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Abstract 

Programming is a fundamental skill for Information Systems and Information Technology stu-

dents. It is also a subject that some students fear, avoid, fail, retake, and fail again. An effec-

tive, inexpensive, one-semester approach is presented. Early indications suggest dramatically 

improved student interest and performance compared to our previous two-semester approach. 

Key features include heavy use of web-based online programming, use of a scripting language 

(Perl), development of general-purpose programming skills, and a free textbook (PDF). 
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1. INTRODUCTION 

Programming is a fundamental skill for in-

formation systems and information technol-

ogy students and professionals. Although 

some professionals seldom write a program, 

the skills can come into play in understand-

ing what subordinates do, in writing spread-

sheets, and in automating processes. 

Accreditation standards (ABET, 2008) and 

model computing curriculum recommenda-

tions emphasize the importance of pro-

gramming proficiency, (Shackelford, 2005; 

Gorgone, 2002). However, many of our stu-

dents in IS and IT seem to consider pro-

gramming to be a CS activity, and one they 

would rather avoid. Programming is not 

something these students visualize them-

selves as doing in their future careers. Stu-

dents within the IS and IT programs, there-

fore, have difficulty maintaining engagement 

in computer programming courses. 

Introductory students in these programs of-

ten find programming to be boring and diffi-

cult (Jenkins 2002) and experience high 

rates of failure (Bennedson and Casperson, 

2007). Many students respond to these chal-

lenges by concluding that they are simply 

incapable as programmers (Jenkins 2001). 

These perceptions of incompetence result in 

significant dropout / failure rates in introduc-

tory programming courses and poor perfor-

mance in subsequent programming courses 

(Guzdial and Soloway, 2002). 

Educator responses to these failings include 

believing some students really cannot pro-

gram, thereby lowering expectations of stu-

dent performance (Evans and Simkin 1989), 

attempting to innovate in their teaching 

techniques to promote greater engagement 

(e.g., Leutenneger and Eddington 2007), 

and blaming poor performance on “unmoti-

vated” students (Gill and Holton, 2006). 

In this paper, we outline our experience in 

developing a one-semester approach that 

meets the standards and curriculum recom-

mendations of teaching programming fun-

damentals while creating a learning envi-

ronment in which students can develop 

competence and confidence as emerging 

programmers. The preliminary results of this 

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010



ISEDJ 8 (48) Colton and Curtis 4

approach suggest that student performance 

and perceptions of computer programming 

have improved significantly. We anticipate 

that the lessons learned in our experience 

will be helpful to educators attempting to 

address these issues in their local institu-

tions. 

2. THE WAY WE WERE 

Many of our students in IS and IT seem to 

consider programming to be a CS activity, 

and one they would rather avoid (much like 

Calculus). Despite accreditation standards 

and model curriculum recommendations, it 

is not something they visualize themselves 

doing as part of their job. We have to sell it 

well for students to decide to really engage 

in learning. 

Some years ago we set the bar fairly low. 

Students read and discussed simple pro-

grams but did not actually write them. Some 

teachers were afraid that students would 

fail, become discouraged, and change ma-

jors. Such an overview did not give students 

adequate programming skills to actually do 

even small-scale projects. 

We tried setting the bar higher, with a long, 

shallow learning curve, using a two-

semester approach and numerous micro-

projects (Colton et al, 2005; Colton et al 

2006). It worked much better. Most students 

developed skills but were not eager to use 

them. For them programming was tedious 

instead of fun. 

We looked at other approaches but were put 

off by the high proportion of “magic” that 

seemed to be involved. By magic we mean 

that students developed skills that work 

marvelously well in a small number of set-

tings but did not transfer to more general 

settings. This felt like “training” instead of 

“education.” 

Finally we abandoned a key element of our 

two-semester sequence, creating in its place 

a new two-semester sequence. As the 

change worked its way through the system, 

we discovered some useful economies that 

led eventually to the development of a sin-

gle, one-semester programming course. 

2.1 The Two-Semester Sequence 

Our department hosts three majors: Com-

puter Science, Information Systems, and 

Information Technology. Where possible, 

courses are made to serve more than one 

major. The introductory programming class 

is taken by students in all three majors. 

(One goal of the introductory programming 

class is to help computing students select 

the major that will best suit them. As fresh-

men, students often do not understand the 

differences between CS, IS, and IT. Seeing 

all three types of students in the same class 

helps students self-identify more accurate-

ly.) 

We used C in CIS 101 as our foundational 

language. This choice was motivated by sev-

eral factors. First, C is well known and highly 

respected. Second, C is small enough to be 

well understood. Third, programming skills 

seem to transfer well from C to other lan-

guages students may need to learn later. 

Fourth, the class was to be taught by CS 

faculty and C or C++ or Java was their lan-

guage of choice. C (C++) seemed easiest. 

The learning objective from the CIS 101 

course was that students be proficient with 

variables and data types (int, float, char) 

and be introduced to arrays, and that they 

be proficient with if/else and loops (while, do 

while, for) and be introduced to subroutines. 

We used Perl in CIS 201 as our follow-on 

language. (For those unfamiliar with Perl, 

Appendix B gives a few short example pro-

grams written in this language.) This choice 

was also motivated by several factors. 

Scripting languages (like Perl, Python, and 

Ruby) are much faster for completing small- 

to medium-sized programming projects. 

Scripting skills are important for CS, IS, and 

IT students. Among scripting languages, Perl 

is well known and highly respected. It is not 

small like C, but it has a large body of open 

source shared archives (since 1995, the 

Comprehensive Perl Archive Network at 

http://CPAN.org/). 

The learning objective from the CIS 201 

course was that students transfer all their 

CIS 101 skills to Perl, thus seeing how easy 

it is to learn a second language, and in addi-

tion become skilled at database access and 

online programming (CGI) on a Linux plat-

form. This also created the opportunity to 

introduce and develop skill with regular ex-

pressions. The capstone project was to build 

from scratch a small online store complete 

with shopping cart and inventory system. 

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010
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2.2 Mistaken Assumptions 

We assumed that after learning C for a 

semester, students would find it easy to 

learn Perl. They would conclude that it would 

be easy to learn additional languages later, 

as needed. This confidence was a major goal 

of using two different languages. 

Unfortunately, for IS and IT students the 

single semester of C did not result in ade-

quate programming skills on which to 

springboard into another language. Students 

had to relearn everything and the learning 

speed was only slightly faster than the first 

time they learned it. 

In CIS 201, it was too easy to become fru-

strated by the slowness of students in de-

monstrating skills they should have already 

mastered. It was too easy to blame the CIS 

101 teacher for failing to teach. It was too 

easy to blame the students for being stupid. 

In retrospect, it appears the problem was 

the course design in CIS 101. There was a 

mismatch between the expectations in CIS 

101 and the abilities and interests of the 

students in CIS 101. 

It was not immediately obvious, but instead 

of having two semesters of programming, 

students were having one semester of pro-

gramming, twice. The synergy was missing. 

3. TIPPING POINT 

There were other frustrations with the exist-

ing programming sequence. The CS faculty 

did not see enough value in the CIS 201 

class and wanted to remove their students 

from it, substituting an additional semester 

of Java. CS was one of the longest majors 

on campus in terms of credit hours, and felt 

the need to add new courses but also 

wanted to abandon old courses of limited 

value. 

This gave rise to the question of whether CS 

students should learn a scripting language at 

all. It was decided that there was still a real 

need for scripting in CS. A suggestion was 

then made by CS to convert the CIS 101 

class over to scripting. It was a totally unex-

pected suggestion, but it quickly developed 

broad support. The new approach would be 

to teach scripting in CIS 101 to all students, 

and more advanced scripting in CIS 201 to 

just the IS students. IS students would fore-

go the learning of C. 

The Resulting Curriculum 

Starting August 2008 we converted the CIS 

101 course into Perl and merged in the ma-

jor features of the old CIS 201 class. 

Under the old plan, the 201 class spent 1/3 

of its time reviewing basic concepts from 

101 but recasting them in the light of Perl. 

The next 1/3 of the course was online pro-

gramming. The final 1/3 of the course was 

database using mySQL and simple queries 

(select, insert, update, no joins). Under the 

new plan it was hoped that the first 1/3 of 

the course would no longer be needed and 

new material could be added. 

Because there were already students in the 

pipeline, in Fall 2008 both 101 and 201 were 

taught in Perl. In Winter 2009 the 201 stu-

dents included some who had learned Perl 

before as well as some that had only learned 

C before. But over the course of Fall and 

Winter we made some interesting discove-

ries. 

The immediate results were very interesting. 

During the first semester after the change, 

CIS 101 and CIS 201 were taught by the 

same instructor. CIS 101 students learned 

Perl as their first language, and CIS 201 

students learned Perl for the first time, but 

as their second language. Remarkably, the 

101 students did nearly as well as the 201 

students. 201 students continued to perform 

largely as before. Also, CIS 101 students 

gave the teacher high ratings and CIS 201 

students gave the teacher lower ratings. 

Table 1 (in the Results section below) 

presents results in terms of learning objec-

tives mastered by 101 and 201 students re-

spectively. It shows that for many objec-

tives, the top 90% of 101 students per-

formed at the same level as 201 students. 

Several theories emerged to explain this 

phenomenon. (1) Perhaps 201 students 

were frustrated that they were being asked 

to learn a second language when their first 

language had been boring. This frustration 

was realized as push-back against the 

course and decreased learning. (2) Perhaps 

201 students had not learned C well enough 

that the programming skills were transferra-

ble to a new language yet. 

Whatever the reason (both seem to be 

plausible), it called into question our old 

theories about how best to teach program-
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ming. It was concluded by the faculty that if 

101 students could perform at roughly a 201 

level, then the 201 course was not needed. 

It was decided to do away with CIS 201 and 

create instead a new capstone CIS 401 web 

programming course involving additional 

prerequisites and featuring the PHP lan-

guage. The new course would have as pre-

requisites courses in webpage development 

(xhtml, css) and in database (SQL including 

join). This would allow greater development 

of marketable skills for our students. 

CIS 201 was taught for the last time in May 

2009. CIS 401 is being taught for the first 

time in September 2009. 

4. PROGRAMMING IN ONE 

SEMESTER 

The new model is for all things programming 

to be taught in CIS 101 such that students 

emerge with programming proficiency to the 

degree expected of IS graduates. That is a 

tall order, but we try to deliver on it by using 

the following approach. 

First, students learn a single language. We 

teach them Perl but keep it simple, at least 

at first, in hopes that the skills will be trans-

ferrable to any other language they may 

need to learn. There is a great emphasis on 

portability of approach, skills, and know-

ledge. (For those unfamiliar with Perl, ap-

pendix B gives a few small sample pro-

grams.) 

Second, we wrote our own textbook. This 

was a major step, not undertaken lightly, 

and not something we recommend to every-

one. But the book, version 1.0, is in use and 

freely available to other schools for adoption 

as a primary text or as a supplement. 

Third, we strongly emphasized online pro-

gramming. We found that students respond 

enthusiastically to having their programs run 

on the web and being able to share them 

with friends near and far. At the same time 

we were very cautious to not delve too much 

into magic, where students do not really un-

derstand what they are doing but look up 

recipes in some index. This was greatly faci-

litated by having our own textbook. 

4.1 Single Language 

Ideally we might teach the language that all 

future employers will demand. Unfortunate-

ly, employers have not converged on a stan-

dard. Fortunately there are some favorite 

languages among employers, and most of 

these are similar to one another. We hope to 

teach a language that will be an easy basis 

for students to go on to other languages as 

their circumstances may demand. 

We generally agree that any of several 

scripting languages could be used effective-

ly. Our current choice is Perl. Factors in lan-

guage selection include being typical, power-

ful, well known, portable, and well sup-

ported. 

Typical: By this we mean that skills transfer 

well to other programming languages. 

Powerful: By this we mean useful programs 

can be written fairly easily with the level of 

skill our students would achieve. 

Well Known: By this we mean employers 

have heard of it, so it could be meaningfully 

listed on a resume. 

Portable: By this we mean programs writ-

ten for the Linux platform will also work on 

Microsoft or Macintosh and vice versa. 

Well Supported: By this we mean there is 

a large user community that is actively help-

ing each other and there are large collec-

tions and archives of program libraries avail-

able to everyone. 

4.2 Textbook 

Our textbook, Introduction to Programming 

Using Perl, is available free online as a PDF 

file at http://ipup.doncolton.com/. 

The book is designed to support an introduc-

tory (100-level) college course that meets 

for about forty hours during a semester or 

quarter. 

The book contains about 60 chapters divided 

into eight units for a total of about 340 pag-

es. Most of the early chapters are designed 

to be read at the rate of one to two chapters 

per hour of time in the classroom. 

We assume that students are not yet con-

vinced of the importance of programming 

and may be taking the class simply because 

it is required. We motivate their study by 

emphasizing questions of “why” as well as 

showing “how.” We focus on introductory 

issues. 

c© 2010 EDSIG http://isedj.org/8/48/ July 12, 2010
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Advanced topics are usually mentioned brief-

ly but with enough detail that students can 

follow up by searching the Internet. We as-

sume the students of today are skillful at 

using search engines and other tools to get 

in-depth answers on topics of interest to 

themselves, once they know the topics exist 

and what they are called. 

4.3 Online Programming 

Our students turned out to be VERY enthu-

siastic about online programming. We be-

lieve this is for two reasons. (a) It allows 

them to share their work with friends and 

family anywhere in the world. (b) It allows 

them to integrate graphical elements easily. 

During the first semester of our new course, 

we deferred online programming until almost 

the end of the semester because of the diffi-

culty of parsing online input. Enthusiastic 

student response to online programming 

made us to look for ways to teach online 

skills earlier in the course. 

The downsides of online programming are 

(a) the difficulty of maintaining state (con-

versation), and (b) the difficulty of working 

with “open set” input. (Restricted, “canned,” 

or “closed set” input turns out to be easily 

handled.) 

We reorganized the course to give students 

very early success at creating online pro-

grams, starting from a simple graphics pro-

gram that rolls dice or tosses a coin, and 

continuing closed set inputs, and finally 

reaching open set inputs through regular 

expressions. 

Rolling dice or tossing coins requires very 

little beyond the “Hello, World” level of pro-

gramming. We need only include a lesson on 

random numbers. The results are imme-

diately impressive. Students have something 

to show off within the first two weeks of the 

semester. If/else is not required. Loops are 

not required. Subroutines are not required. 

Closed-set input allows programs to respond 

to button presses. Because there are only a 

few possible inputs to consider, they can be 

handled through an explicit series of if/else 

statements. One classic game we program is 

Rock Paper Scissors, where the human 

pushes a button for one of the three, the 

computer program randomly selects one of 

the three, and a series of if/else statements 

resolve the winner. Graphics are included to 

improve the appeal of the program. We find 

this can be done by around the fourth week 

of a 14-week class. 

Open-set input requires the use of myste-

rious library functions or an understanding of 

regular expressions. We take advantage of 

the opportunity to introduce regular expres-

sions. However, because of the complexity 

involved, we feel this cannot be well done 

until about week 10 of a 14-week class. 

5. LEARNING OBJECTIVES 

Our learning objectives have been designed 

to be realistic for 80 percent of our students. 

We do not assume any prior programming 

knowledge or experience. We do assume 

students have math skills to do simple alge-

bra (solve x - 7 = 3) and that they have 

access to a computer with Perl installed. 

5.1 Basic Expectations 

Our standard is that basic material must be 

mastered so later courses can build on it. 

This is not a survey course or a high-level 

overview like, say, Art Appreciation. It is a 

“do it” class like, say, Drawing. 

Because programming must become a basis 

on which other courses can build, we meas-

ure student performance on closed-book 

programming tests. 

Mastery is divided into five topics: basics, 

decisions, iteration, arrays, and subroutines. 

By the end of the semester, students must 

master the first two topics to pass the class 

(with a D). They must master the first three 

to get a C. They must master all five to get a 

B. They must also demonstrate ability with 

some advanced material to earn an A. 

Basics: Students write correct programs 

that use standard input and output to get 

information into and out of the computer. 

Programs run from a Graphical User Inter-

face (GUI) or from a Command Line Inter-

face (CLI). Students demonstrate the ability 

to use normal (scalar) variables to do calcu-

lations such as inches to centimeters. Stu-

dents use fundamental mathematical opera-

tors including add, subtract, multiply, divide, 

and parentheses. Students understand that 

statements are executed in order, one after 

another, and that later statements can 

change the values of variables from what the 

earlier statements established. We introduce 
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style rules including naming of variables and 

spacing of written programs. 

Decisions (if/elsif/else): Students write 

correct programs that deal differently with 

alternate cases, such as whether to put AM 

or PM after the time, or whether a check will 

be honored or will bounce. This includes skill 

with Boolean operators (those yielding a 

True or False answer) such as comparatives 

(less than, greater than, equal to, not equal 

to) and conjunctives (and, or). This also in-

cludes following style rules of indentation 

and spacing to make complex programs 

more readable. 

Loops (Repeated Actions): Students write 

correct programs that deal with repetition of 

actions, such as filling out a table. Style is 

also emphasized. Operators like ++ and += 

are mastered. next, last, and redo are in-

troduced. 

Arrays/Lists (Repeated Data): Students 

write correct programs that deal with lists of 

information. The foreach loop is mastered. 

push, pop, shift, unshift, and indexing 

([1] and [-1]) are mastered. 

Organizing (Subroutines, Functions, Me-

thods, Objects): Students correctly write 

subroutines to better organize and structure 

their code. Local and global scope of va-

riables is understood. 

5.2 Proving Mastery 

To prove mastery students are given a Final 

Exam that has five sections (one per topic 

area) each with several programs of varying 

difficulty. Students must correctly write 

those programs in a topic area before we 

consider it to be mastered. 

(We chose to do this instead of having eve-

ryone do a major project for the unfortunate 

reason that too many students were turning 

in project work they did not understand. 

They were apparently turning in someone 

else’s work as their own. However, once a 

student demonstrates adequate mastery on 

exams, we DO utilize a term project as a 

way to motivate the A students and separate 

them from the B students.) 

A large number of sample problems from the 

Final Exams are given in the free PDF text-

book. 

Because students do not all learn at the 

same rate, we do not care when students 

demonstrate mastery as long as it is by the 

last day of class. The jury is still out on how 

much this simply invites students to procras-

tinate. 

The course grade is based almost totally on 

the final exam, so little else really matters. 

This takes the teeth out of midterms and 

homework assignments. What do we do 

about that? An all-or-nothing final can be 

pretty scary. So we compromise by giving 

the Early Final. 

5.3 The Early Final 

About once a week we offer an actual final 

exam. The questions are different each time, 

but are basically the same or of the same 

difficulty. The rule is that if a student passes 

any section of the exam, they don't have to 

take that section again. This gives them a 

reason to take the tests and to make 

progress. The entire final is too much to take 

on the last day of class. Knowing that part of 

the final is completed seems to be a good 

motivator. 

Toward the start of the semester, the weekly 

exam covers only material already studied in 

class, so it is much shorter than it will even-

tually become. We allow about ten minutes 

for the test for the first few weeks. As more 

material is covered in class, new sections 

are added, making the test longer. Student 

performance also spreads out, with some 

students having completed the early sec-

tions while other students continue to strug-

gle. We increase the amount of time allowed 

to 20 or 30 minutes. The last few weeks of 

the semester we allow the full class period 

once a week for the exam. 

Because each Early Final is actually the real 

final, all the normal rules apply. The exams 

are closely proctored and performance must 

be at a final-exam level. Toward the start of 

the semester very few students pass any-

thing. Toward the end many students are 

passing things. 

The unit tests throughout the textbook give 

actual test questions that have been used in 

the Finals to assess mastery of each topic. 

Students are also allowed to keep a copy of 

the exam and the work they did. One day 

later they can share their efforts with each 

other. 

During the exams we allow the students to 

test their work by running it at their local 
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machine. However, they are not allowed to 

use any notes or outside resources, includ-

ing web pages. They are only allowed to test 

their programs by running them locally. If 

there are reference materials we wish to 

make available, we put them in the test it-

self. 

Scoring: We grade programs “by hand,” vi-

sually examining the student code. In addi-

tion to working, we expect student programs 

to demonstrate the requested programming 

style (indentation, spacing, comments, nam-

ing) to make the programs easy to read and 

understand. 

6. RESULTS 

It is probably not possible to give definitive 

results given the small sample size, but pre-

liminary results are encouraging. The follow-

ing table gives the percentage of students 

achieving 100% in each level of skill during 

our Winter 2009 term. Winter represents the 

main transitional term, where students in 

201 had a previous term probably in a dif-

ferent language.  We do not have directly 

comparable performance metrics for 101 

students under the old plan. 

Nearly identical final exams were used 

across all sections of both courses. The 

same textbook was used in all courses. The 

same instructor taught all sections. The 

101/201 column tells how well the 101 stu-

dents did as a group compared to the 201 

students. 

Table 1: Mastery of Learning Objectives 

Skill 101 201 101/201 

Basics 93% 96% 97% 

if / else 83% 92% 90% 

Iteration 72% 80% 90% 

Arrays 29% 32% 91% 

Subroutines 9% 16% 56% 

Online Skills 28% 24% 117% 

Term Project 3% 20% 15% 

N (students) 58 25  

Performance on basics, if/else, iteration, ar-

rays, and online skills was all at the 90% or 

better level for the group of 101 students 

compared to the 201 students. 

With subroutines, only half as many 101 

students performed at the 201 level. With 

term projects, only a small fraction per-

formed at the 201 level. 

The online skills section is noticeably better 

for the 101 students, but this may not be 

statistically significant given the small sam-

ple size. It seems however to suggest that 

101 students may have been riding a wave 

of excitement while 201 students were fight-

ing pre-conceived notions of whether it 

would be interesting. 

7. INSTRUCTOR RESPONSE 

The primary author of this paper also wrote 

the textbook. His experience has been that it 

is wonderful to control the textbook in such 

an intimate way because it allows the book 

to be adjusted from time to time to match 

the performance of the students and to re-

spond to the difficulties they face. However, 

writing a textbook is a major commitment 

and takes a lot of time. 

Another instructor to teach a full course us-

ing the book responded: “I really liked the 

format and pace of the class. I would like to 

extend [the book’s coverage] into [the next 

CS class] as well.” 

8. CONCLUSIONS 

Online programming is HIGHLY motivational 

to students because it facilitates sharing 

their achievements and allows graphical and 

other creative elements to be involved. 

Programming proficiency seems to be 

achievable in a one-semester course that is 

well structured and adequately supported. 

A free textbook (PDF) is available for use as 

a primary text or as a supplementary text in 

classes such as this. 
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APPENDIX B 

Brief examples of Perl. 

Following are some short programs in Perl to 
give a flavor for the language for those that 
may not be familiar with it. 

Basic I/O 

Print the words “Hello, World!” 
 
print “Hello, World!\n” 

Read in a name. Print on one line “I think 
(name) is nice.” 
 
$name = <STDIN>; 
chomp ( $name ); 
print “I think $name is nice.\n” 

Simple Calculation 

Read in two numbers. Print their total. 
 
$x = <STDIN>; 
$y = <STDIN>; 
$z = $x + $y; 
print “$z\n”; 

Simple Decision 

Read in a number. If greater than 10 print 
“Big”. If less than 5 print “Small”. Otherwise 
print “Medium”. 
 
$x = <STDIN>; 
if ( $x > 10 ) { print “Big” } 
elsif ( $x < 5 ) { print “Small” } 
else { print “Medium” } 

Iteration 

Read in a number. Print the numbers from 1 
up to the number read in. 
 
$max = <STDIN>; 
for ( $i = 1; $i <= $max; $i++ ) { 
  print “$i\n” } 

Array by Index 

Given an array abc, print the fifth element. 
 
print “$abc[4]\n”; 

Given an array abc, print the next to last ele-
ment. 
 
print “$abc[-2]\n”; 

Subroutine 

Write a subroutine abc that accepts two pa-
rameters and returns the sum of them. 
 
sub abc { 
  my $x, $y, $z; 
  ( $x, $y ) = @_; 
  $z = $x + $y; 
  return $z } 

Online (CGI) 

Write a program that rolls two dice and dis-
plays the results in a web browser. (Notice 
that the html is barely adequate. We teach 
html in a different course.) This presumes that 
1.jpg through 6.jpg are available to display. 
rand(6) returns a uniformly distributed random 
number between 0.00 and 5.99. 
 
print “content-type: text/html\n\n”; 
$d1 = int ( rand(6) ) + 1; 
$d2 = int ( rand(6) ) + 1; 
print “<img src=’$d1.jpg’>”; 
print “<img src=’$d2.jpg’>”; 
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