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Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. 
There are many decisions to be made when constructing and estimating a model in HLM including 
which estimation technique to use. Three of the estimation techniques available when analyzing data 
with HLM are maximum likelihood, restricted maximum likelihood, and fully Bayesian estimation. 
Which estimation technique is employed determines how estimates can be interpreted and the 
models that may be compared. The purpose of this paper is to conceptually introduce and compare 
these methods of estimation in HLM and interpret the computer output that results from using 
them. This is done for the intraclass correlation, parameter estimates, and model fit indices using a 
simulated dataset that is available online. The statistical program R is utilized for all analyses and 
syntax is provided in Appendix 1. This paper is written to aid applied researchers who wish to better 
understand the differences between the estimation techniques and how to interpret their HLM 
results. 

 
Hierarchical linear modeling (HLM) is an effective 

tool in social and educational research for analyzing 
data collected from groups. As with any analytical 
model, there are many decisions to be made when 
constructing and estimating a model in HLM (Peugh, 
2010). One of these decisions is the estimation 
technique to be used. Raudenbush and Bryk (2002) 
detail methods of estimation in HLM, including 
maximum likelihood (ML), restricted maximum 
likelihood (REML), and fully Bayesian estimation. ML 
or REML is typically the default setting for software 
estimating an HLM while fully Bayesian estimation is 
not. There are meaningful differences between 
estimation techniques and if these are not thoughtfully 
considered a poor choice may be inadvertently made. 

The purpose of this paper is to conceptually 
introduce and compare methods of statistical 
estimation in HLM and how the computer output 
resulting from the use of each may be interpreted. The 

analyses are conducted in R (Version 3.3.1; R Core 
Team, 2016), a free program available to anyone with 
an Internet connection. Syntax is provided in Appendix 
1 for all analyses conducted in this paper and sample 
output with references to tables displayed in the paper 
is available in Appendix 2. The techniques to be 
compared are maximum likelihood, restricted 
maximum likelihood, and fully Bayesian estimation. 
Empirical Bayes is another estimation technique that 
generally gives “shrunken” estimates compared to ML 
and REML, further discussion of which is not included 
in this paper but the curious reader is directed to 
Raudenbush and Bryk (2002). The output resulting 
from HLM implemented with ML, REML, and fully 
Bayesian estimation techniques will be compared for 
the intraclass correlation (ICC), estimates for intercepts 
and slopes, and model fit indices. This paper is written 
to aid applied researchers who wish to better 
understand the differences between the estimation 
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techniques and how to interpret their HLM results. To 
begin, an overview of the HLM framework is provided. 

Hierarchical Linear Modeling 

HLM in the social and educational setting models 
the interrelationships between people that live or 
interact in groups. For example, in a research study 
students may be selected from many classrooms. 
Students from the same classroom have common 
experiences and relationships that influence how they 
may respond to survey items or influence their 
measured ability on assessments. Having peers with 
positive attitudes may make one’s own attitude more 
positive or having an exceptional teacher may make 
everyone in a given classroom score higher on a math 
exam. This dependence on the class in which a student 
is enrolled in regards to the dependent variable violates 
the assumption of statistical independence. To be 
statistically independent, the observed responses or 
scores of individuals in the study must be independent 
of one another. This assumption is not tenable when 
students are from groups, such as classrooms or 
schools. When this violation occurs, the standard errors 
of parameter estimates in ordinary least squares 
regression will be underestimated, leading to higher 
rates of rejecting the null hypothesis (Osborne, 2000). 
HLM can be used to account for the violation of the 
independence assumption by modeling the hierarchy of 
the grouping structure. 

In HLM, the hierarchy of the grouping structure is 
comprised of levels, each with information pertinent to 
that level. In an educational setting, the first level may 
contain individual student information. This could 
include independent variables such as the race, sex, or 
previously measured ability of each student and a 
dependent variable such as standardized test score. The 
second level is a grouping level and can be the 
classroom in which a student learns. Independent 
variables in this second level could be the teacher’s age, 
number of years of experience, or class size. The 
second level accommodates for the dependence of 
student measurements within the same classroom. 
Another type of grouping is repeated measures, in 
which measurements at different time points (first 
level) are grouped within the individual (second level) 
who was measured. HLM can be further extended to 
include higher levels. For instance, students, 
classrooms, and schools may be three levels of data. 
For the purposes of this paper the discussion will be 

limited to two levels. These levels interact through 
related regression equations. 

HLM is a generalization of regression analysis, 
modeling the intercept and slopes in such a way as to 
either be constrained to a single value across groups or 
allowed to vary depending on group membership 
(Gelman, 2006). This is accomplished by equating the 
intercept and slope coefficients of the first level 
equation with equations on the second level. For 
example, a model with an intercept that is allowed to 
vary depending on group membership and a single first 
level predictor with a slope coefficient that does not 
vary by group membership would be specified as: 

Level 1: ݕ௜௝ ൌ ଴௝ߚ ൅ ௜௝ݔଵߚ ൅ ,௜௝~ܰ൫0ݎ							,௜௝ݎ  ௬ଶ൯ߪ
Level 2:  ߚ଴௝ ൌ ଴଴ߛ ൅ ,଴௝ݑ ,଴௝~ܰሺ0ݑ																 ఉబߪ

ଶ ሻ 
ଵߚ ൌ  .ଵ଴ߛ

(1)

 

In the first level, the response of person i in group 
j is equal to the intercept of group j plus the product of 
the independent variable of person i and the coefficient 
 ଵ (which is the same across groups). The interceptߚ
 are modeled by second level (ଵߚ) and slope (଴௝ߚ)
equations. The intercept is comprised of two terms, 
 ଴଴, which is the mean of all of the intercept terms forߛ
the groups, and ݑ଴௝, a residual term that represents the 
deviance of groups from the all-groups mean (ߛ଴଴). 
The residual term is normally distributed with a mean 
of zero and variance (ߪఉబ

ଶ ). Including the residual term 
in the intercept equation allows the intercept to vary 
according to group membership. The coefficient of the 
predictor is invariant, made evident by the exclusion of 
a residual term in the second-level equation. An 
invariant predictor coefficient means a change in the 
independent variable produces the same change in the 
dependent variable, regardless of group membership.  

Terminology describing the different terms in 
HLM as “fixed” or “random” is common and 
understanding their differences and when to use them 
is necessary when specifying a model. A fixed effect is a 
single value for all groups. If the intercept is specified 
as a fixed effect, then a single value is estimated for the 
intercept of all groups. If the coefficient of an 
independent variable is specified as a fixed effect, then 
the coefficient for that independent variable will be the 
same regardless of group membership. The second-
level equation for a fixed effect does not have a residual 
term. In equations (1), the coefficient of ݔ௜௝ is a fixed 
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effect. Fixed effects can be used when the intercept or 
slope of all groups are the same. If all terms in the 
model were fixed effects, then the model would be a 
standard regression model. 

A random effect allows each group to have a 
different parameter estimate. If an intercept is a 
random effect, then a separate intercept is estimated for 
each group. Likewise, if the coefficient of an 
independent variable is a random effect then each 
group will have a different estimate for that coefficient. 
An estimate is made random by the summation of a 
mean and a residual term in the second-level equation. 
In equations (1) the intercept is a random effect. The 
 ଴଴ term is the grand mean of the intercepts across allߛ
groups and the residual term (ݑ଴௝) is taken to be a 
value from a normal distribution with mean zero and a 
variance. Using random effects for both the intercept 
and the coefficients may mirror reality more accurately, 
even if differences between groups are small. However, 
a large sample is necessary when estimating many 
random effects because each group has a parameter 
that must be estimated, instead of estimating a single 
value shared by all groups. This may be a problem if 
there are many groups and many effects to be 
estimated. If it is possible to use random effects for all 
parameter estimates, it is the recommended approach 
(Gelman & Hill, 2007). 

HLM models can be described in different ways. 
Gelman and Hill (2007) describe models by which of 
the terms are allowed to vary. For instance, the 
equations (1) represent a varying-intercepts, fixed-slope 
model. It is named so because the intercept is the only 
aspect of the model that is allowed to differ by group. 
This approach will be taken to describe models 
presented in this paper. Additionally, because the 
discussion will often turn to the components of 
random and fixed effects, the terms “fixed” and 
“random” will be used to describe the components of 
each term similarly to the approach taken by Hayes 
(2006). In discussing the terms by their components, 
the components that are a single value are considered 
fixed and those that are normally distributed with a 
mean of zero and a variance are considered random. In 
the above set of equations, the intercept has a fixed 
component (ߛ଴଴) and a random component (ݑ଴௝). The 
slope does not vary but is instead equal to a single fixed 
component (ߛଵ଴). 

Estimation Techniques 

Maximum likelihood, restricted maximum 
likelihood (also called residual maximum likelihood) 
and fully Bayesian estimation are three methods of 
estimating the fixed components and variances of the 
random components in HLM. Each estimation 
technique has limitations and assumptions that must be 
taken into consideration when determining which to 
use. These three techniques are here briefly described.  

Maximum Likelihood 

Maximum likelihood estimation yields 
simultaneous estimation of fixed and random 
components by maximizing the likelihood function of 
the data (Corbeil & Searle, 1976). These estimates are 
those parameter values that were most likely to have 
produced the observed data (Myung, 2003). This 
maximization may not be possible in closed form; 
therefore, an iterative procedure such as expectation-
maximization or fisher scoring may be required 
(Raudenbush & Bryk, 2002). ML works well when 
sample sizes are large and when there are many groups 
at the second level. However, when either or both of 
these are small, the variances are negatively biased 
(Peugh, 2010; Raudenbush & Bryk, 2002). To account 
for these limitations, REML can be employed.  

Restricted Maximum Likelihood 

The primary difference between ML and REML is 
in the estimation of variances (Peugh, 2010). In ML, 
the variances are estimated as if the fixed components 
were known and therefore measured without error. 
REML accounts for the fact that fixed components 
were estimated when estimating variances. By doing so, 
REML estimates are less biased than ML estimates, 
particularly when the number of groups is small. The 
mathematics of REML is beyond the scope of this 
paper, as it requires matrix algebra with error contrasts, 
but the process is outlined here. First, an ordinary least 
squares regression model is fit using only the fixed 
components. The residuals of this regression are then 
modeled and variances and covariances are estimated 
by maximizing the likelihood of the residuals (Searle, 
Casella, & McCulloch, 2006, pg. 250). This process will 
require an iterative procedure to determine final 
variance estimates (Corbeil & Searle, 1976), but the 
computer does this. Generalized least squares (GLS) 
estimates for the fixed components are then derived 
using the variances and covariances estimated in the 
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previous step. The GLS estimates may be the same as 
the original fixed components regression, but this is not 
always the case and GLS estimates are retained. REML 
estimates for variances are typically larger than ML 
estimates, particularly for higher order variances. When 
the number of groups is small, the variance estimates 
when using ML will be smaller than the estimates when 
using REML approximately by a factor of 

 
ሺ௃ିிሻ

௃
, (2)

  
where J is the number of groups and F is the 

number of fixed components (Raudenbush & Bryk, 
2002). As the number of groups increases relative to 
the number of fixed components the difference 
between REML and ML diminishes in regards to 
variance estimates. Differences do remain between 
REML and ML in regards to model fit indices. 

Model selection is to be discussed later in this 
paper, but an important caveat when using REML 
estimation can be made here. Because of the manner in 
which REML adjusts for the uncertainty of the fixed 
components in the estimation of residual variances, 
models that are fit using REML can be compared if 
they differ only in their random components (Peugh, 
2010). In REML, the random components are 
estimated so as to explain the variance left after 
removing the influence of the fixed components with 
the ordinary least squares regression. If models have 
different fixed components, then the remaining 
variance to be explained by the random components is 
no longer the same across models and comparisons are 
not sensible. Therefore, caution must be taken when 
fitting and comparing models using REML. The final 
estimation technique is Bayesian estimation. 

Bayesian Estimation  

Full explanation of Bayesian estimation and its 
application to various research methods are beyond the 
scope of this article. A brief introduction is provided 
here, but resources are available for the curious reader. 
For article introductions see Kruschke (2013) and 
Louis (2005). For textbooks on the topic, see Carlin 
and Louis (2009), Gelman et al. (2013), and Kruschke 
(2015). 

In the application of fully Bayesian estimation, 
researchers use probability distributions to model the 
credibility of possible parameter values. In its simplest 

form, three distributions are considered. The first is the 
prior distribution, which models the prior belief that 
each possible parameter value is true before the analysis 
of new data. The prior belief can be specified based on 
previous research or expert opinion. The second 
distribution is the data likelihood, which is the 
likelihood of parameter values based only on the data 
collected in a given study. This is the same likelihood as 
was maximized using ML and REML. The prior and 
the likelihood are mathematically combined with the 
use of Bayes’ Theorem. The outcome of a Bayesian 
analysis, the posterior, is the third probability 
distribution. The posterior models the probability of 
each possible parameter value being true, given the 
prior and likelihood. The greatest difference between 
Bayesian estimation and the other estimation 
techniques is in the use of prior and posterior 
distributions. These are further detailed next. 

The prior distribution can take many shapes 
depending on the credibility the researcher wishes to 
assign to parameter values a priori. Two broad 
classifications of prior distributions are uninformative 
or informative. Uninformative priors are relatively flat 
compared to informative priors, indicating that any 
value for the parameter is plausible a priori. For 
example, an uninformative prior in the context of 
student ability measured by a test instrument may be a 
normal distribution with mean zero and standard 
deviation 100. Such a broad distribution gives nearly 
equal credibility to all possible (and impossible) 
parameter values. The posterior is essentially a 
weighted combination of the prior and likelihood 
distributions, so an uninformative prior allows the data 
the greatest role in determining the posterior. HLM is 
typically used with a large number of subjects and 
groups, in which case the influence of the prior on the 
posterior is minimal. The prior has the greatest 
influence on the posterior when the number of groups 
or samples sizes within each group is small or when an 
informative prior is used. 

The use of an informative prior is justified when 
evidence exists indicating that certain parameter values 
are more likely to be true than others. Instead of 
assigning equal credibility for all values a priori, an 
informative prior can be used to assign higher 
credibility to values that have been found in the 
literature or are deemed more reasonable by experts. 
The results of Bayesian estimation would be interpreted 
in the same manner across prior specifications, with 
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consideration given to the prior and the data likelihood. 
In the analysis examples provided later in this paper, 
only uninformative priors will be used. After a prior has 
been specified and the information from it and the 
likelihood have been combined, the posterior 
distribution is used for estimation. 

From the posterior distribution point and interval 
estimates are determined. Using the posterior 
distribution, the researcher can identify the parameter 
value that is most likely to be true, based on the prior 
and likelihood, and make probabilistic statements 
concerning its credibility. Point estimates can be 
determined by finding the mean, median, or mode of 
the posterior distribution. The highest density interval 
(HDI; Kruschke, 2015) is a range of values with a given 
probability of containing the true value. Because the 
posterior is a probability distribution, the researcher 
need only sum the area under the posterior curve to 
determine the probability of any range of values.  The 
95% HDI indicates the range of values in which there 
is a 95% chance that the true value lays. A confidence 
interval does not have the same probabilistic 
interpretation but instead must be understood in the 
context of replication (Greenland et al., 2016).  

In most cases, the posterior distribution is 
impossible to mathematically derive and instead 
Markov Chain Monte Carlo (MCMC) simulation 
techniques must be employed. Samples from the 
posterior distribution are repeatedly taken, creating a 
distribution of sampled values. The samples are then 
compiled into a distribution used as the posterior. The 
sampling process starts with a single value and 
iteratively converges to the posterior. Multiple starting 
values can be used to produce separate “chains” of 
resampling. These chains are then combined after 
thousands of iterations. With enough samples the 
empirical posterior will approach the mathematical 
posterior. Specialized software has been developed for 
conducting this procedure, including Bayesian inference 
Using Gibbs Sampling (BUGS; Gilks, Thomas, & 
Spiegelhalter, 1994), Just Another Gibbs Sampler 
(JAGS; Plummer, 2003), and Stan (Stan Development 
Team, 2016). To determine if enough sampling has 
occurred, visually monitoring the chains for 
convergence is recommended. This is accomplished by 
plotting the sampled values of each chain. If the values 
all fall within a consistent range, then convergence to 
the posterior distribution has been achieved. As a result 
of sampling variability within chains, parameter 

estimates for the exact same data may not be identical if 
the same analysis is conducted again. For the interested 
reader using the syntax in Appendix 1 to replicate the 
results found later in this paper, parameter estimates 
that differ somewhat are expected. 

Which Estimation Technique to Use? 

Considering the three estimation techniques 
previously discussed, the next natural question is, 
“which do I use?” ML and REML are more commonly 
used whereas fully Bayesian estimation is used less 
frequently. The lower use of fully Bayesian estimation is 
likely due to the required use of specialized software 
and the fact that it is infrequently taught in graduate 
education programs. Even though it is less frequently 
used, Bayesian estimation allows for intuitive 
probabilistic interpretations of results based on the 
posterior distribution. The author recommends 
Bayesian estimation in HLM. Apart from this 
recommendation, decisions concerning which 
estimation technique to use depend on the structure of 
the data, particularly the number of groups. 

The number of groups is important when deciding 
which estimation technique to use. When the number 
of groups is small, REML will produce less biased 
estimates of variances compared to ML. What number 
is small? This depends on many aspects of your data 
and may not be known a priori. Once data is collected, 
the model can be estimated using both ML and REML. 
If the variance estimates are very different between the 
two, then the REML results should be used for 
interpretation. If the results are similar, then the ML 
results can be used, allowing for more model 
comparisons. If using Bayesian estimation, a small 
number of groups should prompt use of the posterior 
mode instead of the posterior mean as the variance 
estimate (Browne & Draper, 2006). When the number 
of groups is small, the prior has a greater influence on 
the posterior distribution. An uninformative prior 
assigns low credibility to an extremely large range of 
values. Even with extremely low posterior credibility 
for extreme outliers, the posterior mean will be 
influenced by those values. Therefore, the posterior 
mode will yield more accurate results. When the 
number of groups is large, the mean and mode will 
render similar estimates. Thus, the posterior mean and 
posterior mode may be compared and if differences 
exist, the mode should be interpreted. See Table 1 for a 
brief summary of the differences between the 
estimation techniques. 
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Table 1. Comparison Across Estimation Techniques
 

ML REML Bayesian 
Advantage Compare 

models with 
different 
fixed 
components 

More accurate 
variance 
estimates when 
the number of 
groups is small 
(compared to 
ML) 

Intuitive 
probabilistic 
interpretations 
of point and 
interval 
estimates 

Disadvantage Poor 
estimation of 
variances 
when the 
number of 
groups is 
small 
(Compared 
to REML) 

Compare 
models that 
differ only in 
random 
components 

Less 
frequently 
used in the 
literature; 
Requires use 
of specialized 
software 
packages 

 

Deciding which estimation technique to use is 
something that should not be left to software defaults. 
Data can be analyzed using ML and REML and if 
higher order variance estimates are different, REML 
results should be interpreted. Bayesian methods offer 
probabilistic interpretations for point and interval 
estimates that ML and REML do not, but require the 
specification of a prior distribution and use of 
specialized software. When the number of groups is 
small, the posterior mode should be interpreted instead 
of the posterior mean. The remainder of this paper will 
focus on the ICC, parameter estimates, and fit indices 
when using ML, REML, and fully Bayesian estimation. 
An introduction to each is provided and computer 
output explained. The same data set, described next 
and available online (see Appendix 1 for downloading 
instructions), will be analyzed for all examples. 

Example Dataset 

Hox (2010) provides a simulated data set 
constructed for teaching purposes. The complete data 
set consists of 2,000 students in 100 schools. Because 
differences between estimation techniques are most 
obvious when the number of groups is small, only the 
101 students in the first 5 schools will be used. If the 
full data set were used, estimates across techniques 
would be nearly identical. Strong multilevel effects exist 
with students (level 1) grouped within schools (level 2). 
The dependent variable is a student popularity score on 
a scale from 1-10. The student’s sex is included as the 
only level-1 predictor. No school (level 2) predictors 
will be used. 

The analyses for examples in this paper were 
conducted in R (Version 3.3.1; R Core Team, 2016). 
For ML and REML estimation, the packages lme4 
(Version 1.1-12; Bates, et al., 2015) and sjstats (Version 
0.7.1; Ludecke, 2016) were used. Bayesian estimation 
was conducted using the package R2jags (Version 0.5-7; 
Su & Yajima, 2015). All of the programs are free and 
code is provided in Appendix 1 for readers to replicate 
results. Additionally, running the first eleven lines of 
code in Appendix 1 will load the complete dataset (of 
2,000 students) and reduce the dataset to the same as 
what will be used for the remainder of this paper. 

For Bayesian estimation, three chains were run for 
21,000 iterations (samples) per chain and a burn-in 
period of 1,000 iterations. A burn-in period accounts 
for the fact that MCMC is an iterative process that may 
take several samples before converging to the actual 
posterior. By removing the first 1,000 samples the 
posterior approximated by the remaining 20,000 is 
more likely to be reflective of the actual posterior and 
not influenced by those values that existed only because 
the algorithm was attempting to converge. The chains 
can be monitored, by plotting, to ensure convergence 
was achieved. Convergence can be visually identified 
when the iterated values all fall within a consistent 
range. 

Intraclass Correlation 

By employing HLM, the researcher is recognizing 
the potential that variability is occurring at both the 
individual level and the group level. Whether or not 
variability is occurring at the group level and if so, how 
much of the total variability can be attributed to the 
grouping level, is determined in the calculation of the 
intraclass correlation (ICC). A higher ICC indicates that 
a greater amount of variability is occurring at the group 
level, meaning a greater violation to the assumption of 
independence and justifying the use of HLM. 

An unconditional model is used to calculate the 
initial ICC. The unconditional model is a varying 
intercept model with no predictors at any level. The 
equations for the unconditional model are: 

Level 1:  ݕ௜௝ ൌ ଴௝ߚ ൅ ,௜௝ݎ ,௜௝~ܰ൫0ݎ													  ௬ଶ൯ߪ
Level 2:  ߚ଴௝ ൌ ଴଴ߛ ൅ ,଴௝~ܰሺ0ݑ													,଴௝ݑ ఉబߪ

ଶ ሻ (3)

 

The formula for the ICC is 
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ఉబߪ
ଶ

ఉబߪ
ଶ ൅	ߪ௬ଶ

 (4)

The numerator of the ICC is the residual variance 
on the second level and the denominator is the total 
residual variance in the model. The ICC is the 
proportion of the total residual variance that can be 
attributed to the grouping level.  

As a proportion, the ICC ranges from 0 to 1. An 
ICC equal to zero indicates that there is zero variability 
on the grouping level. If this is the case, then there is 
no justification for employing HLM and a less complex 
regression model can be used. An ICC of one indicates 
that the difference in scores is only found between 
groups and not within. Neither of these extremes is 
very likely. There is no set rule for what ICC would 
necessitate the use of HLM, but values as low as 0.05 
may be sufficient (Kreft & de Leeuw, 1998). 

Comparison  

The ICC can be calculated for the popularity data. 
Table 2 shows the estimated ICCs when using ML, 
REML, and Bayesian methods. Across all ICC values 
there is strong evidence that variability is occurring 
between the groups, supporting the use of HLM. For 
instance, using the ML estimate, 78% of the variability 
between student popularity scores can be attributed to 
differences between schools. 

Table 2. Intraclass Correlation by Estimation 
Technique 

Estimation Technique 
 

ML (SE) REML (SE) 

Bayesian 
Mean  

(95% HDI) 
Bayesian 

Mode 

ICC 
0.78 

(0.029) 
0.81 

(0.0322) 
0.86 

[0.63, 0.99] 
0.94 

 
Note. The 95% HDI is the same for the Bayesian Mean and 
Mode. 

  

Using lme4 with ML or REML, the ICC can be 
calculated from summary output. Table 3 shows a 
portion of the output when using REML to estimate 
the unconditional model. The intercept residual 
variance is ߪఉబ

ଶ  and the first-level residual variance is 
ఉబߪ ௬ଶ. The values forߪ

ଶ  and ߪ௬ଶ, 2.1242 and 0.4898, 
respectively, can be used in equation 4 to calculate the 
ICC. The standard error, however, cannot be estimated 
simply from this output. Instead, the se() function in 

the R package sjstats can be used to find both the ICC 
estimate and the bootstrapped standard error estimate. 

Table 3. Random Effects Summary Statistics for the 
Unconditional Model Fit with REML 
Random effects: 
Groups Name Variance Std. Dev. 
school (Intercept) 2.1242 1.4574 
Residual  0.4898 0.6998 
Note. Table presents a portion of the output as it appears in R 
using the lmer command in lme4 

 

Table 4 shows typical summary output for a 
Bayesian analysis using R2jags. Recall that point 
estimates and HDIs are derived from a posterior 
distribution. Therefore, the mean of the posterior is 
presented as a point estimate and the mode can be 
determined by further functions in R. For this model 
and data, the posterior mean for the ICC is estimated 
to be 0.86, indicating that 86% of the variability in the 
dependent variable can be attributed to differences 
between groups. The posterior mode is 0.94, indicating 
that an even higher proportion of the variability can be 
attributed to school enrollment. The area between the 
2.5 and 97.5 percentile values captures 95% of the area 
under the curve. The 95% HDI ranges from 0.63 to 
0.99, indicating that there is a 95% chance that the true 
value of the ICC falls within that range given the prior 
and likelihood. The HDI is the same regardless of using 
the posterior mean or mode as the parameter estimate. 

Table 4. Summary Statistics for the Unconditional 
Model Fit with Fully Bayesian Estimation 
 mean sd 2.5% 97.5% 
Deviance 215.62 3.57 210.67 224.25 
icc 0.86 0.095 0.63 0.99 
mu.a 5.89 1.39 3.43 8.33 
sigma.a 2.39 2.05 0.94 6.60 
sigma.y 0.71 0.05 0.62 0.82 
Note. Elements of the full R2jags output have been excluded. 
“Deviance” is used for model fit, to be discussed later. The 
“icc” is intraclass correlation, of interest here. “mu.a” and 
“sigma.a” are the fixed and random components, respectively, 
for the intercept. “sigma.y” is the residual of the first level. 

 

The ICC is important for justifying the use of 
HLM. Across the three estimation techniques the 
estimated ICC values differed. However, whether using 
ML, REML, or Bayesian estimation, the ICC made 
evident the need for HLM to appropriately model the 
relationship between the dependent and independent 



Practical Assessment, Research & Evaluation, Vol 22 No 2 Page 8 
Boedeker, Hierarchical Linear Modeling 
                                                                                                    
variables. Once the use of HLM has been justified the 
parameter estimates are of interest. 

Parameter Estimates  

Parameter estimates are derived for both fixed 
components and the variance or standard deviations of 
the random components. The fixed component is the 
average for all groups on the intercept or slope 
coefficient while the random component indicates the 
variability in intercepts and slope coefficients that exists 
across groups. If the intercept does not vary, then in 
the model a single intercept is estimated for all groups. 
If a slope coefficient does not vary, then in the model 
the estimated relationship between the independent 
variable and the dependent variable does not depend 
on group membership. 

When the intercept or the slopes of a model are 
allowed to vary, the second level equations will contain 
both fixed and random components. Consider first a 
varying intercept. The fixed component is the average 
of all of the estimated intercepts. If the random 
component has a large residual variance, then the 
intercepts estimated across the groups vary widely or 
there may be outliers. If the residual variance is small, 
then the intercepts for the different groups are 
relatively similar to one another. Likewise, a varying 
slope has a fixed component, representing the average 
slope value across all groups, and a random component 
that shows the deviation of the estimated slope 
coefficients from that average. Allowing more aspects 
of a model to vary increases the complexity of the 
model because more parameters must be estimated. 
For instance, for the current example, allowing the 
intercept to vary by group means that a separate 
intercept must be estimated for each group. 

What follows are the parameter estimates for the 
varying-intercept and varying-slope model with a single 
first level predictor. The dependent variable is 
popularity score, the first level predictor is the sex of 
the student, and the grouping variable is the school that 
the student attends. The two second-level residuals are 
allowed to correlate, a relationship that is assumed 
when using lme4 but must be specified in the R2jags 
model. The equations for the varying-intercept and 
varying-slope model are: 

Level 1:  ݕ௜௝ ൌ ଴௝ߚ ൅ ௜௝ݔଵ௝ߚ ൅ ,௜௝~ܰሺ0ݎ						,௜௝ݎ  ௬ଶሻߪ
Level 2: 0݆ߚ ൌ 00ߛ ൅  0݆ݑ

ଵ௝ߚ   ൌ ଵ଴ߛ ൅	ݑଵ௝, 

ቀ
଴௝ݑ
ܰ~ଵ௝ቁݑ ൭ቀ

0
0
ቁ , ൬

߬଴଴
ଶ ߬଴ଵ
߬଴ଵ ߬ଵଵଶ

൰൱ 

(5)

The popularity score of student i in school j is 
equal to the intercept of school j plus the product of 
the sex indicator for student i in school j and the slope 
coefficient for school j. This model differs from the 
varying-intercepts only model (see equations 1) by 
including a random component for the slope 
coefficient of sex, thereby allowing that coefficient to 
vary by school. The correlation between second-level 
residuals allows for the relationship to be estimated 
between the deviations of the school from the all-
school average for the intercept and the all school-
average for the coefficient of sex. 

Comparison 

Table 5 shows the estimates of the fixed and 
random components, where the random component 
values are the residual standard deviations instead of 
variances. The estimates using ML and REML are 
accompanied by bootstrapped 95% confidence 
intervals and fully Bayesian estimates by 95% HDIs. 

Table 5. Parameter Estimates Using ML, REML, and Fully Bayesian Estimation 

Estimation Techniques 
Component ML [95% CI] REML [95% CI] Bayesian Mean [95% HDI] Bayesian Mode 

Fixed      
 Intercept 6.17 [5.12, 7.34] 6.17 [4.87, 7.46] 6.16 [3.32, 8.97] 6.15 
 Sex -0.57 [-0.85, -0.30] -0.56 [-0.92, -0.27] -0.57 [-1.14, -0.01] -0.56 
Random      
 Intercept 1.28 [0.38, 1.88] 1.44 [0.46, 2.41] 2.70 [0.98, 7.49] 1.58 
 Sex 0.12 [0.01, 0.38] 0.20 [0.02, 0.54] 0.41 [0.01, 1.50] 0.19 
 Residual 064 [0.54, 0.73] 0.64 [0.54, 0.72] 0.65 [0.56, 0.75] 0.64 
Correlation  0.14 [-1, 1] 0.05 [-1, 1] 0.01 [-0.90. 0.90] -.017 
Note. Information is consolidated from output using lme4 and R2jags. Bootstrapped 95% confidence intervals were derived using the 
confint() function. The Bayesian estimates show the posterior mean as the point estimate and accompanying 95% HDI. The 95% HDI 
is the same for the Bayesian Mean and Mode. 
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There are two fixed components, one for the intercept (ߛ଴଴) and one for the slope (ߛଵ଴). Random components  

were estimated for each the intercept (ݑ଴௝), sex (ݑଵ௝), 
and first level residual (ݎ௜௝). 

When using lme4, the estimates for ML and 
REML results are presented without p-values. This is 
because the null distribution and degrees of freedom 
necessary to derive p-values can only be approximated, 
if at all determined, when using HLM. While 
commands exist in R for p-value approximations, they 
are only as good as the accuracy of the approximation. 
Hence, the author of the lme4 package chose to 
exclude such calculations from standard output (see 
Bates, 2006).  

Interpretations of the REML results follow. The 
average intercept value for student popularity across all 
schools was 6.17 (recall, the dependent variable was on 
a scale of 1 to 10). An intercept term was estimated for 
each school and deviations of these values from the 
average intercept of all schools were assumed to be 
normally distributed. The standard deviation of the 
intercept residuals was estimated to be 1.44. By making 
the coefficient of sex random, the difference between 
the popularity score of boys and girls was allowed to be 
dependent on the school in which the student was 
enrolled. This means that, in regards to popularity 
score, being a boy in one school does not necessarily 
mean the same thing as being a boy in another school. 
On average, boys were 0.56 points lower in popularity 
than girls, although this also varied across schools with 
a standard deviation of 0.20. The residual term in the 
random components output shows that the error on 
the first level was distributed with a standard deviation 
of 0.64. Finally, the second level terms were slightly 
positively correlated (0.05), although this estimate is 
extremely uncertain with a bootstrapped 95% 
confidence interval ranging between -1 and 1.  

 The ML and REML results differ in the 
estimates of second level residuals. For the intercept 
and the sex variable the estimates are larger for REML 
than for ML. This is to be expected given the negative 
bias of ML when estimating variances, particularly 
when the number of groups is small. In the reduced 
dataset analyzed here, the number of groups was only 
five, a sufficiently small number to cause these notable 
differences in estimates. Estimates of the fixed effects 
and the standard deviation of the first-level residual 
were similar, if not identical across the two techniques. 
The total number of students was 101, sufficiently large 

for the estimates at the student level to be similar with 
both ML and REML. 

Bootstrapped 95% confidence intervals were 
computed for parameters. Bootstrapping is a non-
parametric resampling procedure that can be used to 
calculate confidence intervals for many statistics, 
including regression coefficients and effect sizes 
(Banjanovic & Osborne, 2016; Yu, 2003). This, and any 
other confidence interval, is best understood in the 
context of replication. If this study were repeated with 
a new sample 100 times, assuming all of the 
assumptions of the study were true, then 95 of the 
resulting intervals would be expected to capture the 
true value. A single confidence interval does not have a 
probabilistic interpretation but can provide a range of 
plausible values (Cumming & Finch, 2004) and 
information concerning replicability (Cumming, 
Williams, & Fidler, 2010). To say that a 95% interval 
has a 95% chance of containing the true parameter, 
Bayesian methods must be used (Greenland et al., 
2016). 

 The Bayesian mean or mode are similar to ML 
and REML for point estimates of the fixed 
components and the first-level residual; however, 
differences are evident in the second-level estimates of 
residual standard deviations for the intercept and sex. 
The random component standard deviation for the 
intercept has a posterior mean of 2.70 and a posterior 
mode of 1.58 with a 95% HDI from 0.98 to 7.49. The 
HDI indicates that there is a 95% chance that the true 
value of the residual standard deviation for the 
intercept lays between 0.98 and 7.49. The HDI is the 
same regardless of whether the posterior mean or 
posterior mode is used because the HDI represents the 
area under the posterior curve and is therefore 
independent of the estimate used. For sex, the 
posterior mean is 0.41 and the posterior mode is 0.19 
with a 95% HDI from 0.01 to 1.50. Comparing the 
HDI range to the CI range for ML and REML, the 
HDI is wider for estimates of fixed components and 
second-level variances. This is the result of both the use 
of uninformative priors and a small number of groups. 
The uninformative prior gave credibility to extreme 
values, yielding a wider HDI. As the number of groups 
increases, the prior will have less influence on the 
posterior and HDIs will become increasingly narrow. 
The final aspect of HLM reviewed is model fit indices. 
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Model Fit Indices 

When using HLM, models can vary by the number 
of independent variables as well as how many 
independent variables are allowed to vary by group. 
Considering both the fit and complexity of models is 
important when determining if one model is superior to 
another (Spiegelhalter, Best, Carlin, & van der Linde, 
2002). Fit is typically defined by a deviance measure 
and complexity by the number of parameters estimated 
in the model. A more complex model may prove to 
have a better fit, but models that are too complex may 
not be valid for making out-of-sample predictions. In 
HLM, both fit and complexity are taken into 
consideration in the calculation of many standard 
model fit indices. Model fit indices should be used 
comparatively to evaluate which of two or more 
models has the best combination of fit and complexity. 
When comparing between two models, the model with 
the index closest to zero is deemed to be the best 
fitting model and provides the least out-of-sample 
prediction error. The estimation technique will 
determine which indices should be used.  

When using lme4 to estimate a model with ML, 
the log-likelihood, deviance, Akaike Information 
Criterion (AIC; Akaike, 1987), and Bayesian 
Information Criterion (BIC; Schwarz, 1978) are readily 
produced. The log-likelihood and deviance are 
measures of fit but do not account for complexity. 
Deviance is -2 times the log-likelihood and AIC and 
BIC are adjustments to the deviance. AIC and BIC are 
penalized deviance measures, adding to the deviance 
based on the number of predictors in the model. In this 
way, more parsimonious models are “rewarded” with 
smaller penalizations. To see this, the formulas for AIC 
and BIC are given: 

ܥܫܣ ൌ ݀ ൅ (6) ݌2
ܥܫܤ ൌ ݀ ൅ ݌ lnሺ݊ሻ, (7)

 

where d is the deviance, p is the number of predictors 
in the model, and n is the sample size. Smaller values of 
deviance, AIC, and BIC indicate overall better model fit 
and lower out-of-sample predictive error. Because the 
sample size in HLM will differ at different levels, Hox 
(2010) recommends the use of AIC for its 
straightforward calculation. 

Model fit indices when using REML must be 
considered carefully. Models fit by REML can only be 

compared if they have identical fixed components, for 
reasons described earlier. Using lme4, a REML 
convergence criterion is produced instead of the 
deviance previously mentioned with ML. Evaluation 
with the REML convergence criterion is the same, with 
a value closer to zero indicating better model fit. 
Although lme4 does not immediately produce the AIC 
and BIC for models fit using REML, these values can 
be called using functions found in Appendix 1. 
However, if the models being compared differ in their 
fixed effects, then using these measures to assess model 
fit does not make sense. 

Bayesian model fit indices include the deviance 
and the deviance information criterion (DIC; 
Spiegelhalter et al., 2002). The DIC functions similarly 
to AIC by penalizing the deviance for complexity 
(Gelman & Hill, 2007). The use of DIC to evaluate 
model fit is the same as other indices; a smaller DIC 
indicates a superior model in terms of fit and 
complexity. 

Comparison 

Presented in Table 6 are fit indices for two models. 
The two models being compared are a varying-
intercepts only model (see equations 1) and a varying-
intercepts and varying-slopes model (see equations 5). 
Note that the two models only differ in their random 
components, thereby making comparisons using 
REML appropriate. 

The deviance and REML criterion were lower for 
the more complex model across estimation techniques, 
indicating that the more complex model was a better 
fit. However, the AIC and BIC for both ML and 
REML and the DIC for Bayesian estimation had lower 
values for the simpler model. While including more 
parameters in the varying-intercepts and varying-slopes 
model improved fit, the increased complexity of the 
model made it less attractive in terms of out-of-sample 
prediction. The more parsimonious model was 
rewarded with lower values of AIC, BIC, and DIC.  

The point needs to be made that although one model 
yields a better set of fit indices than another, it may not 
be the best model. Instead, when one model is deemed 
superior to another model, the superior model should 
be considered as a member of several possible models 
still to be compared. This requires thoughtful 
consideration by the researcher and a willingness to test 
all reasonable models. 
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Conclusion 

 Three methods of estimation have been 
introduced and discussed in the context of HLM. The 
estimated values using ML or REML are those that 
were most likely to produce the data. REML restricts 
the types of models that can be compared to those 
which differ only in random components. Estimates of 
residual variances when using REML are less biased 
compared to ML, particularly when the number of 
groups is small. With fully Bayesian estimation, 
researchers use probability distributions in a 
hierarchical scheme of priors and likelihood to 
determine posterior distributions. From the posterior 
distributions, parameter estimates and intervals may be 
derived. The posterior mode should be used as the 
parameter estimate, particularly when the number of 
groups is small, and the 95% HDI can be interpreted to 
have a 95% chance of containing the true value. The 
choice of which technique to use will depend on the 
statistical framework the researcher is willing to work 
within and the number of groups in the dataset. 
Considering its importance, which estimation technique 
to use is a decision best made by the researcher and not 
to be left to the default settings of statistical software. 
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Appendix 1 

Import and set up the data 
 
install.packages("foreign") 
library(foreign) 
 
popdata <- read.dta("http://www.ats.ucla.edu/stat/stata/examples/mlm_ma_hox/popular.dta") 
 
#This limits the dataset to the 101 students in the first 5 schools 
popdata <- popdata[1:101,] 
 
J <- length(unique(popdata$school)) 
school <- as.numeric(popdata$school) 
sex <- ifelse(popdata$sex=="girl",0,1) 
y <- popdata$popular 
n <- length(y) 
 
#Install necessary packages for ML and REML 
 
install.packages("lme4") 
library(lme4) 
install.packages("sjstats") 
library(sjstats) 
 
# Maximum Likelihood, Unconditional Model, Table 1 
fit.ML.unconditional <- lmer(y ~ 1 + (1|school), REML = FALSE) 
 
#To find both ICC and standard error estimates: 
se(icc(fit.ML.unconditional)) 
 
#Maximum Likelihoood, Varying Intercept, Table 5 
fit.ML.Int <- lmer(y ~ sex + (1|school), REML = FALSE) 
 
#Maximum Likelihood, Varying Intercept, Varying Slope, Table 4 & 5 
fit.ML.Int.Slope <- lmer(y ~ sex + (1 + sex|school), REML = FALSE) 
 
#REML, Unconditional Model, Table 1 & 2 
fit.REML.unconditional <- lmer(y ~ 1 + (1|school)) 
 
#To find both ICC and standard error estimates: 
se(icc(fit.REML.unconditional)) 
 
#REML, Varying Intercept, Table 5 
fit.REML.Int <- lmer(y ~ sex + (1|school)) 
 
#REML, Varying Intercept, Varying Slope, Table 4 & 5 
fit.REML.Int.Slope <- lmer(y~ sex + (1 + sex|school)) 
#Bootstrap confidence intervals for varying intercept, varying slope REML model, Table 4 



Practical Assessment, Research & Evaluation, Vol 22 No 2 Page 14 
Boedeker, Hierarchical Linear Modeling 
                                                                                                    
confint(fit.REML.Int.Slope, method = "boot") 
 
 
#AIC and BIC, Table 5 
AIC(fit.REML.Int.Slope) 
BIC(fit.REML.Int.Slope) 
 
 
# Bayesian Estimation using R2jags 
 
#Necessary packages and functions 
 
install.packages("R2jags") 
library(R2jags) 
 
#Unconditional model used for the ICC in Table 1 & 3 
 
#Define the model. 
cat("model { 
    for(i in 1:n) { 
    y[i]~dnorm(y.hat[i],tau.y) 
    y.hat[i]<-a[school[i]] 
    } 
    tau.y<-pow(sigma.y,-2) 
    sigma.y~dunif(0,100) 
    for(j in 1:J){ 
    a[j]~dnorm(a.hat[j],tau.a) 
    a.hat[j]<-mu.a 
    } 
    mu.a~dnorm(0,0.0001) 
    tau.a<-pow(sigma.a, -2) 
    sigma.a~dunif(0,100) 
     
    #This bit is included to find the ICC 
    sigma2.a<-1/tau.a 
    sigma2.y<-1/tau.y 
    icc<-sigma2.a/(sigma2.y+sigma2.a) 
    }", file="Uncon.txt") 
 
 
#Tell R the data, the parameters to be monitored, and initial values for the chains 
unconDat <- list("n", "J", "y", "school") 
unconParams<-c("a", "sigma.y", "mu.a",  
               "sigma.a", "icc") 
unconInits <- function() list(a=rnorm(J), 
                              sigma.y=runif(1,0,1), mu.a=rnorm(1,0,1), 
                              sigma.a=runif(1,0,1)) 
 
unconResults=jags(data=unconDat, inits=unconInits, parameters.to.save=unconParams,  
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                  n.iter=21000, n.burnin=1000, n.thin=1, model.file="Uncon.txt") 
 
#Use "traceplot" to check convergence of the chains. All three chains are plotted on top of one another. 
traceplot(unconResults) 
 
#To find the posterior mode of the ICC 
# mode 
estimate_mode <- function(x) { 
  d <- density(x) 
  d$x[which.max(d$y)] 
} 
 
icc.sims <- unconResults$BUGSoutput$sims.matrix[,7] 
 
estimate_mode(icc.sims) 
 
 
#Varying-intercepts, varying-slopes model, Table 4 
 
cat("model{ 
    for(i in 1:n) { 
    y[i]~dnorm(y.hat[i],tau.y) 
    y.hat[i] <- a[school[i]]+ 
    b[school[i]]*sex[i] 
    } 
    tau.y <- pow(sigma.y, -2) 
    sigma.y~dunif(0,100) 
    for(j in 1:J){ 
    a[j] <- B[j,1] 
    b[j] <- B[j,2] 
    B[j,1:2] ~ dmnorm(B.hat[j,], 
    Tau.B[,]) 
    B.hat[j,1] <- mu.a 
    B.hat[j,2] <- mu.b 
    } 
    mu.a~dnorm(0,0.0001) 
    mu.b~dnorm(0,0.0001) 
    Tau.B[1:2,1:2] <- inverse(Sigma.B[,]) 
    Sigma.B[1,1] <- pow(sigma.a,2) 
    sigma.a ~ dunif(0,100) 
    Sigma.B[2,2] <- pow(sigma.b,2) 
    sigma.b ~ dunif(0,100) 
    #corrlation 
    Sigma.B[1,2] <- rho*sigma.a*sigma.b 
    Sigma.B[2,1] <- Sigma.B[1,2] 
    rho ~ dunif(-1,1) 
    }", file="vivc.txt") 
 
#Tell R the data, the parameters to be monitored, and initial values for the chains 
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vivcDat <- list("n", "J", "y", "school", "sex") 
vivcParams <- c("a", "b", "sigma.y", "mu.a",  
                "sigma.a", "mu.b", "sigma.b", "rho") 
vivcInits <- function() {list(B=array(rnorm(J*2), c(J,2)),  
                              sigma.y=runif(1,0,1), mu.a=rnorm(1,0,1), 
                              sigma.a=runif(1,0,1), mu.b=rnorm(1,0,1), 
                              sigma.b=runif(1,0,1), rho=runif(1,-1,1))} 
vivcResults <- jags(data=vivcDat, inits=vivcInits, parameters.to.save=vivcParams, 
                    n.iter=21000, n.burnin=1000, n.thin=1, model.file="vivc.txt") 
 
#Use "traceplot" to check convergence of the chains. All three chains are plotted on top of one another. 
traceplot(vivcResults) 
 
#To find the posterior mode of  
# mode 
estimate_mode <- function(x) { 
  d <- density(x) 
  d$x[which.max(d$y)] 
} 
 
#mode of posterior for the fixed component of the intercept 
mu.a.sims <- vivcResults$BUGSoutput$sims.matrix[,12] 
estimate_mode(mu.a.sims) 
#mode of the posterior for the fixed component of the coefficient of Sex 
mu.b.sims <- vivcResults$BUGSoutput$sims.matrix[,13] 
estimate_mode(mu.b.sims) 
#mode of posterior for the random component of the intercept 
sigma.a.sims <- vivcResults$BUGSoutput$sims.matrix[,15] 
estimate_mode(sigma.a.sims) 
#mode of the posterior for the random component of the coefficient of Sex 
sigma.b.sims <- vivcResults$BUGSoutput$sims.matrix[,16] 
estimate_mode(sigma.b.sims) 
#mode of the posterior for the residual 
sigma.y.sims <- vivcResults$BUGSoutput$sims.matrix[,17] 
estimate_mode(sigma.y.sims) 
#mode of the posterior for the correlation 
rho.sims <- vivcResults$BUGSoutput$sims.matrix[,14] 
estimate_mode(rho.sims) 
#mode of the posterior for the deviance (used in table 5) 
deviance.sims.1 <- vivcResults$BUGSoutput$sims.matrix[,11] 
estimate_mode(deviance.sims.1) 
 
#Varying-intercept model, used in Table 5 
 
cat ("model{ 
     for (i in 1:n){ 
     y[i] ~ dnorm(y.hat[i],tau.y) 
     y.hat[i] <- a[school[i]] + b*sex[i] 
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     } 
     b ~ dnorm(0,0.0001) 
     tau.y <- pow(sigma.y, -2) 
     sigma.y ~ dunif(0,100) 
      
     for (j in 1:J) { 
     a[j] ~dnorm(mu.a, tau.a) 
     } 
     mu.a ~ dnorm(0,0.0001) 
     tau.a <- pow(sigma.a, -2) 
     sigma.a ~ dunif(0,100) 
     }", file="vi.txt") 
 
#Tell R the data, the parameters to be monitored, and initial values for the chains 
viDat <- list("n", "J", "y", "school", "sex") 
viParams<-c("a", "b", "sigma.y", "mu.a", "sigma.a") 
viInits <- function() {list("b"=rnorm(1,0,1), "mu.a"=rnorm(1,0,1), 
                            "sigma.y"=runif(1,0,1), "sigma.a"=runif(1,0,1))} 
 
#Run with a burn-in period included 
viResults <- jags(data=viDat, inits=viInits, parameters.to.save=viParams, 
                  n.iter=21000, n.burnin=1000, n.thin=1, model.file="vi.txt") 
 
#Use "traceplot" check convergence of the chains. All three chains are plotted on top of one another. 
traceplot(viResults) 
 
#To find the posterior mode of  
# mode 
estimate_mode <- function(x) { 
  d <- density(x) 
  d$x[which.max(d$y)] 
} 

Appendix 2 
Example output in R for the model fit by maximum likelihood with varying-intercepts and varying-slopes 
 
summary(fit.ML.Int.Slope) 

 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: y ~ sex + (1 + sex | school) 
 
     AIC      BIC   logLik deviance df.resid  
   230.1    245.8   -109.0    218.1       95  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.2209 -0.6419 -0.0393  0.5583  3.1720  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr 
 school   (Intercept) 1.64623  1.2831        
          sex         0.01516  0.1231   0.14 

Model Fit Indices in Table 6

Random Components in Table 5

Correlation in Table 5
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 Residual             0.40408  0.6357        
Number of obs: 101, groups:  school, 5 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   6.1719     0.5807  10.628 
sex          -0.5710     0.1399  -4.082 
 
Correlation of Fixed Effects: 
    (Intr) 
sex -0.043 

 
 
 

Example output in R for the model fit by REML with varying-intercepts and varying-slopes. 
 
summary(fit.REML.Int.Slope) 
 
Linear mixed model fit by REML ['lmerMod'] 
Formula: y ~ sex + (1 + sex | school) 
 
REML criterion at convergence: 219.2 
 
Scaled residuals:  
     Min     1Q     Median     3Q       Max  
-2.14867 -0.57558 -0.08174  0.62449  3.13306  
 
Random effects: 
 Groups   Name         Variance  Std.Dev. Corr 
 school   (Intercept)   2.06470   1.4369        
          sex       0.03977   0.1994   0.05 
 Residual              0.40410   0.6357        
Number of obs: 101, groups:  school, 5 
 
Fixed effects: 
             Estimate  Std. Error  t value 
(Intercept)    6.1700      0.6488    9.510 
sex           -0.5750     0.1566   -3.672 
 
Correlation of Fixed Effects: 
    (Intr) 
sex -0.050 

 
Example output in R using Bayesian estimation for the varying-intercepts, varying-slopes model. The a[i] 
is the estimated intercept for group i and the b[i] is the estimated slope for group i. Mu.a and mu.b are 
the fixed components for the intercepts and slopes, respectively. Sigma.a and sigma.b are the standard 
deviations of the random components for intercepts and slopes, respectively. Sigma.y is the standard 
deviation of the first-level residual. 
 
Parameter estimates for varying-intercepts, varying-slopes model 
 
Inference for Bugs model at "vivc.txt", fit using jags, 
 3 chains, each with 21000 iterations (first 1000 discarded) 
 n.sims = 60000 iterations saved 
  

Fixed Components in Table 5 

Model Fit Indices in Table 6

Random Components in Table 5 

Correlation in Table 5 

Fixed Components in Table 5 
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mu.vect  sd.vect  2.50%  25%  50%  75%  97.50%  Rhat  n.eff 

a[1]	 7.804  0.184  7.438  7.681  7.805  7.927  8.164  1.001 22000 

a[2]	 4.37  0.185  4  4.247  4.371  4.494  4.727  1.001 12000 

a[3]	 7.07  0.175  6.731  6.952  7.067  7.185  7.42  1.001 9200 

a[4]	 6.584  0.199  6.177  6.453  6.59  6.72  6.957  1.001 8500 

a[5]	 5.018  0.187  4.658  4.891  5.016  5.14  5.394  1.001 15000 

b[1]	 ‐0.532  0.225  ‐0.974  ‐0.678  ‐0.536  ‐0.391  ‐0.072  1.001 12000 

b[2]	 ‐0.513  0.23  ‐0.956  ‐0.664  ‐0.521  ‐0.372  ‐0.032  1.001 6300 

b[3]	 ‐0.732  0.263  ‐1.318  ‐0.889  ‐0.7  ‐0.548  ‐0.29  1.001 5000 

b[4]	 ‐0.391  0.241  ‐0.805  ‐0.561  ‐0.415  ‐0.24  0.132  1.001 9600 

b[5]	 ‐0.717  0.24  ‐1.24  ‐0.866  ‐0.698  ‐0.549  ‐0.3  1.001 5100 

mu.a	 6.167  1.383  3.499  5.537  6.168  6.8  8.837  1.005 16000 

mu.b	 ‐0.576  0.276  ‐1.128  ‐0.709  ‐0.572  ‐0.442  ‐0.056  1.001 15000 

rho	 0.001  0.537  ‐0.916  ‐0.443  ‐0.005  0.449  0.92  1.001 60000 

sigma.a	 2.536  1.873  0.986  1.523  2.035  2.896  7.077  1.003 1800 

sigma.b	 0.390  0.379  0.018  0.146  0.29  0.507  1.404  1.002 1800 

sigma.y	 0.646  0.048  0.56  0.612  0.643  0.676  0.747  1.001 31000 

deviance	 196.73  4.625  189.2  193.48  196.181 199.394 207.339 1.001 60000 
 
For each parameter, n.eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
 
DIC info (using the rule, pD = var(deviance)/2) 
pD = 10.7 and DIC = 207.4 
DIC is an estimate of expected predictive error (lower deviance is better). 
 
Model Fit Indices in Table 6 
Random Components in Table 5 
Correlation in Table 5 
Fixed Components in Table 5 
 

 

Citation: 

Boedeker, Peter (2017). Hierarchical Linear Modeling with Maximum Likelihood, Restricted Maximum 
Likelihood, and Fully Bayesian Estimation. Practical Assessment, Research & Evaluation, 22(2). Available online: 
http://pareonline.net/getvn.asp?v=22&n=2   
 

Corresponding Author 

Peter Boedeker  
University of North Texas 
 
email: peter.boedeker@unt.edu 


