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Abstract

This paper reports on the development of an analysis engine for the Research Writing 
Tutor (RWT), an AWE program designed to provide genre and discipline-specific 
feedback on the functional units of research article discourse. Unlike traditional 
NLP-based applications that categorize complete documents, the analyzer catego-
rizes every sentence in Introduction section texts as both a communicative move and 
a rhetorical step. We describe the construction of a cascade of two support vector 
machine classifiers trained on a multi-disciplinary corpus of annotated texts. This 
work not only demonstrates the usefulness of NLP for automated genre analysis, but 
also paves the road for future AWE endeavors and forms of automated feedback that 
could facilitate effective expression of functional meaning in writing.

Keywords: Automated writing evaluation; genre; machine learning; moves; 
text categorization

Introduction
Second language acquisition research, in consensus with views in psychol-
ogy, has long argued that individuals learn languages differently depend-
ing on such influencing factors as idiosyncratic learning strategies, cognitive 
styles, and various affective factors (Dörnyei & Skehan, 2003). Since it is not 
in the power of a human teacher to adapt to all learner differences and to pro-
vide individualized instruction to groups of students, computers have been 
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proposed as a powerful and practical complementary alternative. In the past 
decades, Natural Language Processing (NLP), which is superior to the so-
called pattern-markup and error-anticipation techniques used to generate 
conventional types of feedback (Garret, 1987), has been commonly employed 
for the purpose of identifying problematic aspects in learner language, diag-
nosing language errors, and providing detailed explanations about the nature 
of those errors. In particular, NLP techniques have been exploited for individ-
ual feedback generation by Intelligent Computer Assisted Language Learning 
(ICALL) systems, generally addressing the complexity of morphology, syntax, 
semantics, and pragmatics (see Gamper & Knapp, 2002). The domain of Auto-
mated Writing Evaluation (AWE) has also employed NLP in a variety of ways 
to provide learners with feedback on grammar, usage, mechanics, style, orga-
nization, coherence, content, etc. (see Dikli, 2006).
 Despite considerable advances in NLP, analyzing the various aspects of 
natural language is still a challenging problem that remains to be solved in 
order to meet a wider range of learning needs. One such need is mastering 
the writing conventions of academic genres. Research in English for academic 
purposes has a well-established genre-analysis agenda (see Biber, Connor, & 
Upton, 2007; Hyland, 2000). This agenda needs to be extrapolated to inter-
disciplinary research involving applied and computational linguists and com-
puter scientists, whose combined efforts would result in the creation of new 
needs-based intelligent feedback systems. 
 The study presented in this paper is beginning to fill this void. Our main 
goal was to develop an automated analysis engine for an AWE system that 
identifies the rhetorical structure of research articles (RA) in terms of com-
municative moves and functional steps (Swales, 1990) and provides feedback 
compared to the RA genre norms in learners’ particular disciplines. Before 
describing this work, we review the approaches to and implementations of 
automated discourse categorization in order to provide a background for our 
automated genre analysis methodology. Focusing on RA Introduction sec-
tions, we employed a three-step process of discourse structure identification, 
which included: (1) feature selection from manually annotated text data; (2) 
sentence representation; and (3) training leading to sentence-level classifica-
tion into moves and steps.

Automated text categorization
Automated text categorization in machine learning
Text categorization, also known as text classification and sometimes referred 
to as topic spotting, is a procedure by which natural language texts are labeled 
with thematic categories from an existing predefined set. Although text cat-
egorization work emerged in the early 1960s (Maron, 1961), it became 
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prominent only in the 1990s due to the availability of digital text documents 
and the growing need to obtain easy access as well as selective information 
about them. A popular approach to text categorization is machine learning 
(ML). Some applications of ML include automatic document indexing for 
information retrieval systems (e.g., internet search engines), document orga-
nization (e.g., grouping of conference papers into sessions), text filtering (e.g., 
junk e-mail blocking), and word sense disambiguation (e.g., ‘fan’ as a person 
or as an air blowing object).
 Sebastiani (2002) provides a comprehensive overview of the ML approach 
where ‘a general inductive process builds an automatic text classifier by learn-
ing, from a set of preclassified documents, the characteristics of the categories 
of interest’ (p. 2). More specifically, this inductive process, also referred to as 
the learner, automatically constructs a classifier by learning the characteristics 
of a corpus of human-labeled texts and then looking for the characteristics 
that new texts should have in order to be classified similarly to human coding. 
In this supervised learning process, thus, the corpus prepared by human 
experts is instrumental, for it is used not only for the purpose of training the 
classifier, but also for its testing and validation. Research has shown that clas-
sifiers developed with ML techniques are highly effective. Of a multitude of 
such techniques, (e.g., Naïve Bayes, Decision Tree, Rule-based, Neural Net-
work, Regression, etc.), the Support Vector Machine (SVM) classifiers have 
been widely implemented (Cortes & Vapnik, 1995) and found to ‘deliver top-
notch performance’ (Sebastiani, 2002: 39).

Automated categorization of discourse and genre
In text classification tasks, texts have traditionally been considered in terms 
of their structure and content. The most well recognized perspective to ana-
lyzing discourse is the rhetorical structure theory (Mann & Thompson, 1988), 
which has been applied to numerous computational applications (see Taboada 
& Mann, 2006). Generally, discourse has been analyzed based on discourse 
markers, which are viewed as indicators of rhetorical relations in the text (e.g., 
Schilder, 2002). Classifying texts based on their genre-specific functional roles 
is a territory yet to be explored. According to Kessler, Numberg, and Schutze 
(1997), one of the reasons why this particular task has been somewhat daunt-
ing is that it poses high-order theoretical and methodological questions:

Is genre a single property or attribute that can be neatly laid out in some hierarchical 
structure? Or are we really talking about a multidimensional space of properties that 
have little more in common than that they are more or less orthogonal to topicality? 
And once we have the theoretical prerequisites in place, we have to ask whether genre 
can be reliably identified by means of computationally tractable cues. (Kessler et al., 
1997: 1)
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The challenge is even greater considering Miller’s (1994) view of genre as ‘a 
rhetorical means for mediating private intention and social exigence; […] 
connecting […] the singular with the recurrent’ (Miller, 1984: 163),1 which 
highlights the discourse community dimension of genre extensively analyzed 
in Rhetoric and Composition/Writing Studies (e.g., Bazerman, Bonini, & 
Figueiredo, 2009).
 Thus, it is important to consider definitions of genre that reflect both the 
socio-linguistic meaning of the concept and also a meaning that can be inter-
preted for applied ML purposes. The definition of genre proposed by Kessler 
et al. (1997) – ‘any widely recognized class of texts defined by some common 
communicative purpose or other functional traits, provided the function is 
connected to some formal cues or commonalities and that the class is exten-
sible’ (p. 2) – embodies concepts that allow for such an interface. Key to this 
definition is the idea of formal generic cues, which are surface attributes that 
both distinguish classes of texts and possess ‘a characteristic set of computable 
structural or linguistic properties, whether categorical or statistical’ (Kessler 
et al., 1997: 2). Toms and Campbell (1999) also refer to genres as possessing ‘a 
parsimonious set of attributes’ that ‘determine a document’s ability to be iden-
tified uniquely’ (p. 1). Similarly, Stamatatos, Fakotakis, and Kokkinakis (2000) 
regard genre detection as the identification of the functional styles of texts, 
maintaining that the style markers are a set of pre-defined quantifiable mea-
sures (p. 472).
 These definitions resonate with the perspective of applied linguists, who 
conceptualize genres as communicative events organized into a series of dis-
course units, moves and steps (Swales, 1990). The moves are communica-
tive goals, and the steps are rhetorical functions that help achieve the goals 
of given moves. The rhetorical intent of the steps, in particular, is rendered 
through functional language, or linguistic cues that are indicative of specific 
genre elements. The assumption that lexical cues are often explicit realiza-
tions of rhetorical organization is adopted both in applied linguistics work 
that uses quantitative and qualitative methods to describe genres (see Biber 
et al., 2007; Cortes, 2013; Upton & Connor, 2001) and in ML, where lexical 
cues are primarily applied to detect discourse structure (Kurohashi & Nagao, 
1994).
 With the notion of cues as observable properties of texts, Kessler et al. 
(1997) conducted a series of experiments with structural cues (e.g., passives, 
nominalizations, topicalized sentences), lexical cues (e.g., terms of address, 
Latinate affixes, time-related vocabulary), character-level cues (punctuation, 
capitalized and hyphenated words), and derivative cues (ratios and variation 
measures derived from lexical and character-level cues). They built different 
models including linear discrimination, linear regressions, logistic regression, 
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and neural networks, and concluded that using cues, especially lexical cues, 
for genre categorization is a plausible approach leading to reasonable accu-
racy of classification. In turn, Stamatatos et al. (2000) proposed an approach 
to distinguishing between genres that is based on first extracting lexical style 
markers using NLP and multiple regression, and then conducting discrim-
inant analysis for automatic categorization. Cues also proved to be a viable 
solution to the classification of discourse relations among different parts of 
texts (Litman, 1994).

Automated discourse and genre categorization in computer-assisted 
writing tools
A few works at the intersection of ML and applied linguistics made a step 
further, applying automated discourse categorization techniques to the 
development of intelligent writing tools. Current genre-based writing appli-
cations rely mostly on lexical approaches. For example, Yang and Akahori 
(1998) built a system to help learners write technical texts in Japanese, which 
could automatically detect micro-level and macro-level cues. Their system 
contained a set of simple pattern matching rules and three analyzers (mor-
pheme, syntax, and discourse). The feedback it generated displayed sen-
tences with cohesive expressions containing cue words, which corresponded 
to a chosen headline in a text that the learners clicked on. Both headline and 
cohesive expression extraction achieved high accuracy (99.2% and 92.7%, 
respectively).
 Cue-phrased based discourse parsing is also at the core of Criterion® (Marcu, 
2000), a complex learning platform developed by the Educational Testing Ser-
vice. Criterion®’s essay discourse analyzer, e-rater®, uses a voting algorithm that 
makes decisions based on three classifiers – decision-based, probabilistic-
based, and probabilistic-local, which together perform with 0.85 precision 
and 0.85 recall (Burstein, Tetreault, & Madnani, 2013). Trained using simple 
maximum-likelihood techniques and expectation maximization, it identifies 
words, terms, and structures that act as discourse markers as well as language 
characteristic of essay discourse. The feedback is based on the classification of 
each sentence as one of the following categories: title, introductory material, 
thesis, main idea, supporting idea, or conclusion.
 Motivated by instructional needs, Anthony and Lashkia (2003) developed 
the genre-based Mover to be used by English language learners for academic 
reading and writing purposes. The name of their software reflects Swales’ 
move terminology, and the output it generates presents the learners with the 
move structure of RA Abstracts. To develop the Mover, the authors conceptu-
alized their approach based on Mitchell’s (1997) task-experience-performance 
sequence, where the task was to automatically identify the rhetorical structure 
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of Abstracts, the experience was a supervised learning approach, and the per-
formance was the evaluation of accuracy. After experimenting with various 
algorithms, including Decision Tree and Neural Network, the Naïve Bayes 
classifier was chosen as the supervised learning approach; it performed better 
than others yielding an average first-order accuracy of 68%, which the authors 
claimed could be improved to over 86%.
 Previously, we approached a very similar genre classification task when 
we developed a feedback application called IADE (Pendar & Cotos, 2008). 
Both the Mover and IADE used a classification schema based on Swales’ 
(1990) Create a Research Space (CARS) framework for Introduction sections. 
Our text-categorization approach was similar to that of Anthony and Lash-
kia (2003) in that it was a lexical (n-gram) approach that involved the use of 
human-labeled texts. The choice of the supervised learning technique was dif-
ferent – we used an SVM classifier, which performed best with unigram and 
trigram models. Based on the output of the classifier, IADE operationalized 
feedback generation in two ways: as color-coded (representing the move of 
each sentence with a respective color) and as numerical (showing percentages 
that reflected a comparison of the distribution of the moves in learners’ drafts 
versus a corpus in their discipline) (Cotos, 2011).
 The genre-based systems described above have all been implemented in 
learning contexts. The amount of empirical evidence suggesting their effec-
tiveness and potential benefits for language learners is accumulating (Attali, 
2004; Chen & Cheng, 2008; Cotos, 2014) and is, therefore, motivating the 
development of new intelligent writing applications. An example of such 
applications is the Research Writing Tutor (RWT), a scale-up from its IADE 
prototype which generates discourse-level feedback on all RA sections (Cotos, 
2015). In this paper, we present only part of a bigger development project and 
focus on the ML approach employed to build the Introductions analysis and 
feedback engine of RWT.

Automated move and step identification
RWT is intended for use as a computer-assisted aid to academic writing 
instruction that focuses on the genre conventions of RAs, so our task was to 
build an analysis engine capable of classifying texts into moves and steps. As 
shown in Figure 1, we approached the identification of these discourse units 
as a supervised classification problem and employed a process of corpus data 
annotation, feature selection, sentence representation, and training leading to 
classification. Following this approach, we considered each sentence in a text 
as an independent unit of analysis to be classified into a move category and 
then into a step within the identified move.



98     Discourse Classification into Rhetorical Functions

Figure 1: Move and step classification process.

RA Introduction training data
As any supervised classification, the move/step classification task required text 
data. We used the Introduction sections from a large specialized corpus of 1,020 
research articles. The articles were obtained from reputable online academic 
journals in 51 disciplines, each discipline being represented by 20 articles.
 The Introduction texts contained 1,322,089 words. They were converted to 
.TXT files and were manually annotated using a scheme of three moves and 
17 steps (Table 1). Each sentence was tagged with a move and a step; multi-
functional stretches of text were tagged as several steps, which could belong 
to the same move or to different moves. The annotation was completed using 
an XML-based markup created by the Callisto workbench, which allowed for 
nesting step XML tags inside move XML tags as well as for assigning multi-
ple tags to sentences in order to capture multi-functionality at sentence-level 
(Appendix A).

Table 1: Move/step schema used for corpus annotation (based on Swales’ CARS model)

Move Step

Move 1. Establishing a territory Step 1. Claiming centrality
Step 2. Making topic generalizations
Step 3. Reviewing previous research

Move 2. Identifying a niche Step 4. Indicating a gap
Step 5. Highlighting a problem
Step 6. Raising general questions
Step 7. Proposing general hypotheses
Step 8. Presenting a justification

Move 3. Addressing the niche Step 9. Introducing present research descriptively
Step 10. Introducing present research purposefully
Step 11. Presenting research questions
Step 12. Presenting research hypotheses
Step 13. Clarifying definitions
Step 14. Summarizing methods
Step 15. Announcing principal outcomes
Step 16. Stating the value of the present research
Step 17. Outlining the structure of the paper
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 Three experienced coders executed the annotation task.2 Text annota-
tion was accompanied by calculations of agreement on moves and steps in 
30 texts from different disciplines; 18 texts were random and 12 were pur-
posefully chosen, as they contained various instances of discourse whose rhe-
torical functions were likely to elicit different interpretations and were thus 
valuable material for 14 calibration meetings conducted weekly during three 
and a half months of annotation. This procedure helped to develop a compre-
hensive coding protocol to ensure reliability and consistency of annotation 
(as per Connor, Upton, & Kanoksilapatham, 2007) and to foster the adjudica-
tion of individual cases of disagreement. The intraclass correlation coefficient 
(ICC) (see Shrout & Fleiss, 1979) estimates are indicative of relatively high 
agreement among the three coders both for moves (r= 0.86, p < 0.005) and for 
steps (r= 0.80, p < 0.005) (Saricaoglu & Cotos, 2013).
 For training we used a sub-corpus of 650 Introductions, which were 
extracted from the annotated corpus by means of stratified sampling (Appen-
dix B). This sub-corpus contained a total of 15,460 sentences and 366,089 
words.3 The size of the sub-corpus both in terms of the number of texts (aver-
age 13) and of the number of words per discipline (average 7,000) can be con-
sidered adequate as per Stamatatos et al. (2000).4

Feature selection
Feature selection is an important step in a classification task and involves 
identifying the best features, or linguistic cues from the dataset that help reli-
ably represent the data with respect to the target classes,5 moves and steps in 
this study. The main features used for the identification of moves and steps 
were sets of word unigrams and trigrams (i.e., single words and three word 
sequences) from the annotated corpus. In our earlier work, we found that 
bigrams (two word sequences) had a negative effect on the classifier (Pendar & 
Cotos, 2008), which is why we did not experiment with the bigrams here. We 
also found that our extracted features were not discipline-dependent. To pre-
pare the feature set for the classification task, the unigram and trigram data 
were preprocessed as follows:

1. The unigram and bigram tokens were stemmed to reduce the size of 
the feature set as well as the interdependence among features by repre-
senting lexically related items as the same, unified feature. Stemming 
was completed using NLTK3 port of the Porter Stemmer algorithm 
(Porter, 1980). 

2. Four digit numbers denoting years in citations were replaced with 
__year__, and all other numerical tokens were normalized to the 
token __number__. The numbers were preprocessed in this way 
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because, even though they are not lexical realizations of rhetorical 
intent, they are indicative of the Reviewing previous research step of 
Move 1.

3. Three other types of substitutions based on the recurring patterns in 
the corpus data were made:
a. HTML special characters (e.g., &quot, &amp) were replaced with 

__html__
b. web-page links were replaced with __url__ 
c. domain names were replaced with __domain__

4. n-grams with a frequency of less than 5 were excluded to avoid over-
fitting and to reduce the so-called noise, which could be created by 
the n-grams that would not contribute much to the learning process.

Next, to identify the features that are most indicative of a given move and step, 
odds ratios6 of the n-grams were calculated against each move and step using 
the following formulas:
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The features, or n-grams exhibiting high odds ratios were selected as features 
indicative of a given move and step; the features with odds ratios less than 
5 were removed. The final n-gram feature set contained 5,825 unigrams and 
11,630 trigrams for moves, and 27,689 unigrams and 27,160 trigrams for steps.

Sentence representation
We considered each sentence as an item to be classified into a move and a step; 
hence, it is represented as an n-dimensional vector in the Rn Euclidean space. 
Formally, each sentence ci is represented as ci = <f1, f2, f3,…,fn> where each 
fj measures feature j in sentence ci. Thus, the learning algorithm attempts to 
learn a functional mapping that maps each sentence in the corpus C to a move 
m, and then using this move m to map each sentence to a step s. Here M = {m1, 
m2, m3} and S = {s1, s2, s3,..,s17}. Mathematically, the learning algorithm tries to 
predict functions F and G such that

In other words, function F would map the sentences in the corpus to one of 
the three move classes in M, and function G would map those sentences to one 
of the 17 step classes in S. Although it would be ideal to accomplish many-to-
many mappings (which would be similar to the coders’ multi-level annotation 
of the corpus), at this point, both for simplicity and practicality, we assumed 
both F and G functions as many-to-one mappings.
 Given that our units of analysis were individual sentences, which are very 
small documents and therefore inappropriate to use measures of the impor-
tance of a term in a document,7 we resorted to Boolean representation in order 
to indicate the presence or absence of a particular feature. In other words, we 
used binary coding such that if an n-gram feature j is present in sentence ci, fj 
equals 1; if an n-gram feature j is absent in sentence ci, fj equals 0. For example, 
for move classification the representation of a sentence may be:

where ci is a sentence from the annotated sub-corpus C, and mf1, mf2, mf3,…, 
mfn are the features representing the move to which a sentence belongs. Sen-
tence representation for step classification is similar, but includes an addi-
tional feature that specifies the step to which the sentence belongs:

where ci is a sentence from the annotated sub-corpus C, and sf1, sf2, sf3,…,sfn 
are the features representing the step of the sentence. Also m1:1, m2:0, m3:0 in 
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the example above implies that sentence ci belongs to move 1 and not to move 
2 or move 3. Thus, in this representation, the move predicted for a sentence 
is passed as an input to predict a step. Figure 2 provides an example of how a 
new sentence is processed and represented for move classification. First, the 
sentence is divided into unigrams and trigrams and matched with the exist-
ing feature set. Then, the unigrams and trigrams are represented as Boolean 
values: 1 if the n-gram was found in the feature set and 0 if it was not found. 
Based on the features represented as 1, the classifier makes a decision as to 
which move the sentence belongs to. 

Figure 2: Example of sentence classification as a move

Move and step classifiers
SVM learning has been traditionally exploited in text categorization prob-
lems. It is a supervised learning technique that uses an algorithm to analyze 
data and identify patterns, which are then used for classification. Provided 
with an input of a set of labeled training data, the SVM model represents the 
training examples as points in an N-dimensional space that are mapped such 
that the labeled classes are optimally separated by hyperplanes of maximal 
margin, or clear gaps. Once the SVM learns the hyperplanes, it can classify 
unseen data into one of the learned labeled classes. Fed with a new example, 
the model maps it into the same space and makes a prediction as to which 
class it belongs to based on which side of the hyperplane it is on.
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 In our case, the labeled training data set was the annotated Introductions 
corpus, the training examples were the annotated sentences, the classes were 
the move and step categories, and the hyperplanes separated the move or the 
step classes. Figure 3 depicts this SVM learning trajectory for move identifica-
tion.8 We chose SVM not only because it generally yields better performance, 
but also because it performs well in a high dimensional space even with sparse 
values (Kivinen, Warmuth, & Auer, 1997), that is, when most of the values in a 
large vector are zero. This type of sparse representation is common in natural 
language analysis because in any given excerpts of text (sentences here) only a 
handful of items from the feature set are observed.

Figure 3: SVM move learning and classification trajectory

 Further, the accuracy of classification depends on careful selection of 
parameters that are fed to the SVM model. Considering our task of building 
a predictive classifier, we employed a common technique known as k-fold 
cross-validation in order to estimate how well the model would perform 
when given completely new data. This procedure involved the application of 
the remaining 370 annotated Introduction texts not used for model train-
ing, which were randomly partitioned into 10 equal size subsets and used 
for 10-fold cross validation, a common technique for this type of evaluations 
(McLachlan, Do, & Ambroise, 2004). Specifically, we fed the learned model 
with one of the 10 subsets of unseen labeled data at a time and compared the 
move and step classes it generated with the move and step labels assigned by 
the coders.
 We experimented with different feature sets for both move and step clas-
sification tasks (Tables 2 and 3). For evaluating the performance of the classi-
fier on these feature sets, we used measures of accuracy on each of the models 
built. Accuracy measures the proportion of correctly classified instances to the 
total number of classified instances. Other standard metrics used for evaluat-
ing the model performance are precision and recall. Precision measures the 
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proportion of items assigned to a category that actually belong to that category, 
whereas recall measures the proportion of items belonging to a category that 
were classified correctly. In the formulas below, TP is the number of true pos-
itives; FP is the number of false positives, TN is the number of true negatives, 
and FN is the number of false negatives, and all these terms indicate a compar-
ison of the results of the classifier with expert judgments. True and false indi-
cate whether the classifier’s prediction corresponds to the expert judgment (in 
our case the coders’ move/step label), while positive and negative refers to the 
expected prediction by the classifier. 

1. Accuracy:

2. Precision:

3. Recall:

Table 2: Feature set for move classification

N-gram features

# Unigrams # Trigrams

1,000 0

2,000 0

3,000 0

0 1,000

0 2,000

0 3,000

1,000 1,000

2,000 2,000

3,000 3,000

5,825 11,630

Table 3: Feature set for step classification

N-gram features

# Unigrams # Trigrams

1,000 0

5,000 0

6,334 0

10,000 0

26,789 0

0 1,000

0 5,000

0 5,986

0 10,000

1,000 1,000

5,000 5,000

10,000 10,000

27,689 27,160

Figures 4 and 5 report the performance of the classifier on cross-validation 
data, showing that the accuracy of the move classifier increases as the feature 
set increases in size. Also, accuracy is slightly higher when the feature set con-
tains both unigrams and trigrams than when unigrams or trigrams are used 
separately. The accuracy of the step classifier exhibits a comparable trend.
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Figure 4: SVM performance on move classification

Figure 5: SVM performance on step classification

 Similarly, in terms of precision and recall, the feature sets containing only 
unigrams or trigrams have lower precision and recall for both move and step 
classifiers. The move and step classifier models show an increase in precision 
and recall as more unigrams and trigrams are added into the feature set. A 
high precision and recall for both move and step classifiers is evident with the 
feature set containing most unigrams and trigrams taken together. It is also 
noticeable that the combined unigram and trigram feature sets yield precision 
figures that are higher than recall – 70.3% versus 61.2% for the move classifier 
and 68.6% versus 55% for the step classifier. This may be preferable when it 
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comes to classification for error feedback generation. The developers of Crite-
rion® opted for maximizing precision even if it was at the expense of recall; for 
example, precision for article and preposition error detection is 90% and 80% 
while recall is 40% and 25%, respectively (Chodorow, Gamon, & Tetreault, 
2010). Nagata and Nakatani (2010) also hypothesized that feedback based on 
precision-oriented error-detection is likely to have a stronger learning effect 
than the recall-oriented feedback. For us however, tuning for precision is not 
advisable. Since we are classifying every single sentence, high precision in one 
category necessarily leads to low precision in another category. Therefore, our 
ultimate objective is to maximize accuracy.
 Having found which model performed best, we built a cascade of two SVM 
classifiers. When a new input sentence is passed, it goes through the move 
classifier, which predicts its move, and then it is passed on to the step classi-
fier, which predicts its step within the assigned move (Figure 6).

Figure 6: Sentence classification process by RWT analyzer

Evaluation and discussion
It is important to consider the classifiers’ performance at the level of individual 
moves and steps. Like other systems, both our classifiers can predict some dis-
course elements better than others. In the following discussion, we compare 
the precision, recall and F1 scores obtained for each move/step. The F1 score, 
or the harmonic mean of precision and recall, measures the overall perfor-
mance of the system for a category (Van Rijsbergen, 1979) and is calculated as:

Table 4 shows that the move classifier predicted Move 1 and Move 3 with 
higher precision than Move 2. This result is in agreement with our earlier 
experimentation where we found that Move 2 is most difficult to identify and 
that it tends to be misclassified as Move 1 (Pendar & Cotos, 2008). This is not 
surprising since this time the training data for Move 2 was also considerably 
sparser than the data for the other two moves (6,039 sentences for Move 1; 
1,609 for Move 2; and 2,352 for Move 3). In our testing dataset, the moves were 
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not equally distributed either, with Move 2 being least represented (3,233 sen-
tences for Move 1; 926 for Move 2; and 1,301 for Move 3). It is worth noting 
that the system obtained the best recall on Move 1, which combined with rel-
atively high precision on that category results in the highest F1 score. While 
this may be attributed to the larger amount of features in the dataset, this move 
may also contain less ambiguous and/or more overt linguistic cues.

Table 4: Precision and recall for the move classifier

Move # Move name Precision (%) Recall (%) F1 Score (%)

1 Establishing a territory 73.3 89.0 80.4

2 Identifying a niche 59.2 37.3 45.8

3 Addressing the niche 78.4 57.2 66.1

Average 70.3 61.2 65.4

Table 5 shows that 10 out of 17 steps were predicted quite well by the step clas-
sifier. A few steps, in particular, had very high precision: Clarifying definitions 
– 100%, Outlining the structure of the paper – 92%, Reviewing previous research 
– 86.7%, and Presenting research questions – 84.6%. Table 5 also lists the steps 
that had a precision below the 68% average, three of which belong to Move 2 
(Highlighting a problem, Raising general questions, Proposing general hypothe-
ses) and four to Move 3 (Introducing present research descriptively, Summariz-
ing methods, Announcing principal outcomes, and Stating the value of the present 
research). The steps of Move 1 were identified relatively well, as were many of 
the Move 3 steps, especially considering that Move 3 has the highest number 
of steps. The steps of Move 2, on the other hand, appear to be more problem-
atic for classification – just like Move 2 itself. Overall performance is best on 
Step 3, Reviewing previous research, Step 5, Highlighting a problem, and Step 
17, Outlining the structure of the paper, suggesting that these categories are sig-
naled by relatively unambiguous lexical cues. The system, however, appears to 
struggle with Step 6, Raising general questions, Step 13, Clarifying definitions 
(despite high precision on this category), and Step 16, Stating the value of the 
present research.

Table 5: Precision and recall for the step classifier

Step # Step name Precision (%) Recall (%) F1 Score (%)

1 (Move1) Claiming centrality 67.9 49.6 57.3

2 (Move1) Making topic generalizations 70.4 76.6 73.4

3 (Move1) Reviewing previous research 86.7 85.2 85.9

4 (Move2) Indicating a gap 75.2 55.5 63.9

5 (Move2) Highlighting a problem 64.7 79.9 71.5



108     Discourse Classification into Rhetorical Functions

6 (Move2) Raising general questions 50.0 27.8 35.7

7 (Move2) Proposing general hypotheses 66.3 50.0 57.0

8 (Move2) Presenting a justification 68.9 66.2 67.5

9 (Move3) Introducing present research 
descriptively

50.6 61.9 55.7

10 (Move3) Introducing present research 
purposefully

78.6 67.2 72.5

11 (Move3) Presenting research questions 84.6 26.2 40.0

12 (Move3) Presenting research hypotheses 74.2 43.4 54.8

13 (Move3) Clarifying definitions 100.0 18.2 30.8

14 (Move3) Summarizing methods 44.6 51.9 48.0

15 (Move3) Announcing principal outcomes 51.4 55.2 53.2

16 (Move3) Stating the value of the present 
research

39.8 34.4 36.9

17 (Move3) Outlining the structure of the paper 92.0 84.5 88.1

Average 68.6 54.9 61.0

Our performance evaluation measures are slightly lower than Criterion’s overall 
precision of classification into discourse elements by best single system (81%) 
and by the voting system (85%) (Burstein, Marcu, & Knight, 2003). However, 
this is not at all discouraging given the increased complexity of our categoriza-
tion task. Compared with Anthony and Lashkia (2003), our SVM model per-
forms better when identifying Claiming centrality and Highlighting a gap. Their 
Naïve Bayes model classified statements of announcing research with higher 
accuracy than our step SVM; however, in Mover this category combined five 
steps that our classifier identifies separately (Introducing present research pur-
posefully, Introducing present research descriptively, Presenting research ques-
tions, Presenting research hypotheses, and Summarizing methods). Principal 
outcomes and value statements are problematic for both Mover and RWT.
 To better understand why and how misclassification occurs, we computed 
a confusion matrix comparing the categories predicted by the step classifier 
with the coders’ annotation using the training dataset (Figure 7). The col-
umns in the matrix represent the steps predicted by the step classifier, and 
the rows represent the primary step labels assigned by the coders. The high-
lighted diagonal line shows the number of correct predictions, and the off-
diagonal counts represent the classifications that are different from human 
annotation. The calculations are based on the final SVM model of 27,689 uni-
grams 27,160 trigrams. The matrix reveals that the steps with the precision 
below the 68.6% average were confused with other steps. Additionally, it indi-
cates that when misclassifications occurred, the misclassified step was still in 
the realm of the correct move. The classifier had lower performance when 
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distinguishing between the steps of Move 1, in particular getting confused 
about Step 1 (Claiming centrality) and Step 2 (Making topic generalizations). 
In Move 2, it tended to classify sentences as Step 8 (Presenting a justification) 
instead of Step 5 (Highlighting a problem), and Step 5 instead of Step 6 (Raising 
general questions), Step 7 (Proposing general hypotheses) and Step 8. In Move 3, 
Step 9 (Introducing present research descriptively) appears to be most challeng-
ing – it was misclassified as Steps 14 (Summarizing methods), 15 (Announcing 
principal outcomes), and 16 (Stating the value of present research); Step 14 – as 
Steps 9; Step 15 – as Steps 9 and 14; and Step 16 – as Step 9. 

Figure 7: Confusion matrix for steps predicted by the step classifier and annotated by 
coders

 These misclassifications by the step classifier are not surprising. Sparse-
ness of training data, a major reason often mentioned in previous research, 
accounts for the lower performance in our study as well. In addition, there 
are a number of other factors that can help explain our SVM performance 
results. For instance, some steps are more challenging for automated identifi-
cation because their rhetorical meaning is not as clearly encoded in functional 
language and is, therefore, difficult to operationalize by a learning model. 
Another reason is that a sentence can carry multiple rhetorical functions and 
thus belong to more than one step. While the coders were able to capture this 
phenomenon when annotating the corpus, the classifiers were only capable 
of predicting one move and one step category. We will further qualitatively 
analyze the classifiers’ output to see whether the misclassifications are indeed 
inaccurate or whether they are capturing secondary functions. An equally 
important factor is meaning ambiguity; in the absence of lexical signals of 
functional meaning the coders were often confused as well.
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Conclusions and future work
In this study, we developed a cascade of two SVM move and step classifiers that 
are at the core of RWT’s Introduction discourse analyzer. For that, we combined 
work in genre analysis and ML, relying on linguistic cues indicative of rhetori-
cal functions. Our evaluation results are in agreement with previous research 
on classification of discourse elements and, in some aspects, outperform exist-
ing automated classification systems (e.g., Anthony & Lashkia, 2003). The ana-
lyzer classifies new input sentences with an overall move accuracy of 72.6% and 
step accuracy of 72.9%, the latter being slightly higher likely due to the preced-
ing move classification in the sentence classification sequence.
 Up to this point, we have been treating each sentence as an independent 
random variable; that is, we were assuming that the move/step represented by 
each sentence is independent of its context. This is a useful, yet not a definitive 
assumption. It is useful in that it allows us to understand how much the lin-
guistic information contained within a sentence contributes to its move/step 
classification. It seems that we are reaching the limits of this approach, and 
it is now prudent to investigate the influence of the context. In further work, 
we are planning to incorporate context information and the sequencing of 
moves/steps in our predictive models. Additionally, we are planning to imple-
ment a ranking of classification decisions based on higher probabilities to be 
able to distinguish between primary and secondary step functions. For steps 
that are most difficult to detect, we will take a knowledge-based approach (as 
in Madnani, Heilman, Tetreault, & Chodorow, 2012) and experiment with a 
set of hand-written rules to recognize the functional language and, perhaps, 
the lexico-grammatical patterns that are identifiable in the annotated corpus 
but not frequent enough to appear in our current set of n-gram features. With 
new results from these additional approaches, we may develop a voting algo-
rithm that would pass final classification decisions considering the output of a 
number of independent analyzers, similar to Burstein et al. (2003). With this 
work, we not only demonstrate the usefulness of ML and NLP for automated 
genre analysis, but also pave the road for future endeavors that will lead to the 
development of AWE and ICALL systems with meaning-oriented feedback.
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Notes
 1. Miller’s (1994) definition emphasizes the importance of genre in providing insight 
about discourse communities, which is particularly relevant given our end-goal to develop an 
AWE tool for the analysis of disciplinary RA genre discourse. 
 2. The coders acquired the needed expertise through a focused four-week training that 
involved guided identification, analysis, and discussion of moves and steps in published Intro-
ductions.
 4. Stamatatos et al. (2000) recommend at least 10 texts per category and an average text 
length no shorter than 1,000 words.
 5. See Sebastiani (2002) for an overview of feature selection techniques in text categoriza-
tion.
 6. Based on literature reporting feature selection experiments in ML (e.g., Mladenic, 
1998; Sebastiani, 2002), from different possible options – maximum values, information gain, 
and odds ratios – we chose the latter because it was found to result in the highest classification 
accuracy.
 7. In text categorization, term frequency times the inverse document frequency (tf.idf) is 
used to measure the importance of a term in a document.
 8. LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used to construct the move 
and step classifiers.
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Appendix A
Excerpt from an annotated text in Applied Linguistics.

Appendix B
RA Introduction sub-corpus used for training


