
Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 101
www.aitp-edsig.org /www.isedj.org

Design, The “Straw” Missing

From the “Bricks” of IS Curricula

Leslie J. Waguespack
lwaguespack@bentley.edu

Computer Information Systems Department, Bentley University
Waltham, Massachusetts 02154-4705, USA

Abstract

As punishment in the biblical story of Moses the slaves were told they had to make bricks without
straw. This was impossible because bricks made without straw had the appearance of strength and
function but could not withstand the proof of actual use. The slaves' punishment was therefore not
only to make bricks, but also to find the straw on their own with which to make them. In this day and
age it would seem that many of our Information Systems curricula ask students to learn to make
systems without teaching them about design. We are good at teaching students how to make software
systems that do things but not so good at teaching students how one way of doing things in a system
design is better than another. In this essay I consider the role of teaching systems design in preparing
an IS professional and the forces that have come into play over the history of computing that have, in
many cases, frozen out the study of design from the IS curricula.

Keywords: design, IS discipline, IS curricula

1. INTRODUCTION

As computing education embarks on its eighth
decade of preparing the professionals who will
build information systems supporting every facet
of humankind’s culture and commerce, the
specialization of computing curricula has
subdivided and compartmentalized the
principles, science, and practice of computing
into five general categories: computer science,
computer engineering, software engineering,
information technology and information systems
(Shackelford, Cross, Davies, Impagliazzo,
Kamali, LeBlanc, Lunt, McGettrick, Sloan & Topi,
2005). Without question the breadth of all the
knowledge encompassing computing today is too
large to be addressed to any significant depth in
a computing student’s undergraduate education.
Reason and practicality dictate that the
knowledge of computing be subdivided (aka.
specialized) in practice-focused curricula. This
essay explores the proposition that one practice
essential to any form of computing, design, has
been sidelined (if not virtually forgotten) in

computing’s curricular subdivision. This paper
examines the disciplinary evolution of computing
and the most recently published guidelines for
computing curricula. I consider whether design
education is sufficiently represented in their
prescriptions and focus specifically on
information systems education.

2. THE EVOLUTION OF COMPUTING FROM
PROGRAMS TO SYSTEMS

In the early years of computing (1938 - 1958)
computer systems (analog computers
particularly) were capable of working on the
solution of only a single problem at a time. This
single-mindedness of function meant that
computers were indivisible resources that could
not be shared except through sequenced
allocation (Green, 2010). Digital computing
eventually revealed the opportunity to use the
natural differential between the processing
speeds of various computing components (i.e.
I/O vs. computation usually resulted in idle time
for the computation units) to multiplex tasks and

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 102
www.aitp-edsig.org /www.isedj.org

recover time otherwise lost waiting for slower
operations.

In that era the primary design challenge was
bridging the conceptual distance between human
requirements and computing functionality.
Success most often depended upon the ability of
designers to reshape their problems to
accommodate the computer’s capabilities.

The transition from running a single stream of
sequential "work" through a computing resource
into the coordination of multiple (seemingly)
concurrent streams of "work" more closely
approximated the real world of organizations
and life but also introduced the challenges of
workflow management (coordination,
prioritization, dependency, and planning). What
here-to-fore may have been challenges of
resource utilization optimization for individual
programs became optimization for application
systems.

Although the dramatic growth of computing
power and resources (e.g. virtual memory,
parallel processing, multiprogramming, and
multitasking: 1958-1975 (Blaauw & Brooks,
1997)) may have obviated detailed study of
operating systems principles for application
programmers, the same principles of problem
solving remain critical because they
(coordination, prioritization, dependency, and
planning) had become the critical resource
management issues at the service oriented
application level of systems!

3. THE WIDENING BREADTH OF TECHNICAL
INFORMATION IN COMPUTING CURRICULA

For the first generation of information system
builders in the digital age (1956 - 1968) the
patterns and recognition of software design
quality in programming were learned /
developed through countless repetitions of
programming exercises across three or more
programming languages (i.e. assembler,
FORTRAN, COBOL). This included problems from
the trivial (to learn syntax) to the more complex
approaching application system complexity.

The paucity of pattern enforcing mechanisms in
programming tools (languages, editors,
compilers, debuggers, etc.) required successful
developers to be vigilant as they wrote software:
crafting modularity, transparency, traceability,
and maintainability – the selfsame
characteristics that in concert condition a holistic
mindset on the design quality of systems. In
particular traceability testified to the conceptual

integrity of a design's pertinence as a “solution”
to the problem.

Underlying structural software concepts received
individual focus in coursework that isolated data
structures, control structures, communications,
module, and systems architecture (at various
levels) more or less independent of any
particular modeling or programming dialect.

Structured programming was the first
overarching model to organize basic design
principles of coding into a paradigm of do's and
don't 's that focused on achieving qualities of
clarity, reliability and transparency in code
(Dijkstra, 1968).

In these first couple decades of computing
removed from the research laboratories into the
university classroom, the breadth of concepts
and practice in computer science and computer
engineering did not yet outstretch the capacity
of an individual's awareness of issues and topics
across the entire field.

4. THE EXPANSION OF COMPUTING'S
APPLICATION SPACE FROM SCIENTIFIC TO

COMMERCIAL

In the advent of digital computing (1950-1965)
only a handful of organizations had access to
any form of problem solving using "mechanical
computation." Those organizations were
resource-privileged either because of their
governmental or financial power. As a result, the
professionals involved in learning and employing
these tools were recruited from the same ranks
as those who were sought for research in
mathematics, engineering and the sciences.
Academia's response to the resource
requirement for education of these professionals
followed the same pattern as that found in
mathematics, engineering and the sciences with
heavy doses of foundational coursework
including broad coverage of basic theory
followed by extensive review of the current
research in digital computation, electronic
circuitry, hardware and software architecture
(which usually meant reviewing the dozen or so
contemporarily predominant computer designs).

As it became commercially feasible to offer
computing systems within the financial means of
more and more commercial customers, the
demand for information systems development
exploded. Professionals were needed to develop
and manage computers in more far-flung
application domains (business, medicine, applied
engineering, etc.) in which computing’s primary

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 103
www.aitp-edsig.org /www.isedj.org

purpose was augmenting the existing culture of
systems and problem representation in a
domain. This prompted academic programs in
those domains to introduce application domain-
based computing education. Those programs
naturally treated computing as an addendum to
their "core" disciplinary foci. The subset of
computing knowledge that was incorporated
narrowed down to a treatment of application
development. In most cases these applications
were seen as generally isolated solutions to
individual and separate applications of problem
solving.

5. THE GROWTH OF FACADE-BASED
APPLICATION DEVELOPMENT

ENVIRONMENTS

Marked by a steady increase in connectivity and
the coming of the Internet over the last three
decades, the breadth of applying computing to
more and more commercial opportunities for
problem solving has swelled. Tools for
application development have evolved to
insulate developers more and more from the
details and intricacies of the computing
platforms and environment. At the same time
application development has expanded to an
ever-broadening population of "developers" less
and less versed in the core fundamentals of
computing theory and practice. Indeed business
computing as confined to the collection,
organization and reporting of data has evolved
into more of a clerical activity as opposed to one
of problem solving. Quite reasonably, as a
proportion of ongoing business computing
activities, "data processing" predominates.

Because of this dominance, technical education
in computing activities has migrated from
departments of mathematics and engineering to
departments applying computing to their
domain-based interests. And to the extent the
academic programs focus on teaching best
practice using applications of known solutions to
domain-based problems, they serve their
students well. But, the ever-increasing
interconnectedness of information and processes
has levied a new layer of complexity upon
collaboration and adaptability. More than ever
computing capabilities are changing “the existing
culture of systems and problem representation
in a domain.” The challenges arise at the frontier
of known solutions where either the reshaping of
the domain-based problem or the creation of
innovative applications of computing require
more than the mastery of off-the-shelf solutions
– they require creative design. They require

systems that integrate the people, policies,
information, hardware, software, networks, and
quality management in the design of complete,
holistic solutions. They require systems that
accomplish a conceptual integrity and
enlightened design (Brooks, 2010).

6. THE CONFINING PEDAGOGICAL
RESOURCE - CURRICULAR TURF

When we consider domain-based education
(business, medicine, applied engineering, etc.)
combined with the fundamentals of computing
and systems, the inventory of prospective,
relevant coursework quickly exceeds the course
credit hour “budget” of any undergraduate
curriculum. Under this pressure the balance of
emphasis and the share of the curricular
coursework naturally tilts in the favor of the
domain-based disciplines and away from the
depth of fundamental computing theory and
practice needed to fuel innovation and
enlightened design. This has clearly been the
case in computing programs contained in
schools of business naturally preoccupied with
certifying their “business” credentials [AACSB
2010, EQUIS 2010]. The footprint of coursework
assigned to a business computing major is
seldom more than 24 course credit hours
dedicated to computing.

7. WHAT DESIGN IS ABOUT

The New Oxford American dictionary defines
design (noun) as a plan representing the form
and function of something before it is built or
made. Design engenders the purpose, planning
or intention that exists or is thought to exist
behind an action, fact or material object.

Over the last 50 years Fred Brooks has been one
of the most ardent and influential advocates of
design as essential to the pursuit of information
system quality.

“Whereas the difference between poor
conceptual designs and good ones may lie in the
soundness of design-method, the difference
between good designs and great ones surely
does not. Great designs come from great
designers. Software construction is a creative
process. Sound methodology can empower and
liberate the creative mind; it cannot inflame or
inspire the drudge.

The differences are not minor – they are rather
like the differences between Salieri and Mozart.
Study after study shows that the very best
designers produce structures that are faster,

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 104
www.aitp-edsig.org /www.isedj.org

smaller, simpler, cleaner and produced with less
effort. [...] The differences between the great
and the average approach an order of
magnitude.” (Brooks, 1995)

In his most recent reflection on the professional
practice of creating information systems that
support organizational goals he comments on
the central role of design in this way.

“The essentials of [design] are plan, in the mind,
and later execution. Thus a design (noun) is a
created object, preliminary to and related to the
thing being designed, but distinct from it.”

“A book, in this conception, or a computer, or a
program, comes into existence first as an ideal
construct, built outside time and space, but
complete in essence in the mind of the author. It
is implemented in time and space, by pen, ink,
and paper; or by silicon and metal. The creation
is complete when someone reads the book, uses
the computer, or runs the program, thereby
interacting with the mind of the maker.”
(Brooks, 2010)

Brooks clearly distinguishes the act of system
design from the implementation. The cycle of
system creation differentiates design,
implementation and use, but it does not
segregate them! Indeed their interdependency is
core to understanding each aspect as declared in
the agile development concept. (Beck, 2010)
Although distinct, these elements of system
creation fuse as they conceive, develop and
judge the design qualities that mark the degree
of satisfaction (success) the stakeholders
experience during a system’s lifetime.

This distinction between design and
implementation has faded from the structure of
computing education. To ignore the conceptual
distinction between the design and an
implementation is tantamount to accepting any
“solution” without even considering whether (as
Brooks declares compared to the “average”)
there is a solution out there that is an order of
magnitude “faster, smaller, simpler, cleaner and
produced with less effort.”

8. CURRICULUM GUIDELINES – IN SEARCH
OF DESIGN

Finding the latest focus on design in computing
curricula starts with The Overview Volume on
Undergraduate Degree Programs in Computing.
The CC2005 report is the de facto definition of
subdivisions of computing education (see Figure
1 in the appendix).

As the report declares “We have created this
report to explain the character of the various
undergraduate degree programs in computing
and to help you determine which of the
programs are most suited to particular goals and
circumstances.” (Shackelford et. al., 2005)

The CC2005 report explains the general
evolution of computing curricula depicted in
Figure 2 (see the appendix).

Among the 39 Knowledge Areas of computing
identified in CC2005 only 7 reference design as a
specific professional competency in any form.
Among those the area definitions in the glossary
do not distinguish between design and
implement. To some extent this is not surprising
since the CC2005 effort was primarily conceived
to contrast the foci of the 5 computing
subdivisions rather than explain them in detail.
To get detail we must explore each of the five
subdivision curriculum guideline documents: CE,
CS, SE, IT and IS. (Soldan, Hughes,
Impagliazzo, McGettrick, Nelson, Srimani &
Theys 2004; Cassel, Clements, Davies, Guzdial,
McCauley, McGettrick, Sloan, Snyder, Tymann &
Weide, 2008; Diaz-Herrara & Hilburn, 2004;
Lunt, Ekstrom, Gorka, Hislop, Kamali, Lawson,
LeBlanc, Miller & Reichgelt, 2008; Topi,
Valacich, Wright, Kaiser, Nunamaker, Sipior & de
Vreede, 2010)

All 5 curriculum guideline documents liberally
refer to design in various applications of
technology to systems development. However,
only the software engineering curriculum
guidelines address specific aspects of design
quality or design principles in its knowledge area
content (Diaz-Herrara et al, 2004). Indeed only
the software engineering guidelines imply to any
degree that design is a separate conceptual or
practical activity distinct from implementation.
There are no learning unit designations in the IS
2010 curriculum guidelines addressing aspects
of design distinct from a technology.

This is the case because current practice in IS
curricula has assumed that teaching any form of
implementation suffices for teaching design.
When implementation was taught across several
courses and languages in earlier days of
computing curricula, extensive implementation
may indeed have sufficed for design-focused
pedagogy. In an IS curriculum today, when it is
almost impossible to find room for more than
two or three courses in any systems
development technology or more than a single
course in any particular technology, teaching
implementation cannot suffice for teaching

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 105
www.aitp-edsig.org /www.isedj.org

design. If these current challenges weren’t
severe enough, IS 2010 no longer lists
implementation (application development) as a
core requirement. With that “juridical”
justification removed IS and CIS programs may
find it even harder to maintain any semblance of
practical system life cycle pedagogy.

9. CONSEQUENCES OF TEACHING “BRICKS
WITHOUT STRAW”

De-emphasizing design in IS curricula results in
the narrowing of the learning experience toward
talking about systems rather than forming
systems. Here the term “forming systems” is not
limited to “writing program code,” but includes
developing requirements, modeling information,
processes and transactions, as well as building
application software. Design permeates the
forming of systems – even if only to describe
them (Waguespack 2010). Design is the
fundamental problem-solving aspect of systems.
Design is the foundation and justification of
systems and is essential to understanding them.

The most prominent consequence of de-
emphasizing design in IS curricula is the effect it
has on IS graduates’ employment opportunities.
Graduates of an “about-IS” focused academic
program are increasingly challenged to justify to
themselves and to employers their value over
graduates in the business domain without an IS
degree. It is increasingly difficult for an
employer to distinguish the hiring advantage of
a business student with an IS major over that of
an IS minor or general business graduate.
Where IS programs share a college with
accountancy, marketing, management, finance,
etc., these programs have successfully co-opted
interest in IS to their programs by offering
courses focused exclusively on the use of
discipline-based, extant application systems -
avoiding systems development completely. As a
result, unable to clearly promote the career
advantages of an IS degree over “general
business,” IS programs find it increasingly
difficult to recruit IS majors.

10. WHAT THE FUTURE MAY HOLD

Whether Information Systems is or is not a
discipline has long been the subject of debate in
the field of computing. This can be evidenced by
the search for labels in the field: DP, IS, MIS,
CIS, and IT. Clearly IS first emerged at the
intersection of computer science, business,
management and (many would say)
engineering. Over the past two or three decades

many IS programs have devolved by de-
emphasizing the construction aspects of their
curricula; effectively jettisoning merged content
from computer science and engineering in the
process.

This essay contends that the primary loss in this
devolution has not been “coding skill” in some
particular programming language. The loss is the
aspect of design as a holistic mindset and the
tools it provides in shaping IS problem
representation and problem solving – applying
computing in the information and organizational
contexts (Denning 2004) and reinforcing
“systems think” (Waguespack 2010). This loss
negatively impacts the students’ ability to
understand requirements and formulate models
of software, models of business, and models of
business process. In IS, design is the act of
fusing technological opportunity with business
opportunity often reshaping or reinventing both.
Absent design, computing assumes the status of
a contraption that one might take off the shelf
as-is, surrendering the solution quality to the
purposes of others – basically surrendering
innovation to the appliance manufacturers. If the
trajectory of this evolution continues I believe
the debate will be over and IS as a discipline will
indeed be no more.

The challenge is no simple one. If Information
Systems is to maintain its valid role as the
bridge between computing and the effective /
efficient application of technology to information
and process problems, IS curriculum architects
must find a way to re-energize the teaching of
design in their programs. In many institutions
business programs are limited to prerequisite
chains no longer than two courses. That makes
it unlikely that renewed emphasis can be gained
simply by adding courses to existing program
structures. Some renewed energy may be
gained through creative pedagogy by
introducing systems building activities into more
theoretical IS study (e.g. computer organization,
networking, project management or policy).
Such a creative reorganization of learning
activities will surely require extensive
investment in textbook and laboratory
redirection. In some cases this will require the
reversal of the IS-diffusion among business
departments. In other cases it may require the
inventive re-structuring of curricula that bridge
departments of IS and computer science to take
broader advantage of arts and sciences elective
opportunities across the university.

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 106
www.aitp-edsig.org /www.isedj.org

In any case, the time is relatively short for
reversing the decline of IS’s relevance as an
academic discipline. Remarkably, as few as the
number of graduates from most IS programs
there are, they are highly sought-after, and the
employment market for them has weathered
major storms of off-shoring and economic
downturn. These are indications that society
(particularly business) still needs practically
educated professionals who understand both the
application domain and computing, and combine
that knowledge and skills to deliver tomorrow’s
quality, innovative information systems. How will
IS programs and higher education respond?

11. ACKNOWLEDGEMENTS

Thanks to helpful referees. Special thanks are
due my colleagues in Computer Information
Systems at Bentley University for their insightful
discussions and comments on these ideas.

12. REFERENCES

AACSB (2010). Eligibility Procedures and
Accreditation Standard for Business
Accreditation. Retrieved July 16, 2010 from
http://www.aacsb.edu/accreditation/AAACSB-
STANDARDS-2010.pdf

Beck K., Beedle M., van Bennekum A., Cockburn
A., Cunningham W., Fowler M., Grenning J.,
Highsmith J., Hunt A., Jeffries R., Kern J.,
Marick B., Martin R.C., Mellor S., Schwaber K.,
Sutherland J., & Thomas D. (2010). Manifesto
for Agile Software Development. Retrieved
July 12, 2010 from agilemanifesto.org

Blaauw, G.A., & Brooks, F.P. (1997). Computer
Architecture: Concepts and Evolution.
Addison-Wesley, Reading, Massachusetts.

Brooks, Frederick P. (1995). The Mythical Man-
Month: Essays on Software Engineering (2ed).
Addison-Wesley, Boston, MA.

Brooks, Frederick P. (2010). The Design of
Design: Essays from as Computer Scientist.
Addison-Wesley, Pearson Education, Inc.,
Boston, MA.

Cassel L., Clements A., Davies G., Guzdial M.,
McCauley R., McGettrick A., Sloan B., Snyder
L, Tymann P., & Weide B.W., (2008).
Computer Science Curriculum 2008 An Interim
Revision of CS2001. Association of Computing
Machinery (ACM), & IEEE Computing Society
(IEEE-CS).

Dijkstra, E. (1968). GOTO Statement Considered
Harmful. Communications of the ACM, 11(3),
147-148.

Diaz-Herrara, J.L., & Hilburn, Thomas B. (eds.)
(2004). Software Engineering 2004:
Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering,
IEEE Computing Society (IEEE-CS),
Association of Computing Machinery (ACM).

Denning, P. J. (2004). The Great Principles of
Computing, Ubiquity, 4(48), 4–10.

EQUIS (2010). EQUIS Standards and Criteria.
Retrieved July 16, 2010 from
http://www.efmd.org/attachments/tmpl_1_art
_041027xvpa_att_080404qois.pdf

Green, T. (2010). Bright Boys. A.K. Peters, Ltd.,
Natick, Massachusetts.

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G.,
Kamali, R., Lawson, E., LeBlanc, R., Miller, J.,
& Reichgelt, H. (eds.) (2008). Information
Technology 2008: Curriculum Guidelines for
Undergraduate Degree Programs in
Information Technology, Association of
Computing Machinery (ACM), IEEE Computing
Society (IEEE-CS).

Shackelford, R., Cross, J.H., Davies, G.,
Impagliazzo, J., Kamali, R., LeBlanc, R., Lunt,
B., McGettrick, A., Sloan, R., & Topi, H.,
(2005). Computing Curricula 2005: The
Overview Report, Association for Computing
Machiner (ACM), The Association of
Information Systems (AIS), The Computer
Society (IEEE-CS).

Soldan, D., Hughes, J.L.A., Impagliazzo, J.,
McGettrick, A., Nelson, V.P., Srimani, K., &
Theys, M.D. (eds.) (2004). Computer
Engineering 2004: Curriculum Guidelines for
Undergraduate Degree programs in Computer
Engineering, IEEE Computer Society (IEEE-
CS), Association for Computing Machinery
(ACM).

Topi, H., Valacich, J.S., Wright, R.T., Kaiser,
K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de
Vreede, G.J. (eds.) (2010). IS2010:
Curriculum Guidelines for Undergraduate
Degree Programs in Information Systems,
Association for Computing Machinery (ACM),
Association for Information Systems (AIS).

Waguespack, L. J. (2010). Thriving Systems
Theory and Metaphor-Driven Modeling.
Springer, London, U.K.

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 107
www.aitp-edsig.org /www.isedj.org

Editor’s Note:

This paper was selected for inclusion in the journal as an ISECON 2010 Meritorious Paper. The
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2010.

Information Systems Education Journal (ISEDJ) 9 (2)
 June 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 108
www.aitp-edsig.org /www.isedj.org

Appendix

Figure 1 - Computing Curricula Guidelines

Figure 2 - The Outward Appearance of Computing Curricula Evolution

CC2001

(CS2001)
Computer
Science

Curriculum
Volume

IS2002

Information

Systems
Curriculum

Volume

SE2004

Software

Engineering
Curriculum

Volume

CE2004

Computer

Engineering
Curriculum

Volume

IT2006

Information
Technology
Curriculum

Volume

Other

curriculum
volumes as
needed for
emerging
disciplines

CC2005

The Overview
Volume

on
Undergraduate

Degree
Programs

in Computing

EE+
CE CS IS

EE CE CS SE IT IS

Pre-1990s:

Post-1990s:

HARDWARE SOFTWARE BUSINESS

HARDWARE SOFTWARE ORGANIZATIONAL
NEEDS

