
Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org /www.isedj.org

Computer Security Primer: Systems Architecture,

Special Ontology and Cloud Virtual Machines

Leslie J. Waguespack.
lwaguespack@bentley.edu

Computer Information Systems Department

Bentley University
Waltham, Massachusetts 02452, USA

Abstract

With the increasing proliferation of multitasking and Internet-connected devices, security has

reemerged as a fundamental design concern in information systems. The shift of IS curricula toward a
largely organizational perspective of security leaves little room for focus on its foundation in systems
architecture, the computational underpinnings of processes and protection. Yet these architectural
features are the foundation of systems security for all the layers above that they enable. They are
also the prototypical mechanisms of protection that must be modeled throughout systems design to
realize system security: confidentiality, integrity and availability. This paper presents a learning unit
that proposes a special ontology of computer system architecture to explain computer security on the

host-level and by extension the emerging standard security architecture of the cloud, the virtual
machine. The ontology appears as a prose tutorial, a set theoretic model, and a two-page study

reference that facilitates a security discussion ranging from host architecture to web-services. This
treatment is a concise, self-contained module for standalone use or embedded in a systems course
(analysis, modeling, design, database or systems architecture) where complete operating system or
computer organization coverage may not be feasible.

Keywords: computer security, computer protection, special ontology of systems architecture, virtual
machine, IS pedagogy

1. INTRODUCTION

The proliferation of multitasking personal

devices and Internet-connected users thrusts
security into the forefront of information system
design considerations. Even casual computer
users are beset with security concerns and must
rely on the device and network designer for

protection from violations of confidentiality,
integrity or availability. Coincidentally, the shift

of IS curricula toward a broader, organizational
perspective on security leaves little room in
curricula for a focus on the computational
underpinnings of processes and protection that
are the foundation of computer system security.
(Topi, Valacich, Wright, Kaiser, Nunamaker,
Sipior & de Vreede, 2010) These architectural

features not only form the basis of systems

security for all the system layers above them
that they enable but, they also represent

prototypical mechanisms of protection in
organizational systems security. This computer
security primer that follows offers an option to
fill a curricular gap.

The primer begins with an abbreviated literature

survey of the theory, policy and application of
computer security as a context and a reading list

for students who may wish to delve much
deeper. Then follows the special ontology of
systems architecture, a framework for explaining
the role of protection in host computer security.
That framework includes the protection provided
by virtual machine architecture, the primary
design platform for security in cloud computing.

Finally there are some brief thoughts on

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org /www.isedj.org

applying the security primer as a learning unit in
undergraduate curricula. The primer is a concise
self-contained module suitable for use
standalone or embedded in a systems course

(analysis, modeling, design, database or
systems architecture). Appendices provide a
set-theoretic representation of the ontology and
a two-page reference handout as a study guide.

2. WHAT IS COMPUTER SECURITY?

The model posed in (McCumber, 1991) has
stood the test of time as the de facto definition

for computer security (See Figure 1).

Figure 1 – IS Security Model: McCumber

Confidentiality, integrity, and availability express
the trinity of properties that underpin virtually all
the literature on computer security (Landwehr,
2001). The term computer security ranges over

a large expanse of stakeholders, disciplines and
theory often mediated by a particular
stakeholder perspective. Those perspectives
have shaped the security literature and settled
into a layered decomposition of topics as
indicated in (Bishop, 2003, p. 22). (See Figure
2)

Figure 2 – Hierarchic Model of Security

Much of the early attention to computer security
focused on supporting governmental and
military requirements for control of information.

The seminal work casting security control in the
formal, mathematical paradigm is (Bell &
LaPadula, 1973). This multi-layered, military

security policy addressing a four-tiered
classification scheme (i.e. unclassified,
confidential, secret, and top secret) received
extensive research attention over decades

focusing primarily on protecting confidentiality,
the non-disclosure of sensitive information
(Denning, 1976, McLean, 1985). Non-military or
commercial asset concerns lean more toward
integrity (the protection of information from loss
or corruption). (Lipner, 1982) Denial-of-service
(DoS) attacks exemplify attempts to

compromise the availability property of security
(Wikipedia, 2013). Information security is
affected by social-economic factors that extend
beyond the business stakeholders who directly

interact with information systems. These
indirect factors shape the motivations and often

the response affecting security threats and
influencing policy. In many instances socio-
engineering efforts are preferable to expanded
protection mechanisms. (Anderson, 2001)

Security modeling efforts reflect the desire to
integrate security into design. (Basin, Doser &
Lodderstaedt, 2006, Best, Jürjens & Nuseibeh,

2007) International standards for best practice
in information security management emanate
from ISO/IEC (the International Organisation for
Standardization/the International
Electrotechnical Commission. (ISO/IEC 27000,
2012)

3. A SPECIAL ONTOLOGY OF COMPUTER

SYSTEMS ARCHITECTURE

The computer and information sciences adopt
special ontologies to identify a domain of
interest within which the elements of relevance
may be defined and their relationships explored
to demonstrate concepts or theories. The special

ontology proposed herein is consistent with the
practice in computer science and information
science categorizing a domain of concepts (i.e.
individuals, attributes, relationships and
classes). (See Figure 3 below.) The ontology
abstracts the elements of systems architecture
pertinent to computer security at the design,

implementation, and operations / maintenance
layers of the security life cycle. This abstraction
focuses on the security properties and
relationships that are often obscured by
idiosyncratic processor or process architecture
implementations. (A somewhat more formal
and concise exposition of the special ontology in

its set theoretic form may be found in Appendix
A.) (Waguespack, 1975, 1985)

ANNEX TO NSTISSI No. 4011

INFORMATION SYSTEMS SECURITY: A COMPREHENSIVE MODEL

EDUCATION, TRAINING, AND AWARENESS

The final layer of our third dimension is that of education, training, and awareness. As you will see, were the

model laid on its back like a box, the whole model would rest on this layer. This phenomenon is intentional.

Education, training, and awareness may be our most prominent security measures, for only by understanding

the threats and vulnerabilities associated with our proliferating use of automated information systems can we

begin to attempt to deal effectively with other control measures.

Technology and policy must rely heavily on education, training, and awareness from numerous perspectives.

Our upcoming engineers and scientists must understand the principles of information security if we expect

them to consider the protection of information in the systems they design. Currently, nearly all university

graduates in computer science have no formal introduction to information security as part of their education

[HIG89].

Those who are responsible for promulgating policy and regulatory guidance must place bounds on the

dissemination of information. They must ensure information resources are distributed selectively and securely.

The issue is ultimately one of awareness. Ultimate responsibility for its protection rests with those individuals

and groups that create and use this information; those who use it to make critical decisions must rely on its

confidentiality, integrity, and availability. Education, training and awareness promises to be the most effective

security measure in the near term.

Which information requires protection is often debated in government circles. One historic problem is the clash

of society’s right to know and an individual’s right to privacy. It’s important to realize that these are not bipolar

concepts. There is a long continuum that runs between the beliefs that information is a free flowing exchange of

knowledge and that it is intelligence that must be kept secret. From a governmental or business perspective, it

must be assumed that all information is intelligence. The question is not should information be protected, but

how do we intend to protect the confidentiality, integrity, and availability of it within legal and moral

constraints?

THE MODEL

OVERVIEW

The completed model is depicted below. There are nine distinct boxes, each three layers deep. All aspects of

information systems security can be viewed within the framework of the model. For example, we may cite a

cryptographic module as technology that protects information in its transmission state. What many information

system developers fail to appreciate is that for every technology control there is a policy (sometimes referred to

as doctrine) that dictates the constraints on the application of that technology. It may also specify parameters

that delimit the control’s use and may even cite degrees of effectiveness for different applications. Doctrine

(policy) is an integral yet distinct aspect of the technology. The third layer--education, training, and awareness

then functions as a catalyst for proper application and use of the technology based on the policy (practice)

application.

Not every security measure begins with a specific technology. A simple policy or practice often goes a long way

in the protection of information assets. This policy or practice is then effected by communicating it to employees

through the education, training and awareness level alone. This last layer is ultimately involved in all aspects of

the information systems security model. The model helps us understand the comprehensive nature of

information security.

threats

policy

specification

design

implementation

operations and maintenance

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org /www.isedj.org

Figure 3 – A Special Ontology of Computer
Systems Architecture

The reader is encouraged to envision resources
at the hardware instruction set level in the
descriptions that follow. Subsequently the
exposition will expand that view to encompass
all the layers indicated in the hierarchic model of
security.

Individuals in this ontology are defined as
environment, resource, resource map, and
access mechanism. The environment is the
union set of all other elements in a system and
in fact defines the universe of interest and

discourse as conceived by the stakeholders of
the system. Resources encompass all the

“namable” elements in the environment and
thus are uniquely distinguishable, the property
of identity. Two subsets of resources define the
range and function of resource manipulation:
1) a resource map that delineates a resource
subset called an access scope, and 2) an access
mechanism that activates access to resources in

an access scope.

Attributes characterize the individuals in the
ontology. Storage resources exhibit the
attribute of remembrance, the capacity to retain
state information in the environment.
Transformational resources exhibit the attribute

of behavior operating on instances of storage
resource to set, access, and/or modify state
information. (The most common form of
transformational resource is the machine
instruction that interacts with state information
sometimes accessing – sometimes modifying the
state. In this special ontology state changes

result exclusively through the behavior of
transformational resources.)

Relationships define the interaction /
interdependence of individuals in the special
ontology. The environment is the composition of
all resources. Both access mechanism(s) and

resource map(s) are instances of resource. The
relationship between a resource map and the set
of all resources is the delineation of a subset of
those resource instances, an access scope. The
relationship between two resource maps defines
an intersection of their access scopes. An
intersection that is the null set defines the

separation property of that intersection. The
application of an access mechanism to a
pertinent resource map activates an access
scope. (It may be preferable to say an access

mechanism actuates an access scope since
resource behavior may be more naturally

understood as animation or activity.)

An access scope may include instructions
(transformational resources) and/or storage.
The quintessential example of transformational
resource activation is the application of the
mechanism of instruction execution cycle to an
access scope delineating an otherwise inanimate

collection of instruction specification fusing their
association into an executing process. Storage
resources in the access scope remember the
instructions, which one is current and the
residual state at each instruction’s completion.

A common example of storage activation is a

virtual memory mechanism. The physical

memory pages enumerated in a process’s page
table delineate its access scope of storage.
Swapping activation from one process to another
occurs by replacing the page table entries for
one process by those of another process.
(Saltzer & Schroeder 1975: p. 1286)

Classes distinguish resources whose function in
the environment engenders control. Since all
“activity” in an environment results from the
application of an access mechanism to a
resource map, those two specific resources
jointly realize the instrument of “animation,” the
progression of state changes or “execution.” Any

resource that effects the initiation, sequencing,

alteration or suspension of “animation” exhibits
the property of control. Access to a process’s
resource map denotes the opportunity of
controlling that process. Detecting attempts to
access control resources is a key to managing
computer systems security. This is the purpose

of the privilege property in designating
resources susceptible to potentially harmful
application.

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org /www.isedj.org

4. HOST PROCESS ARCHITECTURE

This section describes some common design
choices found in contemporary computer
systems. They illustrate how the special

ontology describes a specific process execution
environment. In most computing literature the
unit of animation, execution, in a computer
system is called a process and the environment
in which the process executes is called the host
computer, host machine or host (reminiscent of
calculating machines). (A generous survey of

computer architectures and their properties is
found in (Blaauw & Brooks, 1997)).

Mono-processing is the execution of only a

single process on a host. Process animation
results from the association of access
mechanism with resource map – the instruction

execution cycle, a collaboration of resources
combining state information with transformation.
The state information specific to execution is
delineated in the process status vector (psv)
that indicates residual state information: (e.g.
conditional comparison flags, error conditions,
and what the next instruction to execute should

be, etc.). Each instruction execution occurs in
the state of the machine resulting from the
previous instruction’s execution, hence a “cycle.”
The psv also delineates the subset of storage
resources accessible by the process. The psv
realizes the special ontology’s resource map

delineating both the transformational and

storage resources accessible by the process. (As
indicated in the set theoretic ontology
description in Appendix A, it is also common for
the resource map to be realized as two discrete
elements: one focusing on instruction execution
and a second mapping the accessible storage

space.) In the common case where external
resources exist (i.e. input/output devices,
networking), their design may be treated as
additional namable resources. (An example of
such a connection is the mapping of I/O
interfaces as storage locations in the DEC PDP11
UNIBUS configuration.) (Blaauw & Brooks, 1997:

p. 967)

Multiprogramming occurs in the presence of
more than a single process residing on one host.
Although there are multiple processes, there
may exist only a single instruction execution
cycle that is shared (by multiplexing) among
them. This processing protocol requires a

managing process usually called an operating
system (OS) that includes supervisory and
service components arranged as a collection of
agent processes. These agents manage the

association of the instruction execution cycle
with the various processes one at a time. (The
protocol for delegating execution among the
various processes is called process scheduling

and may be based upon various priority schemes
to manage the progress of the individual
processes respectively.) The agents may
themselves be processes – each with its own
resource map.

What distinguishes a process that is an OS is the
privilege of an access scope including any and all

host resources. Where the resource map of a
non-OS process is denoted psv for process state
vector, the resource map of an OS process is

denoted csv, control state vector. The
distinction highlights the OS as in control of the
entire host.

A control resource is one that permits a process
to assign the instruction execution cycle to a
particular process or to access/modify the
resource map of a process, including itself. The
most common mechanism for enforcing the OS’s
prerogatives (privileges) is the interrupt that
extends the behavior of the instruction execution

cycle and permits the OS to gain access to the
instruction execution cycle at will.

The normal course of the instruction execution
cycle proceeds with each succeeding instruction
determined by the current process’s psv (i.e.

the process’s execution continues without
interruption.) An interrupt mechanism is the

detection and response to a condition signaling
the need for a departure from the current
sequence of execution (suspending the current
process) and designating execution of the next
instruction in a different process (activating
another process). In a nominal OS design the

interrupt would cause the sequence of
instruction execution to transfer to an agent of
the OS called the interrupt handler. Once an
interrupt handler is activated its instructions
determine the system’s ensuing behavior. The
result is a transfer of the sequence of instruction
execution from the interrupted process to

another, a process swap.

Interrupts are designed to support a variety of
supervisory tasks. Interrupts may occur due to:
external signals (i.e. input/output connections),
execution exceptions (i.e. erroneous instruction
specifications), attempts to access resources
designated as privileged, access exceptions (i.e.

attempts to access resources not delineated in
the process’s resource map), or solely to
relinquish the instruction execution cycle. The
interrupt mechanism’s design incorporates state

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org /www.isedj.org

information (i.e. psv) to designate the precise
process swap behavior (e.g. what state
information is to be set in the suspended
process). Hence, the psv is (in itself) a control

resource. Whether or not interrupts are enabled
or suppressed in the current process and which
process is to be activated in the process swap is
indicated in the csv, hence these are controlled
by the OS.

Multiprocessing differs from the
multiprogramming protocol in that more than

one instruction execution cycle resource is
available to associate with the processes present
on the host. Multiple processes may

concurrently execute their instructions. Each
instruction execution cycle must manage a
separate interrupt protocol. Individual process

management in the presence of multiprocessing
is not significantly different from
multiprogramming unless concurrently executing
processes are allowed to communicate and/or
share resources. In which case inter-process
communication and sharing require addition
supervisory services that monitor and mediate

process interactions.

5. OS AND PROCESS SECURITY

Monoprocessing is the least complex form of
process management. It depends exclusively on
the process’s fidelity of programming to its

specifications. The primary threat is
programming error. (A monoprocessing system

often includes OS services to offload I/O or job-
scheduling tasks from individual processes. It
earns trust from the quality assurance it
receives. Regardless, any error in programming
can compromise the system.)

Multiprogramming requires an OS that shares its

attention with more than one process. Where
the OS protects itself from the user process, it
now must also protect user processes from the
misbehavior of one another. Encroachment is
the unauthorized access of one process’s
resources by another. Encroachment occurs due
to errors/malice among the cohabitant

processes.

Although the added instruction execution
capabilities in a multiprocessing environment
make resource management and coordination
among processes more complicated, the basic
principles of process closely resemble
multiprogramming.

Separation is the major protection mechanism
in a multiprogramming environment – to

prevent the undesirable behavior of one process
from causing the failure of or undue interference
with the other processes. Separation is
achieved by: 1) devising resource maps that

delineate resources according to process, and 2)
enforcing complete mediation where each access
mechanism enforces adherence to its delineated
resources by prohibiting unsanctioned access
and, usually, by raising an interrupt condition
when an attempt occurs (Bishop, 2003, p. 345).
Effective separation eliminates the risk of

encroachment.

Privilege denotes the supervisory authority of
an OS to control the resources of individual

processes. The supervisory functions of the OS
(the kernel or nucleus) exercise control over
every process in the system. Complete

mediation also controls the number of
consecutive instructions that a process may
execute (based on either a real or virtual
“clock,” as prescribed in host csv). That
prohibits any process from monopolizing the
instruction execution (e.g. the infinite loop!).
The OS kernel protects itself by managing the

csv of the host to retain control over every
process while at the same time it remains
separated from all processes on the host except
itself – a secure operating system.

6. VIRTUAL MACHINES IN THE CLOUD

The monoprocessing environment is the least
complex and therefore, the most easily quality

assured – trustworthy. That explains the
growing preference for multiprocessing virtual
machines as the security framework for cloud
computing. (Rosenblum & Garfinkel, 2005)

A virtual machine is an execution environment in
which the process that executes cannot

determine if it resides on a (physical) host
machine or is a “guest” on a simulation of that
host. Each guest process can be treated as the
sole process on that virtual machine. A layer of
supervisory software, the virtual machine
monitor (VMM), manages the execution
environment of each guest by configuring the

resource maps and the interrupt behavior of the
access mechanisms to intercept any guest
attempts to directly access control resources.
When a guest needs access to resources that
might compromise “safety,” that access must be
mediated by the VMM through a reference
monitor that simulates the process’s resource

access by virtualizing that resource while
protecting the VMM’s control of the host. These

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org /www.isedj.org

protocols rely on control and access mechanism
design. (Smith, J.E. & Nair, R., 2005)

Self-virtualizable: When a virtual machine
appears identical to its underlying host, it can

provide direct access to the exact same
instruction set and access mechanisms of that
host. We call this host architecture self-
virtualizable because it can provide a complete
replica of itself for guest process(s).
(Waguespack, 1985) A guest process may
execute at the same level of efficiency as it

would if it were the sole process on the
underlying host except for those resources that
must be virtualized to maintain the VMM’s

control.

Host hardware design decisions make
virtualization straightforward or complex.

(Garfinkel & Rosenblum, 2005) Process control
protocols prior to the advent of virtual machines
focused primarily on facilitating a host-based
OS’s capacity to maintain control. Design
decisions for processor hardware architecture
did not always support complete mediation.
When host instruction set designs include

instructions that access control resources but
are not designated as privileged they do not
raise interrupt conditions even when executed in
a process without privilege. There are two
options that support virtual machines on these
hosts. In one approach the VMM pre-scans all

the process’s instructions before execution and

replaces “unsafe” instruction sequences with
“safe” instructions – usually including
instructions that do cause interrupts to allow the
VMM to intercede and simulate the indicated
service. Alternatively, the VMM simulates all
instructions running on the virtual machine; an

approach that results in a dramatic reduction in
effective execution speed since simulation is
orders of magnitude slower than direct host
hardware execution. (Complete simulation is
the common approach used to execute Java
code. (Lindholm, Yellin, Bracha, & Buckley,
2013).)

The most efficient virtual machine realization

requires that all control resources include the
privilege property with appropriate interrupt
conditions to allow a VMM to enforce complete
mediation. Secondly all resource access
attempts that would otherwise be directed to
“hardware resources” (i.e. I/O and

communication devices) need to be intercepted
allowing the VMM to virtualize those resources
through reference monitors. This combination of
intercession provides the maximum guest

performance with the minimum of VMM
overhead.

Multiple OS’s: The earliest implementations of
VMM technology supported guest processes that

themselves were OS’s, guest OS’s. The ability
to run multiple versions of OS concurrently on
the same physical host provided flexibility and
cost savings. In the description of process
swapping and control above the key resource
designating process activation is the process
state vector. (Waguespack, 1985) The privilege

of designating which psv(s) is active determines
control over the entire environment. Each
virtual machine environment is a simulation of

the physical host and thus as these guest OS’s
manage the processes that reside on them the
OS’s believe they are controlling the host. But

their “control” is virtualized by the VMM with
virtualized csv access. The VMM manages the
VM’s as its processes retaining control over all
the physical host resources. This permits a
multi-layered arrangement of virtual machines
some supporting mono-processing, others
supporting multiprogramming OS’s and finally

some supporting replicas of the VMM itself
telescoping the illusion of host environment
layer after layer limited only by physical of
performance and resource virtualization
capabilities.

Security through virtualization: Virtual

machines provide a convenient architectural

foundation for security. Each guest process (or
virtual machine) resides in a naturally separated
execution environment. Complete mediation
through VM instruction execution and virtualized
resource access facilitates connectivity beyond
the boundaries of the virtual machine, but only

through contractually defined protocols, VMM
mediated services. (Garfinkel & Rosenblum,
2005)

Although initially virtual machines were intended
to support concurrently executing OS’s on a
single host, guest VM’s may also be VMM’s in
their own right. Such an arrangement permits a

hierarchically encapsulated progression of secure

execution environments. Virtualization enables
sharing and protection protocols administered
through complete mediation that both enables
and structures security. VM architecture is the
basis of cloud computing. VM’s make possible
the protections and scalability of system security

in the cloud. (DeKeyrel, Waldbusser & Jones,
2012)

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org /www.isedj.org

7. CONCLUSION

Security is an essential topic in IS education
today. But, finding room for it in an already
crowded curriculum is a challenge. The

“shrinking real estate” for technical content in IS
curricula will continue to require compactly
designed primers (similar to this one on
computer security structures) if our IS graduates
will have any practical grounding to discern
credible information systems capabilities and
performance potential.

This primer addresses the key architectural
security issues concisely. The primer is a useful
pedagogical foundation for computer, network

and Internet security discussions. It is suitable
for embedding in a generic systems, networking
or business process course for upper level

undergraduates or graduate IS or MBA students.
Teachers may use it as a survey, tutorial or as
an outline for a student research project. It is
appropriate for either an individual or a
comparative system security study. The special
ontology is applicable to the full range of
computing architectures from Turing and von

Neumann through the DEC, Cray, IBM, Motorola
and Intel generations – as well as architectures
of loosely coupled processors (e.g. the World
Wide Web). (Turing, 1936, Bell & Newell, 1971,
Blaauw & Brooks, 1997)

8. ACKNOWLEDGEMENTS

Thanks for helpful comments from the referees.

Special thanks are due my colleagues David
Yates and Bill Schiano at Bentley University for
their insightful discussions and comments on
these ideas. And thanks to the students who
have labored through the development of this
learning unit.

9. REFERENCES

Anderson, R. (2001), “Why Information Security
is Hard – An Economic Perspective,”
Proceedings of the 17th Computer Security
Applications Conference, pp. 358-365.

Basin, D., Doser, J. & Lodderstedt, T., (2006).
“Model Driven Security: From UML Models to

Access Control Infrastructures,” ACM
Transactions on Software Engineering and
Methodology, 15(1), pp. 39-91.

Bell, C.G., & Newell, A., (1971). Computer
Structures: Readings and Examples,
McGraw-Hill, New York, NY, pp. 92-119.

Bell, D.E., & LaPadula, L.J. (1973). “Secure
Computer Systems: Mathematical
Foundations,” Technical Report Mitre-2547,
Vol. 1, Bedford, MA, USA.

Best, B., Jürjens, J. & Nuseibeh, B. (2007).
“Model-Based Security Engineering of
Distributed Information Systems Using
UMLsec,” ICSE ’07 Proceedings, pp. 581-
590.

Bishop, M. (2003), Computer Security: Art and
Science, Addison-Wesley, Boston, USA.

Blaauw, G.A., & Brooks, F.P., Jr., (1997).
Computer Architecture: Concepts and

Evolution, Addison-Wesley, Reading, MA,
USA.

DeKeyrel, M., Waldbusser, M. & Jones, A.
(2012). “Secure virtual machine instances in

the cloud: security considerations when
provisioning in IBM SmartCloud Enterprise,
http://www.ibm.com/developerworks/cloud/l
ibrary/cl-cloudvmsecurityrisks/ (retrieved
5/23/2013).

Denning, D.E. (1976). “A Lattice Model of Secure
Information Flow,” Communications of the

ACM, 19(5), pp. 236-243.

Garfinkel T., & Rosenblum M., (2005). “When
Virtual is Harder than Real: Security
Challenges in Virtual Machine Based

Computing Environments,” 10th Workshop
on Hot Topics in Operating Systems.

ISO/IEC (2012). “ISO/IEC 27000:2012 2ed,”

ISO/IEC, Geneva, Switzerland,
www.ISO.org.

Landwehr, C.E. (2001). “Computer security,”
International Journal on Information
Security, Vol. 1, No. 1, pp. 3-13.

Lindholm, T., Yellin, F., Bracha, G., & Buckley, A.

(2013). The Java® Virtual Machine
Specification: Java SE 7 Edition,
http://docs.oracle.com/javase/specs/jvms/s
e7/html/index.html, (accessed 5-23-2013).

Lipner, S. (1982). “Non-Discretionary Controls
for Commercial Applications,” 5th Symposium
on Operating Systems Principles, pp. 192-

196.

McLean, J. (1985). “A Comment on the ‘Basic
Security Theorem’ of Bell and LaPadula,”
Information Processing Letters, 20(2), pp.
67-70.

http://www.ibm.com/developerworks/cloud/library/cl-cloudvmsecurityrisks/
http://www.ibm.com/developerworks/cloud/library/cl-cloudvmsecurityrisks/
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org /www.isedj.org

McCumber, J.R. (1991). “Information Systems
Security: A Comprehensive Model,”
Proceedings of the 14th National Computer
Security Conference (Annex to NSTISSI No.

4011).

Topi, H., Valacich, J.S., Wright, R.T., Kaiser,
K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de
Vreede, G.J. (eds.) (2010). IS2010:
Curriculum Guidelines for Undergraduate
Degree Programs in Information Systems,
Association for Computing Machinery (ACM)

& Association for Information Systems (AIS).

Rosenblum, M. & Garfinkel, T. (2005). “Virtual
Machine Monitors: Current Technology and

Future Trends,” IEEE Computer, 38(5) pp.
39-47.

Saltzer, J.H. & Schroeder, M.D., (1975). “The

Protection of Information in Computer
Systems,” Proceedings of the IEEE, 63(9)
pp. 1278-1308.

Smith, J.E. & Nair, R. (2005). “The Architecture
of Virtual Machines,” IEEE Computer, 38(5),
pp. 32-38.

Turing, A.M. (1936). “On computable numbers,

with an application to the
Entscheidungsproblem,” Proceedings of the
London Mathematical Society, Series 2, vol.
42 pp. 230-65, correction ibid. 43 (1937)
pp. 544-6.

Waguespack, L. (1975). Virtual Machine
Multiprogramming and Security, Doctoral

Dissertation, Computer Science Department,
University of Louisiana at Lafayette.

Waguespack, L. (1985). “A Structural Computer
Resource Model for Teaching Computer
Organization,” Proceedings of SIGCSE’85,
pp. 63-67.

Wikipedia (2013). “Denial of Service,”
https://en.wikipedia.org/wiki/Denial-of-
service_attack, (accessed 25 July 2013.)

Editor’s Note:

This paper was selected for inclusion in the journal as a ISECON 2013 Meritorious Paper. The
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more

peers including three or more former best papers authors who did not submit a paper in 2013.

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org /www.isedj.org

Appendix A – Set Theoretic Representation of the Special Ontology (Waguespack, 1975, 1985)

E → environment “→” reads “…is defined as…”

S → storage resources (all state information)

T → transformational resources (all computation capable of modifying the state)

E → {T, S} (all transformational and storage resources)

M → a machine, {Tm, Sm}, (i.e. M ⊆ E)

tb → the “map” delineating an access scope of transformation resources

[] → a mechanism (function) to access a resource access scope

T[]tb → a resource subset of T defined by tb (i.e. T[]tb ⊆ T)

sb → the “map” delineating an access scope of memory/storage resources

S[]sb → a partition of the resource S defined by sb (i.e. S[]sb ⊆ S)

{tb, sb} → {eb}; environment base: a composite access scope

E[]eb = {T[]tb, S[]sb} a program is a specification of transformational and storage resources

psw → the process status word of a program (process not yet initiated)

psv → the process status vector (word) as “idle” or suspended process

⧖ → the transformational resource that executes instructions in a process

⧖ (psv) → the process state word of an “active” program under execution

{T[]tb, S[]sb, psw} → an “idle” program (not yet initiated)

{T[]tb, S[]sb, psv} → an “idle” process (having been initiated but not currently active)

{T[]tb, S[]sb, ⧖ (psv)} → an “active” process currently executing

CSV → the control state vector enabling the control of a machine

Sm → all the memory/storage of M

Sm[]uj → the storage of M accessible by user j

Sm = {Sm[]csv, Sm[]u1, Sm[]u2, Sm[]u3, ... }

Sm[]csv → the storage that contains/accesses the CSV of M

Sm[]psv → the memory/storage that covers/accesses the PSV of a process

Sm[]u → {Sm[]csv ∩ Sm[]u = ∅ } the memory/storage not including the CSV of M

Tm → instruction set of M

Tm[]c → instruction set of M that can control M (also named C)

Tm[]u → { Tm - Tm[]c} (non-control) “user” instruction set of M (also named U)

E[]csv → {Sm[]csv, Tm[]c} the control state vector of E that designates “control” of E

{ E[]csv , ⧖ (csv)} → the “active” process that controls the entire environment, (e.g. VMM)

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 27

www.aitp-edsig.org /www.isedj.org

Appendix B – The Computer Security Green Card

Information Systems Education Journal (ISEDJ) 12 (2)
ISSN: 1545-679X March 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 28

www.aitp-edsig.org /www.isedj.org

