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Abstract 

With the increasing proliferation of multitasking and Internet-connected devices, security has 

reemerged as a fundamental design concern in information systems.  The shift of IS curricula toward a 
largely organizational perspective of security leaves little room for focus on its foundation in systems 
architecture, the computational underpinnings of processes and protection.  Yet these architectural 
features are the foundation of systems security for all the layers above that they enable.  They are 
also the prototypical mechanisms of protection that must be modeled throughout systems design to 
realize system security: confidentiality, integrity and availability.  This paper presents a learning unit 
that proposes a special ontology of computer system architecture to explain computer security on the 

host-level and by extension the emerging standard security architecture of the cloud, the virtual 
machine.  The ontology appears as a prose tutorial, a set theoretic model, and a two-page study 

reference that facilitates a security discussion ranging from host architecture to web-services.  This 
treatment is a concise, self-contained module for standalone use or embedded in a systems course 
(analysis, modeling, design, database or systems architecture) where complete operating system or 
computer organization coverage may not be feasible. 

Keywords: computer security, computer protection, special ontology of systems architecture, virtual 
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1. INTRODUCTION

The proliferation of multitasking personal 

devices and Internet-connected users thrusts 
security into the forefront of information system 
design considerations.  Even casual computer 
users are beset with security concerns and must 
rely on the device and network designer for 

protection from violations of confidentiality, 
integrity or availability.  Coincidentally, the shift 

of IS curricula toward a broader, organizational 
perspective on security leaves little room in 
curricula for a focus on the computational 
underpinnings of processes and protection that 
are the foundation of computer system security. 
(Topi, Valacich, Wright, Kaiser, Nunamaker, 
Sipior & de Vreede, 2010) These architectural 

features not only form the basis of systems 

security for all the system layers above them 
that they enable but, they also represent 

prototypical mechanisms of protection in 
organizational systems security.  This computer 
security primer that follows offers an option to 
fill a curricular gap.   

The primer begins with an abbreviated literature 

survey of the theory, policy and application of 
computer security as a context and a reading list 

for students who may wish to delve much 
deeper.  Then follows the special ontology of 
systems architecture, a framework for explaining 
the role of protection in host computer security. 
That framework includes the protection provided 
by virtual machine architecture, the primary 
design platform for security in cloud computing. 

Finally there are some brief thoughts on 
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applying the security primer as a learning unit in 
undergraduate curricula.  The primer is a concise 
self-contained module suitable for use 
standalone or embedded in a systems course 

(analysis, modeling, design, database or 
systems architecture).  Appendices provide a 
set-theoretic representation of the ontology and 
a two-page reference handout as a study guide. 

2. WHAT IS COMPUTER SECURITY? 

The model posed in (McCumber, 1991) has 
stood the test of time as the de facto definition 

for computer security (See Figure 1).   

 

Figure 1 – IS Security Model: McCumber 

Confidentiality, integrity, and availability express 
the trinity of properties that underpin virtually all 
the literature on computer security (Landwehr, 
2001).  The term computer security ranges over 

a large expanse of stakeholders, disciplines and 
theory often mediated by a particular 
stakeholder perspective.  Those perspectives 
have shaped the security literature and settled 
into a layered decomposition of topics as 
indicated in (Bishop, 2003, p. 22).  (See Figure 
2) 

 

Figure 2 – Hierarchic Model of Security 

Much of the early attention to computer security 
focused on supporting governmental and 
military requirements for control of information.  

The seminal work casting security control in the 
formal, mathematical paradigm is (Bell & 
LaPadula, 1973).  This multi-layered, military 

security policy addressing a four-tiered 
classification scheme (i.e. unclassified, 
confidential, secret, and top secret) received 
extensive research attention over decades 

focusing primarily on protecting confidentiality, 
the non-disclosure of sensitive information 
(Denning, 1976, McLean, 1985).  Non-military or 
commercial asset concerns lean more toward 
integrity (the protection of information from loss 
or corruption).  (Lipner, 1982) Denial-of-service 
(DoS) attacks exemplify attempts to 

compromise the availability property of security 
(Wikipedia, 2013).  Information security is 
affected by social-economic factors that extend 
beyond the business stakeholders who directly 

interact with information systems.  These 
indirect factors shape the motivations and often 

the response affecting security threats and 
influencing policy.  In many instances socio-
engineering efforts are preferable to expanded 
protection mechanisms.  (Anderson, 2001) 

Security modeling efforts reflect the desire to 
integrate security into design.  (Basin, Doser & 
Lodderstaedt, 2006, Best, Jürjens & Nuseibeh, 

2007) International standards for best practice 
in information security management emanate 
from ISO/IEC (the International Organisation for 
Standardization/the International 
Electrotechnical Commission.  (ISO/IEC 27000, 
2012) 

3. A SPECIAL ONTOLOGY OF COMPUTER 

SYSTEMS ARCHITECTURE 

The computer and information sciences adopt 
special ontologies to identify a domain of 
interest within which the elements of relevance 
may be defined and their relationships explored 
to demonstrate concepts or theories. The special 

ontology proposed herein is consistent with the 
practice in computer science and information 
science categorizing a domain of concepts (i.e. 
individuals, attributes, relationships and 
classes).  (See Figure 3 below.)  The ontology 
abstracts the elements of systems architecture 
pertinent to computer security at the design, 

implementation, and operations / maintenance 
layers of the security life cycle.  This abstraction 
focuses on the security properties and 
relationships that are often obscured by 
idiosyncratic processor or process architecture 
implementations.  (A somewhat more formal 
and concise exposition of the special ontology in 

its set theoretic form may be found in Appendix 
A.) (Waguespack, 1975, 1985) 

ANNEX TO NSTISSI No. 4011 

INFORMATION SYSTEMS SECURITY: A COMPREHENSIVE MODEL 

EDUCATION, TRAINING, AND AWARENESS 

The final layer of our third dimension is that of education, training, and awareness. As you will see, were the 

model laid on its back like a box, the whole model would rest on this layer. This phenomenon is intentional. 

Education, training, and awareness may be our most prominent security measures, for only by understanding 

the threats and vulnerabilities associated with our proliferating use of automated information systems can we 

begin to attempt to deal effectively with other control measures. 

 

Technology and policy must rely heavily on education, training, and awareness from numerous perspectives. 

Our upcoming engineers and scientists must understand the principles of information security if we expect 

them to consider the protection of information in the systems they design. Currently, nearly all university 

graduates in computer science have no formal introduction to information security as part of their education 

[HIG89]. 

 

Those who are responsible for promulgating policy and regulatory guidance must place bounds on the 

dissemination of information. They must ensure information resources are distributed selectively and securely. 

The issue is ultimately one of awareness. Ultimate responsibility for its protection rests with those individuals 

and groups that create and use this information; those who use it to make critical decisions must rely on its 

confidentiality, integrity, and availability. Education, training and awareness promises to be the most effective 

security measure in the near term. 

 

Which information requires protection is often debated in government circles. One historic problem is the clash 

of society’s right to know and an individual’s right to privacy. It’s important to realize that these are not bipolar 

concepts. There is a long continuum that runs between the beliefs that information is a free flowing exchange of 

knowledge and that it is intelligence that must be kept secret. From a governmental or business perspective, it 

must be assumed that all information is intelligence. The question is not should information be protected, but 

how do we intend to protect the confidentiality, integrity, and availability of it within legal and moral 

constraints? 

 

THE MODEL 
 

OVERVIEW 

The completed model is depicted below. There are nine distinct boxes, each three layers deep. All aspects of 

information systems security can be viewed within the framework of the model. For example, we may cite a 

cryptographic module as technology that protects information in its transmission state. What many information 

system developers fail to appreciate is that for every technology control there is a policy (sometimes referred to 

as doctrine) that dictates the constraints on the application of that technology. It may also specify parameters 

that delimit the control’s use and may even cite degrees of effectiveness for different applications. Doctrine 

(policy) is an integral yet distinct aspect of the technology. The third layer--education, training, and awareness 

then functions as a catalyst for proper application and use of the technology based on the policy (practice) 

application. 

 

Not every security measure begins with a specific technology. A simple policy or practice often goes a long way 

in the protection of information assets. This policy or practice is then effected by communicating it to employees 

through the education, training and awareness level alone. This last layer is ultimately involved in all aspects of 

the information systems security model. The model helps us understand the comprehensive nature of 

information security. 

 

 
 

threats

policy

specification

design

implementation

operations and maintenance
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Figure 3 – A Special Ontology of Computer 
Systems Architecture 

The reader is encouraged to envision resources 
at the hardware instruction set level in the 
descriptions that follow.  Subsequently the 
exposition will expand that view to encompass 
all the layers indicated in the hierarchic model of 
security. 

Individuals in this ontology are defined as 
environment, resource, resource map, and 
access mechanism.  The environment is the 
union set of all other elements in a system and 
in fact defines the universe of interest and 

discourse as conceived by the stakeholders of 
the system.  Resources encompass all the 

“namable” elements in the environment and 
thus are uniquely distinguishable, the property 
of identity.  Two subsets of resources define the 
range and function of resource manipulation: 
1) a resource map that delineates a resource 
subset called an access scope, and 2) an access 
mechanism that activates access to resources in 

an access scope. 

Attributes characterize the individuals in the 
ontology.  Storage resources exhibit the 
attribute of remembrance, the capacity to retain 
state information in the environment.  
Transformational resources exhibit the attribute 

of behavior operating on instances of storage 
resource to set, access, and/or modify state 
information.  (The most common form of 
transformational resource is the machine 
instruction that interacts with state information 
sometimes accessing – sometimes modifying the 
state.  In this special ontology state changes 

result exclusively through the behavior of 
transformational resources.) 

Relationships define the interaction / 
interdependence of individuals in the special 
ontology.  The environment is the composition of 
all resources.  Both access mechanism(s) and 

resource map(s) are instances of resource.  The 
relationship between a resource map and the set 
of all resources is the delineation of a subset of 
those resource instances, an access scope.  The 
relationship between two resource maps defines 
an intersection of their access scopes.  An 
intersection that is the null set defines the 

separation property of that intersection.  The 
application of an access mechanism to a 
pertinent resource map activates an access 
scope.  (It may be preferable to say an access 

mechanism actuates an access scope since 
resource behavior may be more naturally 

understood as animation or activity.)  

An access scope may include instructions 
(transformational resources) and/or storage.  
The quintessential example of transformational 
resource activation is the application of the 
mechanism of instruction execution cycle to an 
access scope delineating an otherwise inanimate 

collection of instruction specification fusing their 
association into an executing process.  Storage 
resources in the access scope remember the 
instructions, which one is current and the 
residual state at each instruction’s completion.   

A common example of storage activation is a 

virtual memory mechanism.  The physical 

memory pages enumerated in a process’s page 
table delineate its access scope of storage.  
Swapping activation from one process to another 
occurs by replacing the page table entries for 
one process by those of another process.  
(Saltzer & Schroeder 1975: p.  1286) 

Classes distinguish resources whose function in 
the environment engenders control.  Since all 
“activity” in an environment results from the 
application of an access mechanism to a 
resource map, those two specific resources 
jointly realize the instrument of “animation,” the 
progression of state changes or “execution.” Any 

resource that effects the initiation, sequencing, 

alteration or suspension of “animation” exhibits 
the property of control.  Access to a process’s 
resource map denotes the opportunity of 
controlling that process.  Detecting attempts to 
access control resources is a key to managing 
computer systems security.  This is the purpose 

of the privilege property in designating 
resources susceptible to potentially harmful 
application. 
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4. HOST PROCESS ARCHITECTURE 

This section describes some common design 
choices found in contemporary computer 
systems.  They illustrate how the special 

ontology describes a specific process execution 
environment.  In most computing literature the 
unit of animation, execution, in a computer 
system is called a process and the environment 
in which the process executes is called the host 
computer, host machine or host (reminiscent of 
calculating machines).  (A generous survey of 

computer architectures and their properties is 
found in (Blaauw & Brooks, 1997)). 

Mono-processing is the execution of only a 

single process on a host.  Process animation 
results from the association of access 
mechanism with resource map – the instruction 

execution cycle, a collaboration of resources 
combining state information with transformation.  
The state information specific to execution is 
delineated in the process status vector (psv) 
that indicates residual state information: (e.g. 
conditional comparison flags, error conditions, 
and what the next instruction to execute should 

be, etc.).  Each instruction execution occurs in 
the state of the machine resulting from the 
previous instruction’s execution, hence a “cycle.” 
The psv also delineates the subset of storage 
resources accessible by the process.  The psv 
realizes the special ontology’s resource map 

delineating both the transformational and 

storage resources accessible by the process.  (As 
indicated in the set theoretic ontology 
description in Appendix A, it is also common for 
the resource map to be realized as two discrete 
elements: one focusing on instruction execution 
and a second mapping the accessible storage 

space.) In the common case where external 
resources exist (i.e. input/output devices, 
networking), their design may be treated as 
additional namable resources.  (An example of 
such a connection is the mapping of I/O 
interfaces as storage locations in the DEC PDP11 
UNIBUS configuration.) (Blaauw & Brooks, 1997: 

p. 967) 

Multiprogramming occurs in the presence of 
more than a single process residing on one host.  
Although there are multiple processes, there 
may exist only a single instruction execution 
cycle that is shared (by multiplexing) among 
them.  This processing protocol requires a 

managing process usually called an operating 
system (OS) that includes supervisory and 
service components arranged as a collection of 
agent processes.  These agents manage the 

association of the instruction execution cycle 
with the various processes one at a time.  (The 
protocol for delegating execution among the 
various processes is called process scheduling 

and may be based upon various priority schemes 
to manage the progress of the individual 
processes respectively.) The agents may 
themselves be processes – each with its own 
resource map.   

What distinguishes a process that is an OS is the 
privilege of an access scope including any and all 

host resources.  Where the resource map of a 
non-OS process is denoted psv for process state 
vector, the resource map of an OS process is 

denoted csv, control state vector.  The 
distinction highlights the OS as in control of the 
entire host. 

A control resource is one that permits a process 
to assign the instruction execution cycle to a 
particular process or to access/modify the 
resource map of a process, including itself.  The 
most common mechanism for enforcing the OS’s 
prerogatives (privileges) is the interrupt that 
extends the behavior of the instruction execution 

cycle and permits the OS to gain access to the 
instruction execution cycle at will. 

The normal course of the instruction execution 
cycle proceeds with each succeeding instruction 
determined by the current process’s psv  (i.e. 

the process’s execution continues without 
interruption.) An interrupt mechanism is the 

detection and response to a condition signaling 
the need for a departure from the current 
sequence of execution (suspending the current 
process) and designating execution of the next 
instruction in a different process (activating 
another process).  In a nominal OS design the 

interrupt would cause the sequence of 
instruction execution to transfer to an agent of 
the OS called the interrupt handler.  Once an 
interrupt handler is activated its instructions 
determine the system’s ensuing behavior.  The 
result is a transfer of the sequence of instruction 
execution from the interrupted process to 

another, a process swap.   

Interrupts are designed to support a variety of 
supervisory tasks.  Interrupts may occur due to: 
external signals (i.e. input/output connections), 
execution exceptions (i.e. erroneous instruction 
specifications), attempts to access resources 
designated as privileged, access exceptions (i.e. 

attempts to access resources not delineated in 
the process’s resource map), or solely to 
relinquish the instruction execution cycle.  The 
interrupt mechanism’s design incorporates state 
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information (i.e. psv) to designate the precise 
process swap behavior (e.g. what state 
information is to be set in the suspended 
process).  Hence, the psv is (in itself) a control 

resource.  Whether or not interrupts are enabled 
or suppressed in the current process and which 
process is to be activated in the process swap is 
indicated in the csv, hence these are controlled 
by the OS. 

Multiprocessing differs from the 
multiprogramming protocol in that more than 

one instruction execution cycle resource is 
available to associate with the processes present 
on the host.  Multiple processes may 

concurrently execute their instructions.  Each 
instruction execution cycle must manage a 
separate interrupt protocol.  Individual process 

management in the presence of multiprocessing 
is not significantly different from 
multiprogramming unless concurrently executing 
processes are allowed to communicate and/or 
share resources.  In which case inter-process 
communication and sharing require addition 
supervisory services that monitor and mediate 

process interactions. 

5. OS AND PROCESS SECURITY  

Monoprocessing is the least complex form of 
process management.  It depends exclusively on 
the process’s fidelity of programming to its 

specifications.  The primary threat is 
programming error.  (A monoprocessing system 

often includes OS services to offload I/O or job-
scheduling tasks from individual processes.  It 
earns trust from the quality assurance it 
receives.  Regardless, any error in programming 
can compromise the system.) 

Multiprogramming requires an OS that shares its 

attention with more than one process.  Where 
the OS protects itself from the user process, it 
now must also protect user processes from the 
misbehavior of one another.  Encroachment is 
the unauthorized access of one process’s 
resources by another.  Encroachment occurs due 
to errors/malice among the cohabitant 

processes.   

Although the added instruction execution 
capabilities in a multiprocessing environment 
make resource management and coordination 
among processes more complicated, the basic 
principles of process closely resemble 
multiprogramming. 

Separation is the major protection mechanism 
in a multiprogramming environment – to 

prevent the undesirable behavior of one process 
from causing the failure of or undue interference 
with the other processes.  Separation is 
achieved by: 1) devising resource maps that 

delineate resources according to process, and 2) 
enforcing complete mediation where each access 
mechanism enforces adherence to its delineated 
resources by prohibiting unsanctioned access 
and, usually, by raising an interrupt condition 
when an attempt occurs (Bishop, 2003, p. 345).  
Effective separation eliminates the risk of 

encroachment. 

Privilege denotes the supervisory authority of 
an OS to control the resources of individual 

processes.  The supervisory functions of the OS 
(the kernel or nucleus) exercise control over 
every process in the system.  Complete 

mediation also controls the number of 
consecutive instructions that a process may 
execute (based on either a real or virtual 
“clock,” as prescribed in host csv).  That 
prohibits any process from monopolizing the 
instruction execution (e.g. the infinite loop!).  
The OS kernel protects itself by managing the 

csv of the host to retain control over every 
process while at the same time it remains 
separated from all processes on the host except 
itself – a secure operating system. 

6. VIRTUAL MACHINES IN THE CLOUD  

The monoprocessing environment is the least 
complex and therefore, the most easily quality 

assured – trustworthy.  That explains the 
growing preference for multiprocessing virtual 
machines as the security framework for cloud 
computing.  (Rosenblum & Garfinkel, 2005) 

A virtual machine is an execution environment in 
which the process that executes cannot 

determine if it resides on a (physical) host 
machine or is a “guest” on a simulation of that 
host.  Each guest process can be treated as the 
sole process on that virtual machine.  A layer of 
supervisory software, the virtual machine 
monitor (VMM), manages the execution 
environment of each guest by configuring the 

resource maps and the interrupt behavior of the 
access mechanisms to intercept any guest 
attempts to directly access control resources.  
When a guest needs access to resources that 
might compromise “safety,” that access must be 
mediated by the VMM through a reference 
monitor that simulates the process’s resource 

access by virtualizing that resource while 
protecting the VMM’s control of the host.  These 
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protocols rely on control and access mechanism 
design.  (Smith, J.E. & Nair, R., 2005)  

Self-virtualizable: When a virtual machine 
appears identical to its underlying host, it can 

provide direct access to the exact same 
instruction set and access mechanisms of that 
host. We call this host architecture self-
virtualizable because it can provide a complete 
replica of itself for guest process(s). 
(Waguespack, 1985)  A guest process may 
execute at the same level of efficiency as it 

would if it were the sole process on the 
underlying host except for those resources that 
must be virtualized to maintain the VMM’s 

control. 

Host hardware design decisions make 
virtualization straightforward or complex.  

(Garfinkel & Rosenblum, 2005) Process control 
protocols prior to the advent of virtual machines 
focused primarily on facilitating a host-based 
OS’s capacity to maintain control.  Design 
decisions for processor hardware architecture 
did not always support complete mediation.  
When host instruction set designs include 

instructions that access control resources but 
are not designated as privileged they do not 
raise interrupt conditions even when executed in 
a process without privilege.  There are two 
options that support virtual machines on these 
hosts.  In one approach the VMM pre-scans all 

the process’s instructions before execution and 

replaces “unsafe” instruction sequences with 
“safe” instructions – usually including 
instructions that do cause interrupts to allow the 
VMM to intercede and simulate the indicated 
service.  Alternatively, the VMM simulates all 
instructions running on the virtual machine; an 

approach that results in a dramatic reduction in 
effective execution speed since simulation is 
orders of magnitude slower than direct host 
hardware execution.  (Complete simulation is 
the common approach used to execute Java 
code.  (Lindholm, Yellin, Bracha, & Buckley, 
2013).) 

The most efficient virtual machine realization 

requires that all control resources include the 
privilege property with appropriate interrupt 
conditions to allow a VMM to enforce complete 
mediation.  Secondly all resource access 
attempts that would otherwise be directed to 
“hardware resources” (i.e. I/O and 

communication devices) need to be intercepted 
allowing the VMM to virtualize those resources 
through reference monitors.  This combination of 
intercession provides the maximum guest 

performance with the minimum of VMM 
overhead. 

Multiple OS’s: The earliest implementations of 
VMM technology supported guest processes that 

themselves were OS’s, guest OS’s.  The ability 
to run multiple versions of OS concurrently on 
the same physical host provided flexibility and 
cost savings.  In the description of process 
swapping and control above the key resource 
designating process activation is the process 
state vector.  (Waguespack, 1985)  The privilege 

of designating which psv(s) is active determines 
control over the entire environment.  Each 
virtual machine environment is a simulation of 

the physical host and thus as these guest OS’s 
manage the processes that reside on them the 
OS’s believe they are controlling the host.  But 

their “control” is virtualized by the VMM with 
virtualized csv access.  The VMM manages the 
VM’s as its processes retaining control over all 
the physical host resources.  This permits a 
multi-layered arrangement of virtual machines 
some supporting mono-processing, others 
supporting multiprogramming OS’s and finally 

some supporting replicas of the VMM itself 
telescoping the illusion of host environment 
layer after layer limited only by physical of 
performance and resource virtualization 
capabilities. 

Security through virtualization: Virtual 

machines provide a convenient architectural 

foundation for security.  Each guest process (or 
virtual machine) resides in a naturally separated 
execution environment.  Complete mediation 
through VM instruction execution and virtualized 
resource access facilitates connectivity beyond 
the boundaries of the virtual machine, but only 

through contractually defined protocols, VMM 
mediated services.  (Garfinkel & Rosenblum, 
2005) 

Although initially virtual machines were intended 
to support concurrently executing OS’s on a 
single host, guest VM’s may also be VMM’s in 
their own right.  Such an arrangement permits a 

hierarchically encapsulated progression of secure 

execution environments.  Virtualization enables 
sharing and protection protocols administered 
through complete mediation that both enables 
and structures security.  VM architecture is the 
basis of cloud computing.  VM’s make possible 
the protections and scalability of system security 

in the cloud.  (DeKeyrel, Waldbusser & Jones, 
2012) 
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7. CONCLUSION 

Security is an essential topic in IS education 
today.  But, finding room for it in an already 
crowded curriculum is a challenge.  The 

“shrinking real estate” for technical content in IS 
curricula will continue to require compactly 
designed primers (similar to this one on 
computer security structures) if our IS graduates 
will have any practical grounding to discern 
credible information systems capabilities and 
performance potential. 

This primer addresses the key architectural 
security issues concisely.  The primer is a useful 
pedagogical foundation for computer, network 

and Internet security discussions. It is suitable 
for embedding in a generic systems, networking 
or business process course for upper level 

undergraduates or graduate IS or MBA students. 
Teachers may use it as a survey, tutorial or as 
an outline for a student research project.  It is 
appropriate for either an individual or a 
comparative system security study.  The special 
ontology is applicable to the full range of 
computing architectures from Turing and von 

Neumann through the DEC, Cray, IBM, Motorola 
and Intel generations – as well as architectures 
of loosely coupled processors (e.g. the World 
Wide Web).  (Turing, 1936, Bell & Newell, 1971, 
Blaauw & Brooks, 1997)  
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Appendix A – Set Theoretic Representation of the Special Ontology (Waguespack, 1975, 1985) 

 

E → environment “→” reads “…is defined as…” 

S → storage resources (all state information) 

T → transformational resources (all computation capable of modifying the state) 

E → {T, S} (all transformational and storage resources) 

M → a machine, {Tm, Sm},  (i.e. M ⊆ E) 

tb → the “map” delineating an access scope of transformation resources 

[] → a mechanism (function) to access a resource access scope 

T[]tb  → a resource subset of T defined by tb (i.e. T[]tb ⊆ T) 

sb → the “map” delineating an access scope of memory/storage resources 

S[]sb  → a partition of the resource S defined by sb (i.e. S[]sb ⊆ S) 

{tb, sb} → {eb}; environment base: a composite access scope 

E[]eb = {T[]tb, S[]sb}  a program is a specification of transformational and storage resources 

psw → the process status word of a program (process not yet initiated) 

psv  → the process status vector (word) as “idle” or suspended process  

⧖ → the transformational resource that executes instructions in a process 

⧖ (psv) → the process state word of an “active” program under execution 

{T[]tb, S[]sb, psw} → an “idle” program (not yet initiated) 

{T[]tb, S[]sb, psv} → an “idle” process (having been initiated but not currently active) 

{T[]tb, S[]sb, ⧖ (psv)} → an “active” process currently executing 

CSV → the control state vector enabling the control of a machine 

Sm   → all the memory/storage of M 

Sm[]uj  → the storage of M accessible by user j 

Sm   =  {Sm[]csv, Sm[]u1, Sm[]u2, Sm[]u3, ... } 

Sm[]csv  → the storage that contains/accesses the CSV of M 

Sm[]psv  → the memory/storage that covers/accesses the PSV of a process 

Sm[]u  → {Sm[]csv  ∩ Sm[]u  = ∅ }  the memory/storage not including the CSV of M 

Tm → instruction set of M 

Tm[]c  → instruction set of M that can control M (also named C) 

Tm[]u  → { Tm - Tm[]c}  (non-control) “user” instruction set of M (also named U) 

E[]csv  → {Sm[]csv,  Tm[]c} the control state vector of E that designates “control” of E 

{ E[]csv  , ⧖ (csv)} → the “active” process that controls the entire environment, (e.g. VMM) 
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Appendix B – The Computer Security Green Card 
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