16.1 Syntax 92
16.2 Completeness 93
16.3 Exercises 93

17 Block Structure 94

18 Programming Style 96
18.1 Indentation 96
18.2 Special Numbers 98
18.3 Internationalization (i18n)* 99

19 Many Alternatives: Elsif Statement 101
19.1 else vs elsif 102
19.2 Exercises 102

20 And, Or, Xor, Not 104
20.1 Logical And 105
20.2 Logical Or 105
20.3 Exclusive Or 106
20.4 Not 107

21 String Comparison 108
21.1 Several Kinds of Equal 108
21.2 Comparison Operators 109
21.3 Upper Case, Lower Case 110
21.4 A-I, J-R, S-Z, etc 110
21.5 Barewords 112
21.6 Exercises 113

22 Remainder 114
22.1 Remainder 114
22.2 Cookies and Children 115
22.3 Calculating Leap Years 115
22.4 Integer Division* 116

23 Precedence 117
23.1 Precedence Tables 118
23.2 Unary Operators 119
23.3 Short Circuits 120
23.4 Assignment 121

24 Online 122
24.1 Rock Paper Scissors, Online, No Inputs 122
24.2 Adding Graphics 124
24.3 The SUBMIT Button 125
24.4 Rock Paper Scissors, Online, With Inputs 125
24.5 User Interface 127

25 Unit Test: Choices 128
25.1 Vocabulary 128
25.2 Exercises: Numeric 129
25.3 Exercises: Strings 131

III Repeating Actions 133

26 While Loops 134
26.1 Finding the Pattern 135
26.2 Explicit versus Implicit 135
26.3 Repetition 135
26.4 while Loop 136
26.5 last, next, and redo 138
26.6 Infinite Loops 138
26.7 if versus while 139

26.8 Exercises 140

27 For Loops 141
27.1 Comparison of “while” and “for” 141
27.2 Infinite Loops 143
27.3 Summary: if vs while vs for 143

28 Self-Modification 144
28.1 Plus Plus, Plus Equals 144
28.2 Dot (Concatenation) 146
28.3 Precedence of Self-Modification 146

29 Games and Projects 147
29.1 Hi Lo Game 147
29.2 99 Bottles of Carbonated Non-alcoholic Beve-
rage 148
29.3 2 Nim 149
29.4 3 Nim 150
29.5 Variations 150

30 Unit Test: Repeated Actions 151
30.1 Vocabulary 151
30.2 Exercises 152

IV Repeated Data 156

31 Lists 157
31.1 Adding Items (push) 158
31.2 Deleting Items (pop, shift) 158
31.3 Adding Items (unshift) 158

32 Arrays (Indexed) 160

33 Walk the List 163
33.1 foreach 163
33.2 $_ (dollar underscore) 164

34 Split and Join 165

35 Unit Test: Repeated Data 167
35.1 Vocabulary 167
35.2 Exercises 168

V Organizing with Subroutines 171

36 Subroutines 172
36.1 Clean Your Room 172
36.2 The Subroutine Call 173
36.3 Syntax of the Call 174
36.4 Syntax of the Definition 174
36.5 Return 175
36.6 Code Factoring 175

37 Arguments 178
37.1 Direct Access 178
37.2 Unlimited Parameters 180

38 Global versus Local 182

39 Black Boxes 185
39.1 Formal Interface 186

40 Games and Projects 188
40.1 Games Menu 188
40.2 Input Edits 188
40.3 Input Edits with Default 189

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 13

40.4 Input Edits with Alternatives 189

41 Unit Test: Organizing 191
41.1 Vocabulary 191
41.2 Exercises 192

VI Complex Programs 195

42 Complex Programs 196

43 Nested Loops 197
43.1 Counting the Hours 197
43.2 Starbox 198
43.3 Right Triangle 199
43.4 Centered Triangle 200
43.5 Times Tables 201

44 Games and Projects (Loops) 203
44.1 Calendar 203
44.2 Double Nim 204
44.3 Tic Tac Toe 205

45 Hashes 207
45.1 Store and Retrieve 208
45.2 List by Key, Value, or Both 208
45.3 Lookup 209

46 Games and Projects (Hashes) 210
46.1 Animal 210
46.2 Exploration 212

47 Unit Test: Complex 215
47.1 Exercises 215

VII Publishing 218

48 Web Hosting 219

49 Passwords 221
49.1 Methods of Authentication 221
49.2 Creating a Password 222

50 HTML 224
50.1 Web Forms 225
50.1.1 <form> 225
50.1.2 <input> 225
50.1.3 Example 226
50.2 Tables* 226
50.3 Validator* 227

51 Forms: Web-based Input 228
51.1 Counting to N: Offline versus Online 228
51.2 Regular Expression Fundamentals 230
51.3 Testing 231
51.4 Prototype 232
51.5 Adding Two Numbers 233
51.6 Special Characters (plus and percent) 234
51.7 Debugging 235
51.8 Exercises 236

52 Regular Expressions 237
52.1 Recognition 238
52.1.1 License Plates 238
52.1.2 Character Classes 239
52.1.3 Character Ranges 240

52.1.4 Matching Several Characters 242
52.1.5 Multipliers 242
52.1.6 A Small Lie 243
52.1.7 More Shortening 244
52.2 Data Extraction 244

53 State: Persistent Data 246
53.1 Medical Records 247
53.2 Persistent Data 248
53.3 Clutter 248
53.4 Trust 249
53.5 Data Kept by the User 250
53.6 Data Kept by the Provider 251

54 HTTP Cookies 252
54.1 Advantages of Cookies 252
54.2 Disadvantages of Cookies 253
54.3 How To Set A Cookie 253
54.4 How To Read A Cookie 254

55 Database 255
55.1 Databases for Trusted Persistent Storage 255
55.2 MySQL by Hand 256
55.2.1 Connect to the MySQL Server 256
55.2.2 How To Quit 256
55.2.3 A Few Alerts 257
55.2.4 Change Your Password 257
55.2.5 What Databases Exist? 258
55.2.6 Creating a Database 258
55.2.7 Focus on Your Database 258
55.2.8 Databases Contain Tables 259
55.2.9 Create a Table 259
55.2.10Enter Data into Your Table 259
55.2.11 Display the Data in Your Table 260
55.2.12 Think Beyond the Example 260
55.3 MySQL by Program 260
55.3.1 Connect to MySQL 260
55.3.2 Issue a Query 261
55.3.3 Viewing Results 261
55.3.4 Display Your Data 262
55.4 $x and $y ?? 263
55.5 Sample dbselect Program 263
55.6 Advanced Queries 265
55.6.1 Column Data Types Allowed 265
55.6.2 Updating a Row 266
55.6.3 Deleting a Row 266
55.6.4 How to Add a Column 267
55.6.5 How to Delete a Table 267
55.6.6 Not Case Sensitive 267
55.7 Doing More 267

VIII Projects 268

56 Projects 269
56.1 Invent a Project 269

57 Risk Roller 271

58 Hangman Project 272
58.1 Requirements 272
58.2 Suggestions 273
58.3 Design 274

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 14

58.4 Sample Code 275

59 Hotter, Colder 278
59.1 Computer Picks 278
59.2 Human Picks 279

IX Appendices 281

A Answers to Selected Exercises 282

B Formatted Printing: printf 298
B.1 Background 298
B.2 Simple Printing 299
B.2.1 Naturally Special Characters 299
B.2.2 Alternately Special Characters 300
B.3 Format Specifications 300
B.3.1 The Argument List 300
B.3.2 Percent 301
B.3.3 The Width Option 302
B.3.4 Filling the Extra Space 302
B.3.5 The Justify Option 303
B.3.6 The Zero-Fill Option 303
B.3.7 Fun With Plus Signs 304
B.3.8 The Invisible Plus Sign 304
B.3.9 Plus, Space, and Zero 305
B.3.10 Summary 306
B.4 Printing Strings 306
B.5 Floating Point 307
B.6 Designing The Perfect Spec 308
B.7 Conclusion 309

C File I/O 310
C.1 Redirection 310
C.2 Explicit Reading 311
C.3 Explicit Writing 312
C.4 Close is Optional 312
C.5 Multiple Files 313

D Patterns 314
D.1 The Difference Method 314
D.2 Constant 315
D.3 Odd 315
D.4 Squares 315
D.5 Fibonacci 316
D.6 Triangles 317

E Random Numbers 319
E.1 Roll the Dice 319
E.2 Pick a Card 320
E.3 Flip a Coin 320
E.4 Normal Distribution* 321
E.5 What is Random Good For? 322
E.6 Truly Random or Not? 322
E.7 srand: Seeding the Sequence 323

F The True Meaning of Solution 324
F.1 Boys, Girls, and Dogs 324
F.2 Complexity 326
F.3 Statements are Sentences 326

G Binary Numbers 327
G.1 Bitwise Operators 327
G.2 What is Binary? 328

G.3 Binary Shortcut 329
G.4 32 Bits 329
G.5 Binary Numbers 330
G.5.1 Divide and Shift 330
G.5.2 Powers of Two 331
G.5.3 Numbers to Memorize 334

Index 335

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

ISEDJ 8 (48) Colton and Curtis 15

APPENDIX B

Brief examples of Perl.

Following are some short programs in Perl to
give a flavor for the language for those that
may not be familiar with it.

Basic I/O

Print the words “Hello, World!”

print “Hello, World!\n”

Read in a name. Print on one line “I think
(name) is nice.”

$name = <STDIN>;
chomp ($name);
print “I think $name is nice.\n”

Simple Calculation

Read in two numbers. Print their total.

$x = <STDIN>;
$y = <STDIN>;
$z = $x + $y;
print “$z\n”;

Simple Decision

Read in a number. If greater than 10 print
“Big”. If less than 5 print “Small”. Otherwise
print “Medium”.

$x = <STDIN>;
if ($x > 10) { print “Big” }
elsif ($x < 5) { print “Small” }
else { print “Medium” }

Iteration

Read in a number. Print the numbers from 1
up to the number read in.

$max = <STDIN>;
for ($i = 1; $i <= $max; $i++) {
 print “$i\n” }

Array by Index

Given an array abc, print the fifth element.

print “$abc[4]\n”;

Given an array abc, print the next to last ele-
ment.

print “$abc[-2]\n”;

Subroutine

Write a subroutine abc that accepts two pa-
rameters and returns the sum of them.

sub abc {
 my $x, $y, $z;
 ($x, $y) = @_;
 $z = $x + $y;
 return $z }

Online (CGI)

Write a program that rolls two dice and dis-
plays the results in a web browser. (Notice
that the html is barely adequate. We teach
html in a different course.) This presumes that
1.jpg through 6.jpg are available to display.
rand(6) returns a uniformly distributed random
number between 0.00 and 5.99.

print “content-type: text/html\n\n”;
$d1 = int (rand(6)) + 1;
$d2 = int (rand(6)) + 1;
print “”;
print “”;

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010

