
Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 42

http://www.isedj.org; http://iscap.info

Developing an Approach to Harvesting, Cleaning,

and Analyzing Data from Twitter Using R

Stephen Hill
hills@uncw.edu

Information Systems and Operations Management

University of North Carolina Wilmington
Wilmington, NC 28403 USA

Rebecca Scott

rebecca.a.scott@ttu.edu
Marketing and Supply Chain

Texas Tech University
Lubbock, TX 79409

Abstract

Using data from social media can be of great value to businesses and other interested parties. However,

harvesting data from social media networks such as Twitter, cleaning the data, and analyzing the data
can be difficult. In this article, a step-by-step approach to obtaining data via the Twitter application
program interface (API) is described. Cleaning of the data and basic sentiment analysis are also
described.

Keywords: Analytics, Social Media, Text Mining, Data Cleaning, Classification

1. INTRODUCTION

Social media has become nearly ubiquitous in
modern society with users interacting with friends
and celebrities, posting photos of their children,

and sharing their opinions on a variety of topics.
The ubiquity of social media has driven the rapid
growth of social media networks. For example,
two of the predominant social media networks in
the United States, Facebook and Twitter, have
grown steadily since their founding. Facebook
reported over one billion daily active users in

early 2016 (Company Info, n.d.) and Twitter
reported over 300 million monthly active users
(Company, n.d.). The sheer size of these
networks and the information that their users are

willing to share present rich opportunities for
businesses to market to existing and potential
customers and to accrue valuable customer

information. In this article, the authors focus on
harvesting tweets and related data from the
Twitter social media network. The process for
cleaning and preparing this data and approaches
to basic analysis of the data are described.

Twitter provides developers access to their
network via its application program interface

(API). Accessing, harvesting, and analyzing social

media data via Twitter’s API is not a new
phenomenon. Doing these tasks in R, a popular
open-source statistical programming software
package, is also not new. However, providing a

single reference via which an interested data
analyst can be guided, in a step-by-step manner,
through the process of Twitter data harvesting,
cleaning, and analysis is valuable. This article
attempts to present such a reference. The closest
such reference is from Dannemann and Heimann
(2014), but this reference has proven to be

outdated, particularly in its description of access
to the Twitter API. Other relevant examples
include Breen (2011), Bryl (2014), and de Vries
(2016). However, these examples either rely on

out-of-date approaches to access the Twitter API
or are incomplete in that they provide very limited
examples of analysis.

2. COLLECTING TWITTER DATA

To retrieve data from Twitter a user must first
gain access to the Twitter API. Access to the API
will allow the user to collect archived tweets

(limited to approximately seven to nine days of
historical tweets, subject to API rate limits) or

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 43

http://www.isedj.org; http://iscap.info

real-time tweets (subject to API rate limits).

Twitter may change the process by which users
are granted access to the API. The authors have
verified that the process described in this article

is valid as of late May 2016.

Accessing the Twitter API
In order to gain access to the Twitter API to
collect data a user must first sign up for Twitter
(Free, https://twitter.com/signup). A Twitter user
can then register as a Twitter developer (Free,

https://dev.twitter.com/). Twitter developer
registration is a one-time task and does not need
to be repeated. Once registered as a developer,
the user should then create a Twitter application
at https://apps.twitter.com/. Select “Create New
App”. The user will then be prompted to “Create

an application”.

Figure 1: Twitter Application Information
Screenshot

Enter the requested information. Note that it is

acceptable to use a placeholder URL for the
requested Website. Agree to the Developer
Agreement, and a Twitter application has been

developed. The user can then access their
application by clicking on the application name.
Figure 1 shows the application information for a
sample application developed by this article’s

authors. Personally identifying and other
confident information has been redacted from
Figure 1.

To use the newly created application to access the
Twitter API and collect tweets data, the user

should now open R. For this article, the authors

used R version 3.3 (R Development Core Team,
2016) and RStudio version 0.99.902 (RStudio
Team, 2016). If the user does not have R and/or

RStudio, they may be obtained from
https://www.r-project.org/ and
https://www.rstudio.com/products/rstudio/down
load/, respectively. Note that both software
packages are available at no cost and in versions
for Windows, Mac OS X, and Linux. When
installing these software packages, be sure to

install R first before installing RStudio. RStudio is
optional but provides a useful development
environment for R.

Several R packages are needed for this project.
See Table 1 below for a listing of the required

packages. Each package should be installed via
the R install.packages command if not done
previously. The packages should then be loaded
via the R library command.

Package

caret RJSONIO

caTools ROAuth

dplyr rpart

e1071 rpart.plot

ggplot2 SnowballC

httr streamR

plyr stringr

qdap tm

rattle twitteR

RColorBrewer wordcloud

RCurl

Table 1: Necessary R Packages

Appendix 1 contains the R script that is used to
access the Twitter API. Each line in the script is
numbered to enable easier referencing in the
article. Line numbers should be removed when
the script is used in R. Also, R’s commenting sign,
“#”, is used to denote comments in the script.

To connect to the API, the user must first obtain
the appropriate certificates for interaction with
Twitter’s servers. This is accomplished by line (1).
Lines (2) to (4) are then used to prepare for
Twitter API access authorization.

Next, the user should assign their Consumer Key
and Consumer Secret to appropriately named R
objects (Lines (5) and (6)). The user can obtain
their Key and Secret from the “manage keys and

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 44

http://www.isedj.org; http://iscap.info

access tokens” link on the Twitter Application

information screen (see Figure 1). Note that the
article authors’ Key and Secret have been
replaced by X’s in the sample lines of code. The

user should replace the X’s with their own Key
and Secret. Lines (7) and (8) are then used to
establish the connection to the Twitter API.

The Twitter application access token and secret
are then assigned to appropriately named R
objects. As before, the author’s token and secret

have been replaced by X’s. The user should
replace the X’s with their own token and secret
values.

The Twitter API access authorization can be saved
to a .Rdata file by line (11). The user can then, in

the future, load the authorization via line (12) and
gain reauthorization to access the API via line
(13). If this is done, there is no need to run lines
(1) to (11) for future instances of data harvesting.
At this point, the user has gained access to the
Twitter API and is ready to harvest data.

Collecting Archived Twitter Data
The searchTwitter function as shown in Line (14)
was run on May 26th, 2016 to collect up to 25,000
tweets featuring the hashtag “#Warriors” and no
older than May 19th, 2016. This code returned
25,000 tweets with the oldest tweet from May
23rd, 2016. The searchTwitter function can be

used to gather tweets for a set of search terms
(with terms separated by “+”) and/or by

geocoded location. A geocoded location is
provided as a point specified by latitude and
longitude and a radius (in miles or kilometers)
from that point. For example, line (15) shows the

same search as in line (14), but modified to only
collect tweets generated within 50 miles of San
Francisco, California.

Collecting Real-Time Twitter Data
The filterStream command that is part of the
streamR package is used to collect real-time

Twitter data (Barbera, 2016). The authors used
the filterStream command to collect 30 minutes
of tweets generated during the March 10th, 2016
Republican Presidential debate. A total of 79,456

tweets were collected. Line (16) shows the R code
used to collect the tweets. The “timeout = 1800”
portion of the code specifies the duration (in

seconds) during which tweets should be collected.

3. PREPARING TWITTER DATA FOR
ANALYSIS

Once tweet data has been harvested from

Twitter, it must then be prepared for analysis.
Before preparing the data it is prudent to save an

archive of the raw data from Twitter. This is done

via lines (17) and (18). Then, to enable easier
re-use of the preparation and analysis R code, the
tweets data is given a generic name of

“some_tweets” in line (19). The tweet text is then
isolated from the remainder of the tweet data and
stored as “some_txt” via line (20).

Lines (21) through (27) prepare the text data by
removing any “RT” and “@” portions for
retweeted text, the “@” for tweets directed at a

user , punctuation marks, numbers, web links,
extra spaces, and non-graphical characters.
These changes are done via R’s gsub function and
regular expressions (regex). Lines (28) through
(30) convert all text to lower case. A function in
line (29) from Sanchez (2012) is used to prevent

R’s tolower() function from producing errors that
prevent the upper to lower case conversion from
taking place. Lines (31) and (32) then remove the
originally searched for term “gopdebate” from the
text and also removes a related Twitter hashtag.
Other frequently appearing, but uninformative
text can be removed in a similar manner if

desired. The table in Appendix 3 shows how a
particular tweet is modified by the procedures in
lines (21) to (32).

The text is then converted into a corpus (body of
text) by line (33). The tm package is then used in
line (34) to remove common words, known as

stop words, which often have little analytical
value. Examples of English stop words include

“a”, “is”, and “the”. With text data that is now
cleaned, the user can proceed to analysis of the
data.

4. BASIC ANALYSIS OF TWITTER DATA

There are a variety of possible avenues for the
analysis of Twitter data. In this section, a few
basic approaches to analysis are presented. The
first approach is a simple word cloud via the
wordcloud R package. Line (36) shows the R code

used to develop the word cloud shown in Figure
2. Note that the wordcloud function requires that
a corpus be passed to it. Word clouds are often
used to provide an appealing visualization of the

frequency and importance of words that appear
in a body of text (Heimerl, Lohmann, Lange, &
Ertl, 2014). Lines (37) then converts the corpus

to a data frame object. Line (38) assigns the
cleaned (but not yet stemmed) text to a variable
in the some_tweets data frame. This is done to
facilitate analysis.

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 45

http://www.isedj.org; http://iscap.info

Figure 2: Republican Presidential Debate
Twitter Wordcloud

A common analysis technique for text data is
sentiment analysis. A significant portion of
sentiment analysis work in the academic focuses
on capturing the polarity (e.g., positive, neutral,
or negative) of a text author’s feelings, emotions,
or thoughts (Pang and Lee, 2008). A simple way
to conduct sentiment analysis is to consider each

text document (each tweet in the case of this
article) as a “bag of words” (Salton and McGill,
1986). Each word in the document is then
matched against a dictionary of words that have

been classified as either positive or negative.
Positive words are assigned a sentiment of +1,

negative words are assigned a sentiment of -1,
and unmatched words are assigned a sentiment
of 0. The sentiment of the document is then the
sum of the sentiment of each word in the
document. In this article, dictionaries of positive
and negative sentiment words from Hu and Liu
(2004) are used. Lines (39) and (40) read in

these dictionaries.

A custom function from Bryl (2014) is used to
score the sentiment of each tweet. Before using
this function, lines (41) and (42) should be run to
appropriately format the data for use in the
function. The custom function is shown in line

(43). The user may wish to save this function as
a separate .R file and then source this file as
needed (see line (44)). The sentiment scores are
generated by line (45) and are then copied to the
some_tweets data frame by line (46). The data
frame is saved (as a CSV file) for backup purposes

by line (47). The user can then analyze the
sentiment scores. For example, line (48) shows
the R code used to develop the histogram of tweet
sentiment scores shown in Figure 3. Sentiment

scores can be categorized as Negative, Positive,

or Neutral by lines (49) to (51).

Figure 3: Republican Presidential Debate
Twitter Sentiment Histogram

The final data manipulation that is described in

this article is stemming. Lines (52) and (53) are
used to stem the tweets. Stemming is used to
reduce a word down to its root. Doing so reduces
the number of unique terms (i.e., words) that are
considered during analysis (Meyer, Hornik, &
Feinerer, 2008). For example, the word “applied”,

when stemmed, becomes “appli”. After stemming

the tweet that was shown in the table in Appendix
3, becomes “anoth tonight”.

Once stemming is complete, the frequencies of
terms (words) in the text corpus is examined by
line (54). If the user wishes to see terms that
appear frequently, line (55) can be used. In this

example, terms that appear 20 or more times
across all of the tweets in the corpus are shown.
Line (56) is used to eliminate terms from the
corpus that appear infrequently. Setting the
numerical value in this line to a number closer to
1 will result in more terms being retained. Smaller

values will result in fewer terms being retained.
Line (57) will display the number of terms

remaining. In this example, 296 unique terms
were retained. Lines (58) and (59) convert the
remaining terms into a data frame and give each
column in the data frame a name that
corresponds to the terms. Line (60) transfers the

sentiment score categories to the data frame
created in lines (58) and (59).

The user can now consider a variety of analytics
techniques with an objective to determine what

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 46

http://www.isedj.org; http://iscap.info

terms that appear in a tweet are most predictive

of whether or not the tweet is classified as
“Negative” or “Not Negative”. In this article, a
classification tree is used. Classification trees rely

on recursive portioning to predict the
classification of entities in a dataset (Breiman,
Friedman, Stone, & Olshen, 1984). In this article,
a classification tree will be constructed that
predicts whether a tweet is “Negative” or “Not
Negative”.

Before constructing the tree, the dataset is split.
Lines (61) through (63) are used to split the data
into a training set comprised of 70% of the data
and a testing set with the remaining 30% of the
data. The training set is then used for predictive
model building while the testing set is set aside

for evaluation of model quality. The splitting is
performed via the sample.split function from the
caret package.

The rpart package is then used to develop the
classification tree. Line (64) generates the tree
and line (65) displays the tree. The resulting

classification tree is shown in Appendix 5. The
tree classifies a tweet as either “Negative” (total
sentiment less than zero) or “Not Negative” (total
sentiment of zero or greater). To classify a tweet
as negative or not negative, the user of the tree
examines the tweet and begins at the top of the
tree with the statement “disast >= 0.5”. This

statement is True (follow the Yes branch of the
tree) if the tweet contains at least one word with

the root “disast”. For example, if the tweet
contains the word “disaster”, the user would
follow the Yes branch of the tree and classify the
tweet as “Negative”. If the tweet does not contain

a word with the root “disast” then the No branch
is followed. This process is repeated until the
tweet is classified.

Line (66) uses the classification tree to predict the
classification of tweets in the testing dataset. Of
the 23,836 tweets in the testing portion of the

dataset, 20,311 were correctly classified by the
tree and 3,525 were incorrectly classified. This
gives the tree an out-of-sample accuracy of
85.2%. This accuracy compares favorably to a

naïve (no information) accuracy of 81.0%. The
accuracy calculations are performed in line (67)
by the confusionMatrix function from the caret

package.

5. CONCLUSIONS AND OPPORTUNITIES
FOR FUTURE WORK

This article provides a convenient and easy to

follow step-by-step approach to harvesting,

cleaning, and analyzing data from Twitter. The

approach accesses the Twitter API via the R
statistical programming software. Archived
tweets or streaming, real-time tweets are then

collected. The tweets data is then cleaned and
prepared for analysis. The article closes with a
brief description of basic sentiment analysis of the
data.

The step-by-step approach provided in this article
is valuable to businesses and other interested

parties. Analyzing social media, such as Twitter,
allows businesses to evaluate customer
impressions of their goods and services. This in
turn can allow organizations to use social media
as an effective customer service tool.

There are a variety of options available for this
work to be expanded. For example, tweets could
be collected that relate to a particular event (e.g.,
the Super Bowl, elections, etc.) and sentiment
regarding these events could then be analyzed.
Any number of text mining techniques and other
analytical techniques for classification could also

be applied.

6. REFERENCES

Barbera, P. (2016). Introducing the streamR

package. Pablobarbera.com. Retrieved 30
May 2016, from

http://pablobarbera.com/blog/archives/1.ht
ml.

Breen, J. (2011). Mining Twitter for Airline

Consumer Sentiment. Inside-r.org. Retrieved
30 May 2016, from http://www.inside-

r.org/howto/mining-twitter-airline-
consumer-sentiment.

Breiman, L., Friedman, J., Stone, C. J., & Olshen,

R. A. (1984). Classification and regression
trees. CRC Press.

Bryl, S. (2014). Twitter sentiment analysis with
R. AnalyzeCore.com. Retrieved 30 May 2016,
from
http://analyzecore.com/2014/04/28/twitter-

sentiment-analysis/.

Company Info. (n.d.). Retrieved May 31, 2016,

from http://newsroom.fb.com/company-
info/.

Company. (n.d.). Retrieved May 31, 2016, from

https://about.twitter.com/company.

Danneman, N., & Heimann, R. (2014). Social
media mining with R. Packt Publishing Ltd.

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 47

http://www.isedj.org; http://iscap.info

de Vries, A. (2016). Text Analysis 101: Sentiment
Analysis in Tableau & R. The Information Lab.
Retrieved 30 May 2016, from

http://www.theinformationlab.co.uk/2016/0
3/02/text-analysis-101-sentiment-analysis-
in-tableau-r/.

Heimerl, F., Lohmann, S., Lange, S., & Ertl, T.

(2014). Word cloud explorer: Text analytics
based on word clouds. In System Sciences

(HICSS), 2014 47th Hawaii International
Conference on (pp. 1833-1842). IEEE.

Hu, M., & Liu, B. (2004). Mining and summarizing

customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on

Knowledge discovery and data mining (pp.
168-177). ACM.

Meyer, D., Hornik, K., & Feinerer, I. (2008). Text

mining infrastructure in R. Journal of
statistical software, 25(5), 1-54.

Pang, B., & Lee, L. (2008). Opinion mining and

sentiment analysis. Foundations and trends in
information retrieval, 2(1-2), 1-135.

R Development Core Team. (2014). R: A
Language and Environment for Statistical
Computing (Version 3.3) [Software]. Vienna,
Austria: R Foundation for Statistical
Computing. Available from http://www.R-
project.org.

RStudio Team (2016). RStudio: Integrated
Development for R (Version 0.99.902)
[Software]. Boston: RStudio Inc.. Available
from http://www.rstudio.com.

Salton, G. & McGill, M., editors (1983).

Introduction to Modern Information Retrieval.
McGraw-Hill.

Sanchez, G. (2012). Catching errors when using

tolower. Gastonsanchez.com. Retrieved 30
May 2016, from
http://gastonsanchez.com/how-

to/2012/05/29/Catching-errors-when-using-
tolower/.

Editor’s Note:

This paper was selected for inclusion in the journal as an EDSIGCon 2016 Meritorious Paper. The

acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2016.

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 48

http://www.isedj.org; http://iscap.info

Appendix 1 (Twitter API Access R Script)

The R script below is used to gain access to the Twitter API. The user must register as a Twitter
develop and create a Twitter “application” before executing this code. Comments are embedded in the

script and are indicated by R’s commenting sign #. Each line in the script is numbered to enable easier
referencing in the article. The line numbers should be excluded when the script is input in R.

(1) download.file(url='http://curl.haxx.se/ca/cacert.pem', destfile='cacert.pem')
(2) reqURL <- 'https://api.twitter.com/oauth/request_token'
(3) accessURL <- 'https://api.twitter.com/oauth/access_token'
(4) authURL <- 'https://api.twitter.com/oauth/authorize'

(5) consumerKey <- ' XXXX ' #Replace X’s with your Consumer Key
(6) consumerSecret <- 'XXXX' #Replace X’s with your Consumer Secret
(7) Cred <- OAuthFactory$new(consumerKey=consumerKey,
 consumerSecret=consumerSecret,
 requestURL=reqURL,
 accessURL=accessURL,

 authURL=authURL)
(8) Cred$handshake(cainfo = system.file('CurlSSL', 'cacert.pem', package = 'RCurl'))
(9) access_token = 'XXXX' #Replace the X’s with your Access Token
(10) access_secret= 'XXXX' #Replace the X’s with your Access Token
(11) save(Cred, file='twitter authentication.Rdata')
(12) load('twitter authentication.Rdata')
(13) setup_twitter_oauth(consumerKey,consumerSecret,access_token,access_secret)

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 49

http://www.isedj.org; http://iscap.info

Appendix 2 (Twitter Archived and Streaming Tweets Collection Examples)

The R script below is used harvest tweets. Line (14) is used for archived tweets and line (15) is used
for real-time, streaming tweets. As in the other appendices, comments are embedded in the script and

are indicated by R’s commenting sign #. Each line in the script is numbered to enable easier
referencing in the article. The line numbers should be excluded when the script is input in R.

(14) tweets = searchTwitter("#Warriors",n=25000, retryOnRateLimit=120, lang="en",

since="2016-05-15", resultType="recent")
(15) tweets = searchTwitter("#Warriors",n=25000, retryOnRateLimit=120, lang="en",

geocode="37.7749,-122.4194,50 mi", since="2016-05-19", resultType="recent")

(16) filterStream(file.name = "tweetsGOP.json",
track = c("GOPDebate", "gopdebate", "GOPdebate"), language = "en",
timeout = 1800, oauth = Cred)

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 50

http://www.isedj.org; http://iscap.info

Appendix 3 (Twitter Data Cleaning and Preparation for Analysis)

The R script below is used to perform cleaning of the tweets data. As in the other appendices,
comments are embedded in the script and are indicated by R’s commenting sign #. Each line in the

script is numbered to enable easier referencing in the article. The line numbers should be excluded
when the script is input in R.

(17) tweet_archive = do.call("rbind", lapply(tweets, as.data.frame))

#OR for streaming tweets
tweets_archive <- parseTweets("tweetsGOP.json", simplify = FALSE)

(18) write.csv(tweet_archive,file="tweets.csv")

(19) some_tweets = tweets_archive
(20) some_txt = sapply(some_tweets, function(x) x$getText())
(21) some_txt = gsub("(RT|via)((?:\\b\\W*@\\w+)+)", "", some_txt)
(22) some_txt = gsub("@\\w+", "", some_txt)
(23) some_txt = gsub("[[:punct:]]", "", some_txt)
(24) some_txt = gsub("[[:digit:]]", "", some_txt)

(25) some_txt = gsub("http\\w+", "", some_txt)
(26) some_txt = gsub("^\\s+|\\s+$", "", some_txt)
(27) some_txt = gsub("[^[:graph:]]", " ", some_txt)
(28) try.error = function(x)
(29) {
 y = NA
 try_error = tryCatch(tolower(x), error=function(e) e)

 if (!inherits(try_error, "error"))
 y = tolower(x)
 return(y)

}
(30) some_txt = sapply(some_txt, try.error)
(31) some_txt = gsub("gopdebate", "", some_txt)
(32) some_txt = gsub("cnndebate", "", some_txt)

(33) corpus = Corpus(VectorSource(some_txt))
(34) corpus = tm_map(corpus, removeWords, stopwords("english"))

(35) corpus = tm_map(corpus,PlainTextDocument)

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 51

http://www.isedj.org; http://iscap.info

Action Tweet Text

Original Tweet Another #GOPDebate tonight. https://t.co/TIEy5DwSzo

Punctuation Removed Another GOPDebate tonight httpstcoTIEy5DwSzo

Numbers Removed Another GOPDebate tonight httpstcoTIEyDwSzo"

Removed Web Links Another GOPDebate tonight

Converted Text to Lower Case another gopdebate tonight

Removed Specific Hashtags another tonight

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 52

http://www.isedj.org; http://iscap.info

Appendix 4 (Basic Twitter Data Analysis)

The R script below is used to perform basic analysis of the tweets. As in the other appendices,
comments are embedded in the script and are indicated by R’s commenting sign #. Each line in the

script is numbered to enable easier referencing in the article. The line numbers should be excluded
when the script is input in R.

(36) wordcloud(corpus, scale=c(5,0.5), max.words=100,
 random.order=FALSE, rot.per=0.35,
 use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))
(37) corpus_df = as.data.frame(corpus)

(38) some_tweets$unstem = corpus_df$text
(39) pos <- scan('C:/XXXX/positive-words.txt', what='character', comment.char=';') #Replace the

X’s with the correct path to this file
(40) neg <- scan('C:/XXXX/negative-words.txt', what='character', comment.char=';') #Replace the

X’s with the correct path to this file
(41) Dataset <- some_tweets$unstem

(42) Dataset <- as.factor(Dataset)
(43) score.sentiment <- function(sentences, pos.words, neg.words, .progress='none')

{
 require(plyr)
 require(stringr)
 scores <- laply(sentences, function(sentence, pos.words, neg.words){
 sentence <- gsub('[[:punct:]]', "", sentence)

 sentence <- gsub('[[:cntrl:]]', "", sentence)
 sentence <- gsub('\\d+', "", sentence)
 sentence <- tolower(sentence)
 word.list <- str_split(sentence, '\\s+')
 words <- unlist(word.list)
 pos.matches <- match(words, pos.words)
 neg.matches <- match(words, neg.words)

 pos.matches <- !is.na(pos.matches)
 neg.matches <- !is.na(neg.matches)

 score <- sum(pos.matches) - sum(neg.matches)
 return(score)
 }, pos.words, neg.words, .progress=.progress)
 scores.df <- data.frame(score=scores, text=sentences)

 return(scores.df)
}

(44) source("scoresent.R")
(45) scores <- score.sentiment(Dataset, pos.words, neg.words, .progress='text')

(46) some_tweets$scores = scores$score
(47) write.csv(some_tweets, file="tweetsandscores.csv", row.names=TRUE)

(48) ggplot(some_tweets,aes(x=scores)) + geom_histogram(bins=27) + theme_bw()
(49) some_tweets$scorescat[some_tweets$scores < 0] <- "Negative"
(50) some_tweets$scorescat[some_tweets$scores >= 0] <- "Not Negative"
(51) some_tweets$scorescat = as.factor(some_tweets$scorescat)

(52) corpus = tm_map(corpus, stemDocument, language = "english")
(53) corpus = tm_map(corpus,PlainTextDocument)
(54) frequencies = DocumentTermMatrix(corpus)

(55) findFreqTerms(frequencies, lowfreq=20)
(56) sparse = removeSparseTerms(frequencies, 0.995)
(57) sparse
(58) tweetsSparse = as.data.frame(as.matrix(sparse))
(59) colnames(tweetsSparse) = make.names(colnames(tweetsSparse))
(60) tweetsSparse$scorescat = some_tweets$scorescat

(61) split = sample.split(tweetsSparse$scorescat, SplitRatio = 0.7)
(62) train = subset(tweetsSparse, split==TRUE)

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 53

http://www.isedj.org; http://iscap.info

(63) test = subset(tweetsSparse, split==FALSE)

(64) tweetTREE = rpart(scorescat ~ ., data=train, method="class")
(65) prp(tweetTREE)
(66) predictTREE = predict(tweetTREE, newdata=test, type="class")

(67) confusionMatrix(predictTREE,test$scorescat)

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 15 (3)
ISSN: 1545-679X May 2017
__

©2017 ISCAP (Information Systems and Computing Academic Professionals) Page 54

http://www.isedj.org; http://iscap.info

Appendix 5 (Classification Tree)

http://www.isedj.org/

