
Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 42

www.aitp-edsig.org /www.isedj.org

Confronting the Issues of Programming
In Information Systems Curricula: The Goal is

Success

Jeffry Babb
jbabb@wtamu.edu

Computer Information and Decision Management
West Texas A&M University

Canyon, TX 79106 USA

Herbert E. Longenecker, Jr.

longeneckerb@gmail.com
School of Computing

University of South Alabama
Mobile, AL 36688 USA

Jeanne Baugh
baugh@rmu.edu

Computer and Information Systems Department
Robert Morris University

Pittsburgh, PA

David Feinstein

dfeinstein@usouthal.edu
School of Computing

University of South Alabama
Mobile, AL 36688 USA

Abstract

Computer programming has been part of Information Systems (IS) curricula since the first model
curriculum. It is with programming that computers are instructed how to implement our ideas into
reality. Yet, over the last decade numbers of computing undergraduates have significantly declined in
North American academic programs. In addition, high failure rates persist in beginning and even
advanced programming courses representing losses of students to the anticipated of production of

future professionals. Perhaps the main reason the current model curriculum in undergraduate
information systems education has removed programming is to enable a higher degree of success with
higher rates of program completion. Ironically, in the face of this decision, national skills expectations
demand programming abilities from graduates of computing programs. Further, most all IS programs
business schools require programming, and all ABET-accredited IS programs have multiple courses in
programming. While there are challenges in a programming sequence, there is evidence that multiple
approaches can be taken to improve the outcomes and perception of success. There is the perception

that the problems with this sequence will be improved significantly.

Keywords: programming, class performance, outcome improvement, curriculum, skills achieved

mailto:jbabb@wtamu.edu
mailto:longeneckerb@gmail.com
mailto:baugh@rmu.edu
mailto:dfeinstein@usouthal.edu

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 43

www.aitp-edsig.org /www.isedj.org

1. INTRODUCTION

Information Systems model curricula - IS’90

(Longenecker & Feinstein, 1991), IS’95 (Couger,
et al 1995), IS’97 (Couger, et al 1997), and
IS2002 (Gorgone, et al, 2002) – have stated
that a principle focus of these curricula was to
produce graduates who are competent and
confident in developing and deploying
Information Systems. These exit-level goals

have pervasively guided and shaped the
development of these model curricula. The skills
necessary to achieve these goals were identified
by a survey of faculty and practitioners (Landry

et al, 2001), and were reaffirmed by the work of
Colvin (2008) based on surveying graduates 3-5

years out of school.

Interestingly, Longenecker, Feinstein, & Babb
(2013) have demonstrated that the skills
expected of IS practitioners have not changed
over this time, despite current trends in
industry. In fact, the Department of Labor

expectations for IS related Science, Technology,
Engineering, and Math (STEM) jobs mirrors the
expectations of the earlier curricula
(Longenecker, Feinstein & Clark, 2013). Clearly,
the marketplace expects and demands that our
graduates possess technical skills such as
programming and database.

Furthermore, the bulk of business schools with
IS programs believe in the necessity for
programming and database skills (Apigian &
Gambill, 2012); approximately 99% of these
schools offer at least one programming course

and all offer database. Likewise, the 47 ABET-
accredited IS programs offer multiple
programming courses as well as database
(Feinstein, Longenecker, & Shrestha 2013).

In the IS 2010 model curriculum (Topi et al,
2010), programming was omitted from the list

of requirements for an IS degree and relegated
as being optional. Given the response of
business schools and ABET accredited programs,

it can be difficult to understand the reasoning
being the omission of programming in the IS
2010 model curriculum. Since the “Dotcom”
bust of the early 2000’s, the number of students

showing up for IS degree programs has
decreased significantly; many programs have
disappeared. Given that programming is difficult
and there is a high degree of failure of students
in these classes, it is not surprising that IS 2010

designers withheld programming as a
requirement.

Ultimately, as programming is an important
endeavor for the discipline, and as there are
difficulties in teaching/learning the skill, then
effort must be spent in mediation of the
difficulties. Some of these methods will be
addressed within this paper. We hold that a few
things are fairly certain: the need for computing

professionals will remain high; that computing is
a diverse field where room exists for information
systems as a discipline; and, that ABET’s
Computing Accreditation Commission (CAC) is

correct in requiring that all computing disciplines
share a core concern in learning about

programming. As the spectrum ranges from
concerns about the machine up to individual and
organizational needs (Shackleford, 2006),
programming remains a “lingua franca” as a
means for all computing professionals to
understand how data and information continue
to transform our world.

As we argue for renewed effort for IS educators
to remain grounded in the fundamentals of
computing by holding fast in our commitment to
instruction in computer programming, we make
our case as follows. First, we present evidence
that programming has appropriately remained at

the core of the IS curriculum as a requisite skill
for our graduates. We next delineate and
explicate what we understand as goals for the
programming sequence in an IS curriculum. As
this is a paper concerned with achieving success
in teaching IS students how to program, we next

discuss the various means by which students,
educators, and programs fail in the delivery of
programming instruction. We address these
failures with a discussion of several cases and
techniques which have garnered success. We
then discuss the issue of achieving success in
programming instruction and conclude with

thoughts moving forward. Our ultimate aim is
that information systems remains among the
relevant computing disciplines which will deliver

on the need for computing professionals.

2. CURRICULUM AND PROGRAMMING

Information systems curricula have existed for
about fifty years (Longenecker, Feinstein &
Clark, 2013). Programming and database have
always been integral to these programs. With
the exception of IS 2010 (Topi, et al, 2010),
programming and database have expanded in

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 44

www.aitp-edsig.org /www.isedj.org

their specification. A complete specification of
the skills of these curricula including IS’90
(Longenecker & Feinstein, 1991), IS’95 (Couger
et al, 1995; Gorgone et al, 1994), IS’97 (Couger

et al, 1997; Davis et al, 1997a; Davis et al,
1997b), and IS 2002 (Gorgone et al, 2002a;
Gorgone et al, 2002) have been synthesized and
is presented in terms of skills specified and
expected in IS curricula (see Tables 1 – 5).
Recent evidence leaves no reason to suspect
that the guidance in these past curriculum

models has changed.

The skills presented in model curricula prior to
IS 2010 are consistent with the department of

labor specifications (see DOL1, 2010; DOL2,
2010; DOL3, 2010; and DOL4, 2010). The

applicability of these specifications is reviewed
by (Longenecker, Feinstein, & Babb, 2013), and
is compatible with the skills lists presented as
Tables 1 – 6. Furthermore, Computerworld
(Pratt, 2013) stated that 60% of new hires will
be hired as programmers; our personal
observations corroborate this.

Apigian and Gambill (2010) studied the
academic catalog of 240 schools of business and
found that 99.17% taught at least one course in
programming. A study of ABET accredited
programs shows that these programs required at
least several courses in programming. Aasheim

et al. (2012) also found that there is an
expectation of industry that students must know
programming.

During the past decade there has been a
decrease in the number of students in IS

programs. In addition, in some programs as
many as 70% of students fail to complete
coursework in programming sequences. So the
challenge of suggesting that IS programs require
multiple courses in programming combined with
the difficulty in successfully helping students to
survive and thrive is an understandably hard

sell. Yet, many jobs and careers which rely on
programming are available. There is evidence
that legislators are awakening to this reality:

“Computer programmers are in great demand by
American businesses, across the tech sector,
banking, entertainment, you name it. These are
some of the highest-paying jobs, but there are

not enough graduates to fill these opportunities”
(Marco Rubio, Senator, Florida,
http://www.code.org).

The recommendation for IS curricula
(Longenecker, Feinstein, & Babb, 2013)

suggests that three courses in programming
with database as a prerequisite to the third
course will be necessary for a successful two-
course capstone sequence (Reinicke & Janicki,

2010). This capstone sequence will produce
desired skills needed by the IS industry.

3. GOALS OF PROGRAMMING SEQUENCE

The goals of the programming sequence are
clearest if the goals of the major, degree, and

discipline are clear as well. For our purposes,
the goal of a program in information systems is
to develop professionals who are able to design,
develop, implement, manage, maintain, and

strategically and tactically use information
systems. While we do not purport that each

graduate will engage in all of these activities
during their professional career, we do assert
that such a foundation is optimal. Thus a
foundation in analysis and design, data
management, and application development are
each essential.

Data Management
An information system’s ability to consume,
produce, and transform data and information is
quite fundamental to its existence. Students
must be versed in the means by which the
computing devices – which constitute the
information system – handle data. While this

concern typically reduces to the study of
relational database management systems
(RDBMS), an understanding of data and
information must extend into the realm of
abstractions (such as the degree to which we
synchronize systems analysis and design with

Entity-Relationship Diagrams) and into the
detailed realm of computing architecture
(understanding how computers and operating
systems work). Thus, while understanding
operating systems, computer hardware, and the
implementation details of software are all
equally-important data management concerns,

RDBMSs remain a central concern for data
management as RDBMSs are engineered to
handle the myriad concerns of data and

information.

Among reasons that we include “database” in
the curriculum is that we recognize that

understanding the techniques and knowledge
associated with RDBMSs remain critical to
information systems. Also, instilling within
students an awareness of the tight relationship
between data and logic is also required.

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 45

www.aitp-edsig.org /www.isedj.org

The topics in Table 7 are critical to an
understanding of how an RDBMS works. Many
of the features and aspects of an RDBMS
underscore the requirement that data

management is governed by both business logic
and internal integrity logic (hence the presence
of “stored procedures” as an extension to many
RDBMS product).

Programming
Few would argue that information systems

students should study both systems analysis and
data management. In fact, perhaps some of the
most “management”-leaning information
systems programs generally retain these topics.

What we hope to demonstrate is that each are
not only tied to programming, but both are

dependent on programming.

As this paper is about success with teaching
information systems students programming – a
success we hold as essential and non-optional –
we offer a detailed accounting of the knowledge,
skills, and competencies essential to facilitating

student success. However, we bound this
success by framing the material against an
overarching goal: that students are prepared to
achieve success in a comprehensive, immersive,
and applied capstone course which focuses on
the design, development, testing,
implementation, and management of an

information system.

Toward this end, we envision and present Table
8, the sequence of programming topics which
lead to success in the capstone course. Table 8
is a list that is reasonably representative of the

major milestone concerns for the programming
topic for information systems students. It is a
list that surely must be broken into multiple
course receptacles, which may not be possible
for all programs. However, we propose that the
topics in the list are requisite for students to be
able to successfully enter into a capstone

experience as described by Reinicke & Janicki
(2010).

Towards Success
While our proffered list of programming
knowledge and topics is meant to serve as a
viable list, it is debatable if it serves as a

minimal (or even optimal) path in support of the
capstone course. And, while the capstone is not
the sole aim of this paper, the goals and intent
of the capstone justifies the extent to which list
is useful. Thus, for students and programs
alike, we must distinguish between overarching

goals towards ultimate mastery and goals that
are achievable.

Students must be made aware of the

overarching goals that lead to mastery as such a
target is a healthy for our discipline. However,
during the short time that students are in our
care, we must also remain cognizant of goals
that are achievable. It is clear that we can’t
achieve mastery, in most cases, during the short
time that students are in the major. After

university and college requirements have been
met, many programs face a serious deficit in the
number of credit hours that can used towards
the degree, let alone programming.

Programs in information systems will necessarily

have to scale their programming sequence to
remain consistent with their capstone sequence.
Our full list of programming competencies would
likely require three courses in programming, and
some programs, as currently designed, may not
be able to accommodate this.

Getting the Balance Right
Action required for getting over the “hump” that
many students experience while learning
programming means successfully engaging at
least the first 15 steps in Table 8. Regardless of
the depth which a program in information
systems can handle with respect to available

credit hours, it is likely that those first 15 items
should/would be covered. It is with these first
steps that we should focus on the aspects of
mastery that develop automaticity (or muscle
memory). We use the term “mastery” in the
sense that it is ultimately an inclination towards

an endeavor which requires immersion,
engagement, and tenacity. Or, simply stated:
hard work. Our students will, step-wise and
incrementally, engage in the persistent and
iterative pursuit of programming (topics 1 - 15)
in a manner that benefits from the
transformative benefits of mastery (gaining in

levels of competence and confidence).

Coaching

Steps 1 through 15 in Table 8 (and
programming in general) require the application
of effort that is well suited to a coaching
methodology. Coach John Wooden, the winner

of 10 championship NCAA games utilized a
concept of a “pyramid of success” (2005). His
attitude of success could easily become a goal
for programming education: “What was under
my control was how I prepared myself and our
team. I judged my success, my ‘winning’, on

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 46

www.aitp-edsig.org /www.isedj.org

that. It just made more sense. I felt if we
prepared fully we would do just fine. If we won,
great; frosting on the cake. But at no time did I
consider winning to be the cake… It’s true

everywhere in life. Hard work is the difference.
Very hard work.” (Wooden and Jamison, 1997)

4. KNOWN FAILURE MECHANISMS

The literature on pedagogy, computing
pedagogy, and IS pedagogy provides myriad

failure mechanisms known to stymie student
success. We discuss several categories of these
failures here. There are failures related to the
mode and delivery from the faculty: lecturing;

lack of hands-on experience; lack of student
follow-up (in the case of absences in particular).

Some failure mechanisms are related to the
situation of programming within the curriculum
or with the structuring of the course. In
particular, a programming course may lack the
correct pre-requisites. In other cases, there is a
lack of continuity between the courses in the
sequence. Another known failure mechanism is

the lack of proper teamwork structures that
encourage team and peer-driven learning. A
last category of failure is that of leadership,
motivation, and correction. While students may
lack maturity of may encounter issues related to
their ability to perceive, receive, and manage
failure, we can and must do more than chalk

these issues up to being out of our control. The
reader may consult Table 9 to see an elaborated
set of student failure issues.

Dealing with Lack of Student Maturity
While there is little doubt that students exhibit a

paucity of maturity in many regards - failure to
come to class; failure to have an attitude of
success; immature reaction to our correction;
returning a haughty response; lowering
standards for everyone – it remains our
obligation to sustain leadership and motivation
to do our best to correct these behaviors. We

are all aware that some students will wait until
the last minute to try to complete a
programming assignment. They need to be

encouraged to begin the design of the solution
as soon as the work is assigned. This type of
behavior is seen in many college courses, not
just a programming course, and is reflective of

bad habits. This also shows a lack of maturity
on the part of the student. As we are instructing
for eventual automaticity in exercise of
knowledge and skill in our students, we can also
aim for automaticity of students’ response such
that maturity will become a default response.

Among the possible responses to student
immaturity is to address students’ transition into
college (and the requisite maturing required for

success) are “freshman seminar” or “first year
experience” programs. Typical goals, learning
outcomes, and requirements of such programs
will include modules on academic success and
responsible behaviors that lead to maturity. As
we discuss failures, it is important to note that
the imperatives underscored by these programs

also extend into the context of teaching
programming (and perhaps all of our courses).

Faculty Responsibility for Great Patience

It takes a faculty member with a great deal of
patience to teach programming. Some faculty

members feel that the student either has the
ability to program or they do not. But the truth
is that almost everyone can learn to program at
some level. However, the faculty member must
put in the time to help the students. Sometimes
it requires a one-on-one session to review the
programming code line-by-line with the student;

showing him what he was doing wrong in his
code. Coding mistakes made by a student are a
great learning tool, however, an instructor must
explain those mistakes and help the student to
understand why the corrections are needed. It
provides an insufficient learning experience to
simply mark an assignment wrong without

feedback. However, it may be more important
to follow-up immediately on an absence from
class, particularly one that occurs during the
early phase of a course. This is so as the path
to mastery requires constant engagement.

5. SUCCESSFUL APPROACHES

There are many different approaches to teaching
a programming course. According to Wang
(2010), programming requires thinking with
abstract concepts, which is difficult for novices.
Second, programming includes many different

tasks, such as problem solving, algorithm and
data structure design, programming language
comprehension, testing, and debugging (Wang,

2010).

Table 10 presents a number of approaches that
have been utilized to facilitate successful results

to learning programming.

Speed of the Course
Of course there are always a few students who
will not be able to understand the topics in the
course. This can be said of any course in a

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 47

www.aitp-edsig.org /www.isedj.org

college curriculum. The marginal student may
need additional actions taken to facilitate their
success, such as extra help sessions, personal
guidance during office hours, and tutoring

sessions offered by the educational institution.

Actually it has been the experience of these
authors that some students often want to create
additional functionality in their programming
assignments beyond what is required. Having
some flexibility in the course topics allows the

instructor to facilitate both the struggling
student and the more advanced one.

Everyone Can Do IT

We all need to adopt a new attitude: everyone
can do it. The web site http://code.org supports

a non-profit organization dedicated to promoting
computer science (specifically computer coding)
as a requirement for all students. Their vision
states that “every student in every school has
the opportunity to learn how to code.”
Additionally, the organization supports the view
that “computer science and computer

programming should be part of the core
curriculum in education, alongside other science,
technology, engineering, and mathematics
(STEM) courses, such as biology, physics,
chemistry and algebra”.

Leaders in all phases of industry and education

advocate for all students learning to code. At
code.org, Bill Gates states that “Learning to
write programs stretches your mind, and helps
you think better, creates a way of thinking about
things that I think is helpful in all domains.“

6. DISCUSSION

Programming is a necessary skill. According the
United States Bureau of Labor Statics (BLS)
website (www.bls.gov), students with a
computing degree can expect to earn a starting
salary around $70,000 per year. The BLS lists

Computer Science as the highest-paying college
degree and forecasts computer jobs as growing
at two times the national average (code.org).

However, as can be seen in Figure 4, students
are not going into the field in sufficient numbers
to match the projected need.

Also, according to BLS, Systems Analysts are
one of the fastest growing professions (22%
growth per year) and have added 120,400 jobs
since 2010 with a salary of $77,000 per year.
Analysts require programming skills in a
business context. Programmer analysts still are

an entry point to the analyst profession at a
salary of $71,380 per year.

Computer and Information Scientists (see BLS)

hold a doctorate degree and invent and design
new technologies, and find new uses for existing
technologies in business, medicine and other
areas, and earn $100,660 per year.

Figure 4 Job projections according to

code.org

A programmer’s job is to first solve problems.
This entails a developing a detailed analysis of
the problem, design of the solution (the

computer instructions) and finally the test of the
ultimate solution. Learning a programming

language helps the IS student to understand
how the computer actually works and processes
instructions, not just how to use a computer.
The student learns how to think logically and
how to “tell” the computer what to do. As such,
there are many different job opportunities for a
student with an IS degree, many of which are

not in coding. But with some experience in
programming, the IS student will better
understand things such as:

 what a file is and how it is accessed
 how an algorithm is used to solve a real

life problem and how it is coded in the
computer world

 being able to understand some basic
principles such as variable assignment
and conditional branching

Problem-Solving Training
The skill set required for employment in the

“real world” is constantly evolving. (Gallivan,
Truex, & Kyasny, 2004) Employers want their
employees to program as well as communicate
and document their work. Programming skills

http://www.bls.gov/

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 48

www.aitp-edsig.org /www.isedj.org

along with communication and ethical,
interpersonal and personal skills go hand in hand
for successful employment (Aasheim, 2012). In
fact, employers are increasingly demanding

these skills of their entry level employees
(Gruba & Al-Mahmood, 2004). In this light, the
imperative for success in our instruction in
programming matters as programming provides,
at the very-least an applied and useful means of
developing a mental acuity for problem solving
that is relevant for our times.

7. CONCLUSION

Many disagree about the importance of

programming in an undergraduate IS degree.
(Topi, Valacich, Wright, Kaiser, Nunamaker,

Sipior, & de Vreede, 2010).

It is the opinion of others (Longenecker,
Feinstein, & Babb, 2013), and these authors,
that a programming course can be extremely
beneficial to the IS student even if the student
has no intention of writing code upon

graduation. Todd Park U.S. Chief Technology
Officer said: “… technology and computers are
very much at the core of our economy going
forward. To be prepared for the demands of the
21st century—and to take advantage of its
opportunities—it is essential that more of our
students today learn basic computer

programming skills, no matter what field of work
they want to pursue.“ (http://www.code.org)

Writing a computer program is an exercise in
logic. Since the basics of all computer work
centers around these logical foundations,

programming is fundamental to everything in
computing. The computer can do nothing
without a set of instructions (a program) to tell
it what to do. A program can be anything from
operating system instructions to instructions for
a specific application, such as a game or a
business process.

So, the issues at hand are straight forward and
critically important. On one hand, the impact of

programming can be seen daily in almost every
aspect of our lives in personal technologic
advances, in commerce and banking, and in
health care and more; IS development requires

great programmers and more of them (Pratt,
2013). On the other hand, teaching students
programming remains very difficult. The
incorporation of critical thinking, programming
logic, technology and syntax must be blended in
the process. Teachers of the discipline must not

only be excellent with the skill, they must be
attentive to the needs of young and beginning
students. As educators begin to understand the
coaching skills of John Wooden as applied with

the technology of programming, the success of
Wooden may translate into our own success. Of
course we must define carefully and monitor
progress, and make daily adjustments to the
plan.

Also highly important is that students need to
feel that the instructor is accessible. A study

done by Yang and Cornelius (2004) also
supports the concept that the students must
receive feedback on a timely basis. This is but

one part of coaching.

While we call for very high demands, and
illustrate very high stakes, at some point faculty

will want to question the structure of our
professional lives as academics – do we have the
incentive and reward for the effort this will
require? It is our position that we are dealing
with an existential imperative. Either we provide
value to the marketplace, or it will forget us. IS
educators have a hard enough time to have to

describe and explain that we exist, why we
exist, and that we play a role and complement
among the computing professions. To reverse
on fundamental computing skills is to only
increase our burden.

Faculty can, and must, be heroes and coaches.

There is nothing more rewarding than hearing
the student say that he never imagined that he
could write a program such as the one he was
turning in at the end of a semester. The
educational institution must recognize not only
how important programming is, but also how

time-consuming it is for the instructor who
teaches such a course. Successfully teaching
programming does require more effort on the
instructor’s part (Escalente, 2008). A great deal
of student follow-up needed for the beginners.
Because faculty may spend a lot of extra time
helping the first time programmer, it is essential

that the institution provide support in areas such
as class size, tutoring and course release for

extra office hours or help sessions. If the
support is not there, the success of any such
course cannot be assured (Gopalakrishnan,
2006).

As IS educators, we must also accept that the
reward for the extra effort in the instruction of
programming will not likely come in the form of
financial compensation; the rewards will likely
be cerebral and personal in nature. The feeling

http://www.ehow.com/how_4684621_write-computer-program.html
javascript:__doLinkPostBack('detail','ss%257E%257EAU%2520%252522Yang%25252c%2520Yi%252522%257C%257Csl%257E%257Erl','');

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 49

www.aitp-edsig.org /www.isedj.org

of walking out of the classroom knowing that the
students “got it” is immeasurable.

The student who has never programmed before

feels an enormous sense of accomplishment
when the code all comes together and produces
correct results. Students are very proud of their
work. The authors of this paper have taught
programming for many years and from their
experience it is clear that programming students
show success in both the areas of increased

technical skills and personal growth. In addition
to the students’ positive experiences, watching
the transformation of the students from not
understanding a simple output statement to

writing a programming project encompassing
many methods/functions is extremely rewarding

to the instructor.

Once a student in a lab asked how the instructor
could stand to go from computer to computer
helping students with the same programming
tasks. The answer to that question is very
simple, it is what teachers do. We have little
doubt that going these “extra miles” is

normative behavior present in many institutions
and also present in many who read this article.
However, we illustrate the problem ensuring
success in the teaching/learning of programming
for our students as being profoundly important
for the discipline. Maintaining a viable discipline

is a concern we should all share. Lastly, the

authors of this paper hold that a love and thirst
for technology – learning it, teaching it, using it,
studying – should be in our blood.
“Programming is exciting, stimulating, fun and
develops new ways of thinking”.
(http://www.code.org) We, as instructors, are

charged with helping to successfully prepare our
students for the digital future.

8. REFERENCES

Aasheim, C., Shropshire, J., Li, L., Kadlec, C.

(2012). Knowledge and Skill Requirements

for Entry-Level IT Workers: A Longitudinal
Study, Journal of Information Systems

Education. Summer2012, Vol. 23 Issue 2,
p193-204

Apigian, C.H. and Gambill, S.E. (2010). Are We

Teaching the IS2009 Model Curriculum?

Journal of Information Systems Education,
Vol. 21(4), p411-420.

BLS (Bureau of Labor Statistics) (2013)

retrieved July 21, 2013 at

http://www.bls.gov/ooh/computer-and-
information-technology/

Barki, H. and Hartwick, j. (1989). Rethinking the

Concept of User Involvement, MIS Quarterly,
13(1), 53-63.

Baugh, J. M. (2011). Make it Relevant and They

Just May Learn it, ISEDJ 9(7), December
2011.

Baugh, J.M., Kohun,F. (2005) Factors that
Influence the successful completion of a
Doctoral Degree, IACIS Conference
Presentation, Atlanta GA

Baugh, J. M., Kovacs,P. (2012). Large

Programming Projects for the beginning
programmer, Issues in Information Systems,
13(1), 85-93.

Baugh J. M., Davis G., Kovacs, P., Scarpino, J.,

Wood, D. (2009). Employers And Educators
Want Information Systems Graduates To Be

Able To Communicate, Issues in Information
Systems, 10(1), 198-207.

Choobineh, J., & Lo, A. W. (2004). CABSYDD:

Case-Based System for Database Design.
Journal of Management Information
Systems, 21(3), 281-314

Courte, J. and Bishop-Clark, C. (2005). Bringing

Industry and Educators Together,
Proceedings of the 6th Conference on
Information Technology Education, October
20-22, pp. 175-178.

Colvin, R. (2008). Information Systems Skills

and Career Success, Masters Thesis,
University of South Alabama, School of
Computer and Information Sciences.

Cyrillo, M. (2011). Lean UX: Rethink

Development, Information Week, Nov. 14,
2011.

Couger, J. D., Davis, G. B., Dologite, D. G.,
Feinstein, D. L., Gorgone, J. T., Jenkins, M.,
Kasper, G. M. Little, J. C., Longenecker, H.
E. Jr., and Valachic, J. S. (1995). IS'95:

Guideline for Undergraduate IS Curriculum,
MIS Quarterly 19(3), 341-360.

Couger, J. D., Davis, G.B., Feinstein, D.L.,

Gorgone, J.T. and Longenecker, H.E. (1997).
IS’.97: Model Curriculum and Guidelines for

http://www.bls.gov/ooh/computer-and-information-technology/
http://www.bls.gov/ooh/computer-and-information-technology/

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 50

www.aitp-edsig.org /www.isedj.org

Undergraduate Degree Programs in
Information Systems, Data Base, 26(1), 1-
94.

Davis, G., J. T. Gorgone, J. D. Couger, D. L.
Feinstein, and H. E. Longenecker. (1997).
IS'97: Model Curriculum and Guidelines for
Undergraduate Degree Programs in
Information Systems. ACM SIGMIS
Database, 28(1).

Davis, G.B., Couger, J. D., Feinstein, D.L.,
Gorgone, J.T. and Longenecker, H.E. “IS ‘97
Model Curriculum and Guidelines for
Undergraduate Degree Programs in

Information Systems,” ACM, New York, NY
and AITP (formerly DPMA), Park Ridge, IL,

1997.

DOL1 (2010). Summary Report for: 15-1121.00

- Computer Systems Analysts, retrieved
from June 1, 2013.

DOL2 (2010). Summary Report for: 15-

1141.00 - Database Administrators,
retrieved from
http://www.onetonline.org/link/summary/15
-1141.00 June 1, 2013

DOL3 (2010). Summary Report for: 15-

1132.00 - Software Developers,

Applications, retrieved from
http://www.onetonline.org/link/summary/15
-1132.00 June 1, 2013.

DOL4 (2010). Summary Report for: 15-

1134.00 - Web Developers, retrieved from

http://www.onetonline.org/link/summary/15
-1134.00 June 1, 2013.

Deperlioglu, O., Sarpkaya, Y., & Ergun, E.

(2011). Development of a Relational
Database for Learning Management
Systems. Turkish Online Journal Of

Educational Technology - TOJET, 10(4), 107-
120.

Escalente, J. (2008). Jaime Escalente On Being a
Teacher, retrieved July 21, 2013, at
http://www.youtube.com/watch?v=FFMz8JR
g8Y8

Feinstein, D.L., Longenecker, H.E., and

Shrestha, D. (2013). A Study of Information
Systems Programs Accredited by ABET In
Relation to IS 2010, Proceedings of ISECON,
San Antonia.

Foltz , C., Bryan, O'Hara, Margaret T., Wise,

Harold, (2004). Standardizing the MIS
course: benefits and pitfalls, Campus-Wide

Information Systems, 21(4), 163 – 169.

Gallivan, M., Truex, D., and Kyasny, L., (2004).

Changing patterns in IT skill sets 1988-
2003: a content analysis of classified
advertising, ACM SIGMIS Database, 35(36).

Gopalakrishnan, A. (2006). Supporting
Technology Integration in Adult Education:
Critical Issues and Models, Adult Basic
Education: An Interdisciplinary Journal for

Adult Literacy Educational Planning, 16(1)
39-56.

Gorgone, John T., J. Daniel Couger, Gordon B.

Davis, David L. Feinstein, George Kasper,
and Herbert E. Longenecker 1994.
“Information Systems ‘95,” DataBase, 25,
(4), 5-8.

Gorgone, J.T., Davis, G.B. Valacich, J., Topi, H.,
Feinstein, D.L. and Longenecker. H.E.
(2003). IS 2002 Model Curriculum and
Guidelines for Undergraduate Degree
Programs in Information Systems. Data Base
34(1).

Gruba Paul, Al-Mahmood Reem, (2004).
“Strategies for communication skills
development”, ACE '04: Proceedings of the
sixth conference on Australasian computing
education - Volume 30

Kim, Youngbeom, Hsu, J., and Stern, M.
(2006). An Update on the IS/TT Skills Gap,"
Journal of Information Systems Education,
17(4), 395-402.

Hunton, J.E. and Beeler J.D. (1997). Effects of

User Participation in Systems Development:

A Longitudinal Field Experiment, MIS
Quarterly, 21(4) 359-388.

Hutchings, P. and A. Wutzdorff, 1988,
“Experimental learning across the
curriculum: Assumptions and principals.”
New Directions for teaching and Learning,

35, 5-19

Kazemian, F., and-T. Howles, 2008. Teaching

challenges: Testing and debugging skills for
novice programmers. Software Quality
Professional, 11(1), 5-12.

http://www.onetonline.org/link/summary/15-1141.00
http://www.onetonline.org/link/summary/15-1141.00
http://www.onetonline.org/link/summary/15-1132.00
http://www.onetonline.org/link/summary/15-1132.00
http://www.onetonline.org/link/summary/15-1134.00
http://www.onetonline.org/link/summary/15-1134.00
http://www.youtube.com/watch?v=FFMz8JRg8Y8
http://www.youtube.com/watch?v=FFMz8JRg8Y8
http://portal.acm.org/citation.cfm?id=1017121&coll=Portal&dl=ACM&CFID=76146764&CFTOKEN=66980753
http://portal.acm.org/citation.cfm?id=1017121&coll=Portal&dl=ACM&CFID=76146764&CFTOKEN=66980753
http://portal.acm.org/citation.cfm?id=1017121&coll=Portal&dl=ACM&CFID=76146764&CFTOKEN=66980753
javascript:__doLinkPostBack('detail','ss%257E%257EAU%2520%252522Gopalakrishnan%25252c%2520Ajit%252522%257C%257Csl%257E%257Erl','');
javascript:__doLinkPostBack('detail','ss%257E%257EJN%2520%252522Adult%2520Basic%2520Education%25253a%2520An%2520Interdisciplinary%2520Journal%2520for%2520Adult%2520Literacy%2520Educational%2520Planning%252522%257C%257Csl%257E%257Erl','');
javascript:__doLinkPostBack('detail','ss%257E%257EJN%2520%252522Adult%2520Basic%2520Education%25253a%2520An%2520Interdisciplinary%2520Journal%2520for%2520Adult%2520Literacy%2520Educational%2520Planning%252522%257C%257Csl%257E%257Erl','');
javascript:__doLinkPostBack('detail','ss%257E%257EJN%2520%252522Adult%2520Basic%2520Education%25253a%2520An%2520Interdisciplinary%2520Journal%2520for%2520Adult%2520Literacy%2520Educational%2520Planning%252522%257C%257Csl%257E%257Erl','');
http://portal.acm.org/citation.cfm?id=979968.979982&coll=Portal&dl=ACM&CFID=34205774&CFTOKEN=48350906
http://portal.acm.org/citation.cfm?id=979968.979982&coll=Portal&dl=ACM&CFID=34205774&CFTOKEN=48350906

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 51

www.aitp-edsig.org /www.isedj.org

Larson, S., Harrington, M.C.R. (2012). A Study

of ABET Accredited Information Systems
Programs in the USA, 2012 Proceedings of

the Information Systems Educators
Conference, New Orleans, Louisiana, USA,
p1,18.

Longenecker, H.E., Feinstein, D.L., Babb, J.S.,

and Waguespack, L.J. (2013). Is There a
Need For a Computer Information Systems

Model Curriculum?, Proceedings of ISECON,
San Antonio.

Longenecker, H.E., Feinstein, D. L. and Clark, J.

(2013). Information Systems Curricula: A
Fifty Year Journey, Information Systems

Education Journal (ISEDJ) 11(6) December
2013.

Markus, M. L. (1983). Power, politics, and MIS

implementation. Communications of the
ACM, 26(6), 430-444.

Mathews, J. (2010) Jaime Escalenti dies,
inspired 1988 film ‘Stand and Deliver’, The
Washington Post, March 31, 2010.

McCauley, R., S. Fitzgerald, 6. Lewandowski, L

Murphy, B. Simon, L Thomas, and C.
Zander. 2008. Debugging: A review of the

literature from an educational perspective.
Computer Science Education 18(2), 67-92.

Pratt, M.K. (2013). 10 hot IT skills for 2013,

Computerworld,
http://www.computerworld.com/s/article/print/9

231486/10_hot_IT_skill. Last Accessed:
07/15/2013.

Reinicke, B. A. and Janicki, T. N (2010).

Increasing Active Learning and End-Client
Interactions in the Systems Analysis and
Design and Capstone Course, ISEDJ 8(40)

June 30, 2010.

Robbert, M. A., Wang, M. Guimaraes, M., Myers,

M. (2000). The Database Course: What Must
Be Taught, SIGCSE Bulletin Proceedings of
31st SIGCSE Technical Symposium on
Computer Science Education, March, pp.

403-404

Schwalbe, K (2010). Information Technology

Project Management, Course Technology,
Cengage, United States.

Seyed-Abbassi, B., King, R., & Wiseman, E.
(2007). The Development of a Teaching
Strategy for Implementing a Real-World
Business Project into Database Courses.

Journal Of Information Systems Education,
18(3), 337-343.

Shannon, L., Bennett, J.F., and Schneider, S.

(2009). Cycle of Poverty in Educational
Technology, ISEDJ 7(71) retrieved at
http://isedj.org/7/71/

Shannon, L., Schneider, S. and Bennett, J.F..

(2010). Critical Think Measurement in ICT,
ISEDJ. 8(1), retrieved at

http://isedj.org/8/1/

Shannon, L. and Benette (2012). A Case Study:
Applying Critical Thinking Skills to Computer
Science and Technology, ISEDJ, 10(4),
retrieved http://isedj.04g/2010-12/issn:
1545-696X.

Subramanian, N. and Whitson, G. (2010).

Implementing a CNSS 4012 Certification in
an Information Systems Curriculum,
Proceedings of the 14th Colloquium for
Information Systems Security Education,
Baltimore Inner Harbor, Baltimore, Maryland
June 7 – 9, 2010

Topi, H., Valacich, J., Wright, R.T., Kaiser, K.M.,
Nunamaker, J.F., Sipior, J.C., and Vreede,
G.J. (2010). IS 2010 Curriculum Guidelines
for Undergraduate Degree Programs in
Information Systems, Association for
Computing Machinery (ACM), Association for

Information Systems (AIS)”, retrieved July
14, 2012:
http://www.acm.org/education/curricula/IS
%202010%20ACM%20final.pdf

Wang, X. O. P. H. I. E. (2010). Teaching

programming skills through learner-centered

technical reviews for novice programmers.
Software Quality Professional, 13(1), 22-28

White, G. (2012). Visual Basic Programming
Impact on Cognitive Style of College
Students, ISEDJ 10(4) retrieved at
http://isedj.org/10/4

Wooden, J. R. and Jamison, J. (1997). Wooden,

McGraw Hill, New York.

Wooden, J.R. and Carty, J. (2005). Coach

Wooden’s Pyramid of Success, Building

http://isedj.org/7/71/
http://isedj.04g/2010-12/issn
http://www.acm.org/education/curricula/IS%202010%20ACM%20final.pdf
http://www.acm.org/education/curricula/IS%202010%20ACM%20final.pdf
http://isedj.org/10/4

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 52

www.aitp-edsig.org /www.isedj.org

Blocks of Life for a Better Life, Regal Books,
Ventura, California.

Yang, Y, and Cornelius, (2004) “Students’

Perception towards the Quality of Online

Education: A Qualitative Approach”,
Association for Educational Communications
and Technology, 27th, Chicago, Il. October
19-23 17 pp

.

javascript:__doLinkPostBack('detail','ss%257E%257EJN%2520%252522Association%2520for%2520Educational%2520Communications%2520and%2520Technology%252522%257C%257Csl%257E%257Erl','');
javascript:__doLinkPostBack('detail','ss%257E%257EJN%2520%252522Association%2520for%2520Educational%2520Communications%2520and%2520Technology%252522%257C%257Csl%257E%257Erl','');

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 53

www.aitp-edsig.org /www.isedj.org

Appendix

Low level data
structures

bits, bytes, number representation, money representation, character
representation, rounding operations, overflow

Algorithmic
Design, Data,
Object and File
Structures

analysis, design, development, debugging, testing, simple data
structures (arrays, records, strings, linked structures, stacks, queues,
hash functions). Functions, parameters, control structures, event
driven concepts, OO design, encapsulation, classes, inheritance,

polymorphism, sorting, searching

Problem
Solving-identify
problems,

systems

concepts,
creativity

devise questions to help identify problems, apply systems concepts to
definition and solutions of problems, formulate creative solutions to
simple and complex problems, Fishbone-root cause, SWOT, Simon

Model, Triz, ASIT; embracing developing technology; methodologies
(waterfall, object, spiral etc.), dataflow, structured

Programming-
principles,
objects,
algorithms,
modules, testing

principles, concepts, control structures (sequence, selection, iteration);
modularity, objects and ADTs, data structures, algorithmic design,
verification and validation, cohesion, coupling, language selection, user

interface design, desk checking, debugging, testing, error correction,
documentation, installation, integration, operation; writing code in a
modern programming language (e.g.,VB.net, Java, C#); interpreted
and compiled computer languages; design tools; secure coding
principles and practices

Application
Development-
requirements,
specs,

developing, HCI
considerations

principles, concepts, standards; requirements, specifications, HCI
planning, device optimization (e.g. touch screen, voice), development
and testing, utilization of IDEs, SDKs, and tool kits; configuration

management, installation, module integration; conversion, operation

Web page
Development-
HTML, page
editors, tools

FrontPage, HTML, page building/edit tools, frames; http, Dreamweaver,
Photoshop; Sharepoint, Joomla, Drupal, IDEs, SDKs, Snagit, Jing

Web
programming-
thin client, asp,
aspx, ODBC,
CGI, E-
commerce, web

services,
scripting

Visual Studio; thin client programming: page design; HTML, *.asp/aspx
coding; session variables / page security; ODBC; CGI programming;
integration of multi-media; e-commerce models; tools: Java Script,
Perl, Visual Studio, Java, Web services, XML server / client side coding,
web services, hypertext, n-tier architectures; integration of mobile
technology

Table 1. Programming skills expected in model curricula (except IS2010)

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 54

www.aitp-edsig.org /www.isedj.org

Modeling and
design,
construction,

schema tools,
DB systems

Data modeling, SQL, construction, tools -top down, bottom up
designs; schema development tools; desk-top/enterprise conversions;
systems: Access, SQL Server/Oracle/Sybase, data warehousing &

mining; scripts, GUI tools; retrieve, manipulate and store data; tables,
relationships and views

Triggers, Stored
Procedures,
Audit Controls:

Design /
Development

triggers, audit controls, stored procedures, trigger concepts, design,
development, testing; audit control concepts/standards, audit control
Implementation; SWL, concepts, procedures embedded programming
(e.g. C#)

Administration:
security, safety,
backup, repairs,

Replicating

monitoring, safety -security, administration, replication, monitoring,
repair, upgrades, backups, mirroring, security, privacy, legal
standards, HIPAA; data administration, policies

Metadata:
architectures,

systems, and
administration

definition, principles, practices, role of metadata in database design,

repository, dictionaries, creation, ETL, administration, usage, tools

Data Quality:

dimensions,
assessment,
improvement

Data Accuracy, Believability, Relevancy, Resolution, Completeness,
Consistency, Timeliness; Data definition quality characteristics, Data

model / requirements quality characteristics; Data clean-up of legacy
data, Mapping, transforming, cleansing legacy data; Data defect
prevention, Data quality employee motivation, Information quality
maturity assessment, gap analysis

Database
Security

SQL injection attacks and counter measures; encryption; limiting
exposure in internet applications; risk management: attacks and
countermeasures; Server Security management

Data sources
and advanced
types

Accessing external data sources; use of search engines; purchasing
data; image data; knowledge representations

Database Server

Database server requirements, connecting from application to
database, simple rules (no path to internet; local connection only),

mounting and updating a database, use of script to enable application
security; multi-user connections; replication and backup

Table 2. Database and Data Management

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 55

www.aitp-edsig.org /www.isedj.org

Personal Skills-
encouraging,
listening, being

Organized,
principles of
motivation

Having integrity, honesty; responsible attitude of personal
responsibility; encouraging, listening, negotiating, being

persuasive, being organized; Personality types and relationships
(DISC, MBTI, COLOR)

Professionalism-self
directed, leadership,

time management,
certification,
conferences

being self-directed and proactive, personal goal setting,
leadership, time management, being sensitive to organizational
culture and policies; personal development (conferences, read
literature, use self-development programs)

Professionalism-
committing to and
completing work

Persistence, committing to and rigorously completing
assignments, can-do

Cognition

concepts of learning; sequential levels of learning (recognition,

differentiation, use / translation, apply); relationship of learning
and emotion

Mathematical

Fundamentals

Mathematics (algebra, trigonometry, variables, operations,

expressions, logic, probability, limits, statistics)

HCI Principles:
underpinnings

Cognitive Process, education learning levels, interface design,
concepts of usefulness, the 8 golden rules

Critical Thinking
fact recognition, argument strength, analysis (break into
components), synthesis(assembling the components);
abstraction; qualitative research principles

Individual behavior
learning styles (visual, auditory, kinesthetic), motor skills,
linguistic mechanisms, auditory mechanisms

Communication-oral,
written, multimedia,

empathetic listening

oral, written, and multimedia techniques; communicating in a
variety of settings; empathetic listening, principle centered
leadership, alignment technical memos, system documentation,

technical requirements; necessity for involvement; development
of resistance

Develop Consultant
Characteristics

build relationship, identify need, present alternatives, provide
assistance as needed, make recommendations, be supportive

Ethics-
theory/concepts,
setting an ethical
example

ethical theory and concepts, codes of ethics--AITP/ACM; setting

an ethical example; ethical policies, intellectual property,
hacking, identity theft

Learning to learn

journals, learning maps, habits of reading, listening to tape/cd,
attending professional seminars, teaching others, meta-thinking,
life long learning; human learning: recognition, differentiation,
use, application, analysis, synthesis and evaluation

Teams-team
building, vision /
mission
development,
synergy building and
problem solving;
leadership

team building, vision and mission development, planning,
synergistic consensus team leadership, leadership development,
negotiation, conflict resolution

Collaboration
support by IT

It Solutions for Individuals and Groups, Problem solving
mechanisms in support of meetings, consensus development

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 56

www.aitp-edsig.org /www.isedj.org

Impact of IT on
Society

IT impact on individuals, on groups, on enterprises, on societies;
knowledge work and support by IT; computer industry and
society, work force requirements

IT Career Paths
Programmers, Application Developers, Information Analyst,
Systems Analysis, Data Management, CIO, CTO

Table 3. Personal, Interpersonal and Organizational Skills

Learning Business
Process and
Environment

learning business process and environment, exchanges,
competitive position, e-business, global concepts, business
models, Creating value, Value chain, improving value creation;
financial markets, determining value of securities; organizational

models

Accounting,
Distribution, supply
chain management,

Finance, HR,
Marketing,
Production, payroll,
inventory processing

accounting (language of money, representations of accounts,
reports), distribution (purchasing, supply chain management,
distribution systems), finance, human resources (laws,

compensation, recruiting, retention, training), marketing (the
market, customers and customer satisfaction, market strategies,
cycle time and product life cycle; environment scanning),
production, international business

Business Problems
and Appropriate

Technical solutions,
end-user solutions

business problems and appropriate technical solutions;
quantitative analysis and statistical solutions; decision
formulation and decision making; business intelligence systems;
business use of spreadsheets, desk-top databases, presentation
software, word processing and publishing

Modes of Business
B to B, B to C, C to C, B to G, C to G; organizational span
(individual, work group, department, enterprise, inter-
organization)

Regulations
Federal and State Regulations; compliance, audits, standards of
operation (e.g. FAR); agencies and regulatory bodies

IT Standards ITIL, CORBA

Business Law

legal system, courts, dispute resolution processes (mediation,

arbitration, conciliation, negotiation, trial); types of

organizations, contracts, warranties, and product liability; policy
and management of intellectual property

Disaster Recovery

identify essential system functions to support business functions
for restoration and recovery after a catastrophic failure; define

requirements for critical system performance and continuity of
business function; backup, replication, fail-over processes in
support of system performance subsequent to a disaster

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 57

www.aitp-edsig.org /www.isedj.org

Enterprise
Information
Systems and
Business
Intelligence

Alignment of business processes with large system structures;
configuration of large systems; implementation and training;

integration with business intelligence capabilities and
optimization of business procedure.

IT Support for
Business Functions

Business systems (budget, personnel, capital, equipment,
planning, training, control); Specific systems (production,

financial, accounting, marketing, supply chain, securities,
taxation, regulation compliance)

Operational Analysis

scheduling, allocation, queuing, constraint theory, inventory
management models, financial models, forecasting, real time

analysis; linear programming, simulation

Managing the IS

Function

Development, deployment, and project control; managing
emerging technology; data administration; CIO functions;

security management; disaster planning and business continuity
planning

Information Center

Service

PC Software training and support; application and report
generators, IS Development, Development and operations staff;

corporate application management, data safety and protection,
disaster recovery

Table 4. The Context of Information Systems

Strategic
Utilization of
Information
Technology

use of IT to support business process, integration of customer
requirements; team development of systems, reengineering concepts and
application, methodologies, interfaces, systems engineering, CRM and ERP
concepts; Agile, Object, Lean UX and other methodologies; identification
of security issues, incorporation of security concepts into designs ensuring

security principles; development of IS policy

IT Planning

value of IT, integration of IT in reengineering, IT policy, end user
advocacy and optimization, IT advocacy and alignment outsourcing / off-
shoring (risks, benefits, opportunities), training; capture security controls

and requirements, ensure integration of security objectives, assurance of

people and information protection; ensure security in interface
considerations

IT and
Organizational
Systems

types of systems relationship of business process and IT, user developed
systems, use of packaged software, decision systems, social systems;
information assurance and security designs; IT support of end-user
computing, group process and computing, and enterprise solutions

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 58

www.aitp-edsig.org /www.isedj.org

Information
Systems
Analysis and
Design

investigate, information analysis, group techniques / meetings design,
systems engineering, Information architectures, enterprise IS

development with strategic process; consideration of alternatives;
application and security planning; conversion and testing, HIPAA, FERPA,
ISACA, GAAP; requirements analysis. cost analysis, cost/benefit,
satisfaction of user need / involvement, development time, adequacy of
information assurance controls; consideration / adoption of emerging
technology (e.g. mobile computing), consideration of optimal life-cycle

methodologies and tools; physical design (database, interface design,
reports design, programming, testing, system testing)

Decision

Making

personal decision making, Simon’s model, structured, unstructured
decisions, decision tools, expert systems, advanced problem solving (Triz,

Asit); business intelligence, advanced reporting technologies.

Systems
Concepts, Use
of IT, Customer

Service

develop client relationships, understand and meet need, involving the
client at all phases of the life-cycle; review of customer functional
requirements; consideration of improved business process; assurance of

customer needs into requirements analysis

Systems
Theory and

Quality
Concepts

system components, relationships, flows, concepts and application of
events and measurement, customer expectations, quality concepts;

boundaries, open systems, closed systems, controlled systems;
effectiveness, measuring system performance, efficiency

CMMI and
Quality Models

quality culture, goals; developing written standards, templates; process

metrics development process improvement through assessment, lessons

learned

Systems
Engineering
Techniques

scope development, requirements determination, system design, detailed
design and specifications, Enterprise Architecture, System architecture,

information architecture, make or buy, RFP/Bid Process verification and
requirements tracing, validation planning and test case development, unit
testing, integration, system testing, system certification, system
acceptance, installation and operation of the system, post-implementation
audit; ensuring security designs, secure configuration management;
agency evaluation and validation of requirements; ensuring customer
training and incorporation of installation teams

End-User
Systems

individual software: word processing, spreadsheets, database,
presentation, outlining, email clients, statistical packages; work-group
software; enterprise software: functional support systems (e.g. PI),

enterprise configuration

Enterprise
Information
Systems in

Support of

Systems that support multiple enterprise functions (e.g. SAP); Electronic
Medical Record Systems for physician-groups, and for hospitals; Cloud
solutions for individual and organizational support; TPS, DPS, MIS, EIS,
Expert System

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 59

www.aitp-edsig.org /www.isedj.org

Business
Functions

Emerging
Technology

Bleeding edge technologies; testing and adoption of new technologies;
cost benefit of new technologies

Systems Roles
in
Organizations

operations, tactical, strategic

Organizational
Models

Hierarchical, Flow Models, Matrix

Metrics and
Improvement

Development metrics, quality metrics, metrics in support of 6-Sigma or
CMMI, customer satisfaction; Learning Cycles (Understand the problem,

plan, act, measure/reflect and learn and repeat the cycle), Lessons
Learned (what was supposed to happen, what happened, what was
learned, what should be done, communicate the observations)

Hardware
selection,

acquisition,
and installation
for project

Determination of capacity for process, storage devices, and
communication systems; consideration of alternative hardware; bid
preparation, bid evaluation, and final system selection; hardware
installation and testing; system deployment and initial operation.

Facilities

Management

Physical facility construction, access control, fire protection, prevention of

flooding; power management (public utilities, generators--fuel storage,

testing, battery management--lightening protection), air conditioning, fire
prevention systems, physical security, protection from weather

Maintenance

Programming

Fault detection and isolation, code correction, code testing, module

testing, program testing; code, module, system documentation

Decision
Structure

structured, unstructured decisions, decisions under uncertainty, heuristics,
expert systems

Decision Tools

application results, idea generation, Delphi, nominal group, risk analysis,
cost benefit analysis

Structured
development

process flows, data flows, data stores, process logic, database design,
program specifications and design

Object
Oriented
Development

UML; class diagrams, swim lane, use case, sequence diagram, design

patterns

Screen Design

menus, input forms, output forms and reports, linkage of screen modules,
navigation

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 60

www.aitp-edsig.org /www.isedj.org

Frameworks
and Libraries

object libraries, source libraries, language extensions

Reports
Development

simple lists, control break--group by--reports, error reports, exception
reports, graphics reports, audit reports

Develop Audit
Control
Reports

Document new accounts with public information: names, addresses,
organizations, items, events

Develop cash

audits

deposits, batches, accounting variable controls, accounting distributions

Audit analysis
of separation
of function

establish roles of staff, validate transactions, validate personal functioning

Audit risk and
disaster

recovery
strategies

determine risks, verify adequacy of mitigations; audit failure processes,
replication, and failover mechanisms; audit backup strategy and physical
results

Table 5. Organizational Systems Development

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 61

www.aitp-edsig.org /www.isedj.org

Strategic
Utilization of

Information
Technology

use of IT to support business process, integration of customer requirements;
team development of systems, reengineering concepts and application,
methodologies, interfaces, systems engineering, CRM and ERP concepts; Agile,

Object, Lean UX and other methodologies; identification of security issues,
incorporation of security concepts into designs ensuring security principles;
development of IS policy

IT Planning

value of IT, integration of IT in reengineering, IT policy, end user advocacy and
optimization, IT advocacy and alignment outsourcing / off-shoring (risks,

benefits, opportunities), training; capture security controls and requirements,
ensure integration of security objectives, assurance of people and information
protection; ensure security in interface considerations

IT and
Organizational

Systems

types of systems relationship of business process and IT, user developed
systems, use of packaged software, decision systems, social systems;
information assurance and security designs; IT support of end-user computing,

group process and computing, and enterprise solutions

Information
Systems Analysis
and Design

investigate, information analysis, group techniques / meetings design, systems
engineering, Information architectures, enterprise IS development with strategic
process; consideration of alternatives; application and security planning;
conversion and testing, HIPAA, FERPA, ISACA, GAAP; requirements analysis.
cost analysis, cost/benefit, satisfaction of user need / involvement, development
time, adequacy of information assurance controls; consideration / adoption of
emerging technology (e.g. mobile computing), consideration of optimal life-cycle

methodologies and tools; physical design (database, interface design, reports
design, programming, testing, system testing)

Decision Making

personal decision making, Simon’s model, structured, unstructured decisions,

decision tools, expert systems, advanced problem solving (Triz, Asit); business
intelligence, advanced reporting technologies.

Systems
Concepts, Use of

IT, Customer
Service

develop client relationships, understand and meet need, involving the client at all
phases of the life-cycle; review of customer functional requirements;

consideration of improved business process; assurance of customer needs into
requirements analysis

Systems Theory
and Quality

Concepts

system components, relationships, flows, concepts and application of events and
measurement, customer expectations, quality concepts; boundaries, open
systems, closed systems, controlled systems; effectiveness, measuring system
performance, efficiency

CMMI and Quality

Models

quality culture, goals; developing written standards, templates; process metrics

development process improvement through assessment, lessons learned

Systems
Engineering
Techniques

scope development, requirements determination, system design, detailed design
and specifications, Enterprise Architecture, System architecture, information
architecture, make or buy, RFP/Bid Process verification and requirements tracing,
validation planning and test case development, unit testing, integration, system

testing, system certification, system acceptance, installation and operation of the
system, post-implementation audit; ensuring security designs, secure
configuration management; agency evaluation and validation of requirements;

ensuring customer training and incorporation of installation teams

End-User Systems
individual software: word processing, spreadsheets, database, presentation,
outlining, email clients, statistical packages; work-group software; enterprise

software: functional support systems (e.g. PI), enterprise configuration

Enterprise
Information
Systems in
Support of
Business

Functions

Systems that support multiple enterprise functions (e.g. SAP); Electronic Medical
Record Systems for physician-groups, and for hospitals; Cloud solutions for
individual and organizational support; TPS, DPS, MIS, EIS, Expert System

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 62

www.aitp-edsig.org /www.isedj.org

Emerging
Technology

Bleeding edge technologies; testing and adoption of new technologies; cost
benefit of new technologies

Systems Roles in
Organizations

operations, tactical, strategic

Organizational
Models

Hierarchical, Flow Models, Matrix

Metrics and
Improvement

Development metrics, quality metrics, metrics in support of 6-Sigma or CMMI,
customer satisfaction; Learning Cycles (Understand the problem, plan, act,
measure/reflect and learn and repeat the cycle), Lessons Learned (what was
supposed to happen, what happened, what was learned, what should be done,
communicate the observations)

Hardware
selection,
acquisition, and
installation for

project

Determination of capacity for process, storage devices, and communication
systems; consideration of alternative hardware; bid preparation, bid evaluation,

and final system selection; hardware installation and testing; system deployment

and initial operation.

Facilities
Management

Physical facility construction, access control, fire protection, prevention of
flooding; power management (public utilities, generators--fuel storage, testing,
battery management--lightening protection), air conditioning, fire prevention
systems, physical security, protection from weather

Maintenance
Programming

Fault detection and isolation, code correction, code testing, module testing,
program testing; code, module, system documentation

Decision Structure
structured, unstructured decisions, decisions under uncertainty, heuristics, expert
systems

Decision Tools
application results, idea generation, Delphi, nominal group, risk analysis, cost
benefit analysis

Structured
development

process flows, data flows, data stores, process logic, database design, program
specifications and design

Object Oriented
Development

UML; class diagrams, swim lane, use case, sequence diagram, design patterns

Screen Design
menus, input forms, output forms and reports, linkage of screen modules,
navigation

Frameworks and
Libraries

object libraries, source libraries, language extensions

Reports

Development

simple lists, control break--group by--reports, error reports, exception reports,

graphics reports, audit reports

Develop Audit
Control Reports

Document new accounts with public information: names, addresses,
organizations, items, events

Develop cash

audits
deposits, batches, accounting variable controls, accounting distributions

Audit analysis of
separation of
function

establish roles of staff, validate transactions, validate personal functioning

Audit risk and

disaster recovery
strategies

determine risks, verify adequacy of mitigations; audit failure processes,
replication, and failover mechanisms; audit backup strategy and physical results

Table 6. Skills in Analysis and Design Course

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 63

www.aitp-edsig.org /www.isedj.org

Topic Description

1. Data Definition

Data typing and relationship to information

2. Data Modeling

Implementing the requirements

3. Data Schema Relate “real” objects to data representation

4. Entity-Relationship
Diagrams

Specify the relationship between objects and how they
may transform each other over time

5. Normalization How to specify and structure schemas such that the
observable relationships between entities can be
maintained.

6. Referential Integrity To ensure that we preserve the logical nature of

relationships as dynamicity is introduced to the data
store

7. Structured Query
Language

The ability to issue instructions and questions to the
RDBMS for results

8. Transactions As the database lives and operates, data integrity is
maintained by ensuring that transactions are Atomic,
Consistent, Isolated, and Durable.

9. Concurrency Control The RDBMS must handle multiple transactions and
retain the ACID properties of each transaction.

10. Implementing the Data
Model

Using DDL to write scripts to build the physical model

11. Ensuring Data Quality Controlled attributes, data types

Table 7. Data Management Topics in Course

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 64

www.aitp-edsig.org /www.isedj.org

Topic

Description

1. Problem setting and
problem solving

This is perhaps the primary competency that
programming affords ANY student who undertakes the
study of programming. Problem setting is an
understanding of the problem domain and an articulation
of the problem. Problem solving is the root of algorithmic

thinking and the ability to harness the mental acuity that
programming affords

2. Data (and Information) Students must be aware of how data and information can
be classified, quantified, notated, and accessed for
transaction. Moreover, data transformed in act of

problem-solving is often transformed as information.

3. Hardware and Software Our students must be aware, even if at a cursory level –
of the machines to which they communication and collude
for computing outcomes.

4. Input and Output If we accept that computer programs are reducible to
Input -> Processing -> Output, then the basics of input
and output, as facilitated by whichever programming
language is being used, is covered

5. Logic Students will solve problems, and transact and transform
data, using tools that are rooted in logic. Logic is
fundamental to problem solving as it prescribed valid
reasoning

6. Algorithms While both logic and algorithms can taken to a deep
mathematical space, this will not be necessary for
information systems students. Rather, algorithms teach
students to express a methodical and reliable expression
of their problem-solving.

7. Graphical User Interfaces As a component of success is retention, our previous
literature suggests that captivating and holding attention
is key. Therefore, the event-driven Graphical User
Interfaces that principally govern students’ extant
utilization of computing should appear earlier than later.
The topic can’t be mastered at this stage, but the

immediacy and relevance of a GUI can help towards the
journey of success.

8. Control Structures /

Conditional Logic

This is the essence of programming and a stage where

coaching, repetition, and similar antecedents to mastery

must be engaged. These essential building blocks must
be engaged throughout the period of instruction (at all
levels leading up and during the capstone).

9. Debugging Errors of syntax and semantics will plague both the
beginner and professional. Tools, techniques, and

strategies for reviewing and correcting these errors are
fundamental.

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 65

www.aitp-edsig.org /www.isedj.org

10. Data Structures (Static and
Dynamic)

At the very least, both arrays (static) and linear/list
(dynamic) data structures are requisite for dealing with
data complexities of any “real world” project.

11. Modularity I
(Functions/Subs/Methods)

As problems become more complex, students will need
techniques and approaches for modularizing and
compartmentalizing problems

12. Scope, Promotion, Casting Now that problems and programs become more complex,
handing data across and within modules becomes a
concern.

13. Modularity II (OOP) Object-oriented programming offers a paradigm such that

programs can more closely fit the characteristics of the
problem space. Makes programming “fit” more closely

with data management and systems analysis and design.

14. Error Handling Complex programs are executed in an equally complex

computing environment such that anticipated failures can
be addressed with error handling.

15. Data Persistence The complex computing environment requires that data is
persisted beyond runtime. This is where interaction with
local and network stores becomes important.

16. Data Connectivity Programs frequently “converse” with other programs over
data communication networks. Students must be aware
of how to programmatically utilize appropriate
communication protocols (TCP, UDP, FTP, SSH, etc.)

17. Modularity III
(Components, Libraries,
etc.)

Once a complex set of programs are collaborating in
unision, we are truly developing information systems. As
this work is performed overtime, the need to both
develop and utilize (internal and external) code and
binary libraries becomes evident.

18. Data Structures II Increase complexity also means that data may need to be
stored and manipulated in more sophisticated data
structures. Even if these data structures are appropriated
by way of a vendor-supplied library of these structures
(such as C++’s STL or Java/.NET’s Collections API) ,

students will need to understand and use common data
access and manipulation algorithms.

19. Generics/Templating OOP and even data structures and algorithms benefit
from generic and template designs.

20. Patterns and Principles As students prepare to work with a systems development
project, the phenomenon of patterns and principles are
worth consideration. Decades of practice has wrought
various meta, design, and architectural (MVC, etc.),
“patterns” that codify “best practice.

21. Multi-threading and
Parallel Computing

Programs will operate in a multi-tasking and multi-
processing environment. Approaches to facilitating this in
programming languages are unique and must be studied

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 66

www.aitp-edsig.org /www.isedj.org

(lest the students are fooled into thinking this is “magic”).

22. GUI Variations

(Web/Mobile)

While the web and mobile paradigms can be argued as

proposing unique challenges which warrant consideration
beyond “GUI variations,” we use this term for
convenience. Furthermore, library and tool support for
developers on these platforms make workflows for
making GUI-oriented programs very similar (Visual
Studio, XCode, .NET and ASP.NET, Appcelerator Titanium,

PhoneGap, Ximian, etc.)

23. Major Web-Oriented
Application Development
Framework (ASP.NET)

Ultimately, to write comprehensive and contemporary
information systems/software solutions, students will
need to be versed in a technology stack that provides
full-service features for systems development – design,
development, libraries, frameworks, testing,

implementation, modification, and update. A

representative tool for this is Visual Studio and the .NET
Framework. For instance, in the web space, ASP.NET and
ASP.NET MVC can integrate with Visual Studio, .NET, IIS,
and Microsoft SQL Server for a fully-integrated
development experience.

Table 8. Programming Topics in Courses

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 67

www.aitp-edsig.org /www.isedj.org

Lack of Student
Maturity

There is little doubt that students exhibit a paucity of maturity in many
regards - failure to come to class; failure to have an attitude of success;

immature reaction to our correction; and returning a haughty response.

Lack of Preparedness
from High School

Some of the difficulty in achieving success may be due to high school
preparedness (Shannon et al 2012) in critical thinking (Shannon et al,
2009, 2010). In those studies, almost 90% of high school students could

not apply critical thinking skills. Basically, students entering into college-
level work are not capable of interpreting data, of problem solving, or of
proposing solutions.

Failures of Delivery Lecturing to the student about computer programming is often not a
successful method to teach such topics. Students should have hand-on

sessions in a computer lab setting to “try” specific programming tasks

along with the instructor. A lack of hands-on work with the instructor can
lead to frustration on the student’s part when he runs into various
“strange” computer behavior, such as integer math operations.

A student may come to the course unprepared in terms of a background in
logical thinking and or mathematics. They could also have a fear of a

programming course because they have a fear of math. A good instructor
can create good exercises in both logic and math operations to help
encourage the student lacking in these skills.

Moving too fast

It is always difficult to decide what the pace of the course should be.

There will be some students who will understand the programming
concepts better than others. There will also be some who will never
understand the concepts. This is the age old question: “what should the
pace of the class be”? Perhaps at the beginning of the class meeting, the
instructor could announce what concepts are being covered on that

particular day. The students who report they have read the section in the
book and are comfortable with the topic could be sent to a lab on campus

to complete an exercise with that concept. Thus they can work at a faster
pace than those who stay to listen to the entire lecture on the concept.
One of the authors has successfully used this method with several
students each semester. Another related issue is the lack of available
tutoring for advanced students. Often there are tutors available for a
beginning programming course, but not for an advanced one. Therefore,

a great deal of pressure falls on upon the instructor to provide help
outside of class to struggling students. Perhaps a cohort or group-based
project could help with this issue.

Failures of Curricular
Structure

There are a number of factors which might contribute to failure in the introductory

programming sequence (Hoskey, et al, 2010). Worse yet, “Numerous studies document high

drop-out and failure rates for students in computer programming classes. Studies show that

even when some students pass programming classes, they still do not know how to program.”

(Hoskey et al 2010):

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 68

www.aitp-edsig.org /www.isedj.org

Table from Hoskey et al, 2010 showing variables explored and
significance in failure from programming class.

Delay Between
Courses

Figure from Hoskey et al, 2010 shows a clear decrease in student
performance as time is allowed to pass after taking the initial class.

Failures of
Leadership,
Motivation, and

Correction

As is the case with John Wooden’s advice on coaching, our student’s flaws
are not entirely our fault or responsibility, but they are our problem.
While this position may be anathematic to many, a coaching pedagogy

would dictate that we engage all of our students with leadership, maturity,
and correction.

Choice of Wrong
Programming
Language

White (2012) studied the impact on cognition while learning Visual Basic.
He found that “… since left hemispheric cognitive style is required to be
successful in Visual Basic and Visual Basic does not create such cognitive
style, this research, as well as other research, supports the need for
prerequisites for Visual Basic to ensure students’ success.”

More with Less

A common mistake, given the length and depth of topics we must teach in
the programming sequences, is to attempt to cover the “full menu” of
topics. In the interest of positive forward progress and the maintenance
of confidence and focus, students can gain the essence of a topic without
full grasp. For instance, for an information systems student, can the
while-loop be taught as their only tool for repetition structures? For a

considerable length of time, this tool will suffice. It may turn out then,
that after using the while-loop and developing real craft and mastery with
it, the introduction of the for-loop may be trivial and intuitive to the
student with a greatly reduced (if not eliminated) period of instruction
from the educator.

Scope Creep versus
Establishing
Confidence

We seek to avoid scope creep (or the “kitchen sink” approach) as our aim
is success – we can’t teach them everything. Rather, we advocate for an
approach which lets students be good now! We advocate for confidence
over competence. We must be very careful to avoid over complicating

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 69

www.aitp-edsig.org /www.isedj.org

presentations lest students fall into a “whooped dog syndrome”.

Trying to Put too
Much in the Course

We are reminded of this maxim: it takes time to build humans. Do not go
faster with the material than the class can handle. As new programming
tools are introduced, students should be given assignments and/or lab
work with those tools. They need time to incorporate the new
programming tools into their own programming knowledge base. The
makeup of the students in a programming course will differ each time the

course is taught, therefore, what is covered may be slightly different from
one semester to another. It will not be possible to cover everything in the
text book. The instructor should develop a list of “must have” topics that
are required teaching each semester and another list of “add on” topics
that could be taught if the class is progressing at a faster pace.

Table 9. Possible Failure Mechanisms in Programming Courses

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 70

www.aitp-edsig.org /www.isedj.org

Everyone Can
Succeed

The character in the Movie “Stand and Deliver” portrays is a real-world
Jaime Escelente high school Advanced Placement (AP) Calculus teacher.

What is remarkable about his story is that ALL of his students PASS the
difficult AP exam. What is even more remarkable was that all of the
students were fraught with many life-problems. His devotion and
coaching style netted 17 years of repeat performance. “He rejected the
usual markers of academic excellence and insisted that regardless of a
student's GPA, he would let her take the AP course if she promised to

work hard.” (Mathews, 2010)

Use Tutoring When especially difficult topics are introduced, such as methods/functions
and abstraction through class definition, extra class sessions could help.
Tutoring on campus is also something that is extremely beneficial. Good
student should be encouraged to sign up to be tutors. We should use

these advanced students as experts. Interestingly, it is a wonderful way
for the student who is doing the tutoring to increase their own coding skill
set. Debugging someone else’s code is difficult and helps both students
on each side of the tutoring process.

Write Short Sample

Programs

Writing very short sample programs to illustrate one specific programming

concept can be very helpful to the student. Often the programming books
are difficult for the student to read, in that a specific programming
concept may be embedded within a complicated example. The student is
just trying to see where to put the beginning ending braces for a loop and
the book may have an example of a loop running across three pages.
Therefore, the sample code can be a valuable resource to the students.

Project Based
Learning

Researchers have investigated project-based learning in a wide variety of
disciplines and settings. They have generally found project-orientation to
be effective in increasing student motivation, improving student problem

solving, improving higher-order thinking skills, addressing different
learning styles, and providing students with an integrated learning

situation (Hutchings & Wutzdorff, 1998).

The successful completion of each programming assignment should also
include the analysis and design of the problem, data requirements and
logic needed to code and test the program. Students should be required
to turn in their pseudo code and/or their design with each programming

coding effort. Programming can be viewed as a process of building a plan,
in the form of source code, to achieve a certain goal (McCauley,
Fitzgerald, Lewandowski, Murphy, Simon, Thomas, and Zander, 2008).
But Kazemian and Howles found that among the students they surveyed,
only 5 percent of the students always developed a design prior to starting
to program (Kazemian, Howles, 2008). Therefore, designing a solution
before coding should be a requirement for the first time programmer.

Large Coding Projects

In one study it was found that the beginning programmer can create very
large projects by focusing on the programming concepts as they are
needed for the project (Baugh and Kovach, 2012). In the course studied,
students were first given a number of small programs to write that
highlighted the basic building blocks of programming; input, output,

variables, math operations, selection (if) statements, loops, and other
control structures. Then a programming project was initiated that required
these concepts, as well as the use of new programming concepts, as each
phase of the project was assigned. This method of teaching programming

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 71

www.aitp-edsig.org /www.isedj.org

showed a great deal of success with 60% of the students receiving an A
for the course.

Semester coding projects allow the student to see the real value of a
computer program and what may be required in the real world. The
students also feel a great sense of pride and accomplishment in the
creation of a programming project that is many, many lines and pages of
code. Susan Wojcicki Senior Vice President, Google said “Learning to code
makes kids feel empowered, creative, and confident.”

(http://www.code.org/quotes) Students who are empowered, creative,
and confident are the qualities we expect to witness in those who have
successfully completed a large programming project.

Cohort learning

Creating a cohort of students to go through the curriculum together is
another approach that has shown success in other areas of IS education.

In one study, IS Doctoral students who worked in a cohort for the three
years of their study reported that the main reason they felt they were
successful was because of the cohort approach (Baugh, Kohun, 2005).
The students reported that they were in it “together” and would do
whatever they could to insure that all “made it”. With a cohort approach,
multiple programming courses with continuity from one course to the next
would be easily accomplished. Students would be cheerleaders for each

other.

Group/Team Projects

Another possible method of teaching programming that may be successful
is allowing students to work in groups or teams on a coding project. This
approach is often used on lab assignments by these authors. Students

working together and helping each other can definitely have great
benefits. But for writing code, care must be taken to ensure that
everyone is helping with the code and it is not just one person who is
taking on most of the work. A way to ensure this is to test the students

on all concepts that are required in the specific programming assignment.
One instructor has all students explain their semester project code on a
final to insure that they actually wrote the code (Baugh, 2009). The

student will not be able to adequately explain the code if they did not
write it or help to write it.

Make it Relevant to
the Student

Making the course material relevant to the student has shown to produce
both increased student interest and success (Baugh, 2011). If the course

material can be made more interesting to the student, then he will be
more inclined to learn it. A real world project allows the students to “learn
better through a particular domain of their interest” and “see the practical
value of what they learned.” (Robbert, 2000)

Should an Introductory programming course be taught differently than an
doctoral level course? The first answer that one might give to this

question is yes, of course. But although the course work is obviously
different, the same approach for assignments can be used in almost any
IS course. If the course material can be made more interesting to the
student, then he will be more inclined to learn it. A real-world project
allows the students to “learn better through a particular domain of their
interest” and “see the practical value of what they learned” (Robbert,
2000).

One instructor designed a way to teach beginning C++ where the
students choose their own area of interest, and thus created their own
data set. (Baugh, 2011) Students wrote a menu-driven program that was

Information Systems Education Journal (ISEDJ) 12 (1)
ISSN: 1545-679X January 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 72

www.aitp-edsig.org /www.isedj.org

broken up into phases. At the completion of the project, each student’s
project performed the following tasks utilizing the data of the students
choice:

• Read data from data files
• Wrote data to data files
• Implemented various class structures
• Manipulated data in multi-dimensional arrays, including inserting,
deleting and modifying
• Coded various error checking functions

• Coded various search functions
• Coded reports
• Wrote user’s and programmer’s guides for the project

At the completion of this course, students reported that they were very
proud of the large coding project they had written. Again, most of them

had no previous programming experience. A number of the students said

that they spent a great deal of time on the project, but because of the
individualized data, the extra time was something they did not mind. They
reported that they felt that the project was more interesting to work on
because the data was of interest to them. One student said “without a
doubt this was one of the best classes I have ever taken.” Even the
beginning programmer can write a large project.

Bring in Former
Students

Bringing in former students from recent grads to accomplished
professionals gives students the opportunity to see how they might be
transformed in a few short years. Such speakers might spend time talking
about how they made this transition—yes, it took a lot of hard work, but
the benefits have become so large and exciting such as the ability to

support a family comfortably…!

Table 10. Successful Approach in Teaching Programming

