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Article

One of the central goals of current assessment and account-
ability efforts is to monitor and ensure the development of 
foundational skills in mathematics, skills that are deemed 
essential for students’ later achievement and success in 
school and career (National Early Literacy Panel, 2008). 
Although the development of mathematics skills for all stu-
dents is a focus of the No Child Left Behind Act of 2001 
(NCLB, 2002), the NCLB requirement that outcomes be 
disaggregated by targeted subgroups is recognition of a 
long-standing concern that there are large gaps in achieve-
ment for students who are poor, racial or ethnic minorities, 
are English language learners (ELL), or are served in spe-
cial education (Reardon, Greenberg, Kalogrides, Shores, & 
Valentino, 2013).

Composing over 3.4% of all children ages 6 through 21 
and 40% of students with disabilities, the most prevalent 
disability category for which students receive special edu-
cation services is specific learning disability (LD; U.S. 
Department of Education, 2014). Although most students 
identified with a specific LD have primary difficulties in 
reading (estimated at 80%; Lyon et al., 2001), students may 
also have mathematics LD, alone or comorbid with a read-
ing disability (Compton, Fuchs, Fuchs, Lambert, & Hamlett, 
2012; Geary, Hoard, Nugent, & Bailey, 2012; Jordan, 

Kaplan, & Hanich, 2002; Judge & Watson, 2011). Research 
on the cognitive underpinnings of mathematics LD lags 
well behind work delineating the core deficits underlying 
reading disabilities (Judge & Watson, 2011). Although there 
is agreement that some common processing difficulties may 
underlie both reading and mathematics LD, such as work-
ing memory and processing speed (Geary et al., 2012; 
Swanson, Jerman, & Zheng, 2009), there is also evidence 
that there are deficits in mathematics cognition specific to 
mathematics LD that are present at school entry and impede 
early growth in mathematics. These deficits include low 
fluency in processing quantities for small sets and difficulty 
mapping numerals to quantities (Geary et al., 2012). 
Whether students with LD have a primary disability in 
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reading, mathematics, or both, as a group their achievement 
in mathematics is substantially below that observed for stu-
dents without disabilities (SWoD; Jordan et al., 2002; 
Morgan, Farkas, & Wu, 2011; Stevens, Schulte, Elliott, 
Nese, & Tindal, 2015).

Progress in enhancing the development of mathematics 
ability for students with LD can be informed by a general 
understanding of students’ achievement growth and differ-
ences in growth by specific student subgroups. Substantial 
agreement exists across studies of children’s mathematics 
achievement that growth is best described as a curvilinear 
function with greater growth in early grades that slows in 
middle and high school (Bloom, Hill, Black, & Lipsey, 
2008; J. Lee, 2010; Morgan et al., 2011; Wei, Lenz, & 
Blackorby, 2013). Within this general pattern, studies gen-
erally find that disadvantaged students perform lower when 
they start school, have fewer home resources, and have 
fewer opportunities for mathematics learning (Hedges & 
Nowell, 1999; V. E. Lee & Burkam, 2002; Siegler, 2009). 
Other demographic characteristics related to student 
achievement include sex and race/ethnicity (Fryer & Levitt, 
2004; Jordan et al., 2002), with students who are female or 
of African American, Hispanic, or Native American race/
ethnicity showing early mathematics achievement gaps and 
often less growth across grades (e.g., Judge & Watson, 
2011; Morgan et al., 2011; Reardon & Galindo, 2009; Shin, 
Davison, Long, Chan, & Heistad, 2013).

Only a few investigators have examined mathematics 
achievement growth for students with disabilities (SWD), 
either using a dichotomous categorization of SWD versus 
SWoD students or examining mathematics growth for spe-
cific exceptionalities—most commonly speech–language 
impairment and/or LD (e.g., Judge & Watson, 2011; Morgan 
et al., 2011; Shin et al., 2013). These studies generally find 
that growth for SWD follows the same curvilinear trajec-
tory found for SWoD (Wei et al., 2013). Differences 
between SWD and SWoD are most consistently found in 
intercepts, but some studies have reported slower SWD 
mathematics growth as well (Judge & Watson, 2011; 
Morgan et al., 2011).

The current study sought to examine achievement gaps 
between students with LD and SWoD as well as to deter-
mine whether a “fan-spread” or Matthew effect pattern 
existed in which certain subgroups of LD students fall 
increasingly behind their SWoD peers. Our goal was not to 
investigate the specific mechanisms responsible for stu-
dents’ mathematical difficulties but to determine whether 
students with combinations of characteristics are at greater 
risk of low mathematics performance and more likely to lag 
increasingly behind on a high-stakes state test of mathemat-
ics achievement. Addressing this goal can guide research-
ers, practitioners, and policy makers in better targeting 
resources toward those children who are most at risk of 
mathematics difficulties (Jordan & Levine, 2009; McCoach, 

O’Connell, Reis, & Levitt, 2006; Morgan, Farkas, & Hibel, 
2008; Parrila, Aunola, Leskinen, Nurmi, & Kirby, 2005; 
Vukovic et al., 2014).

Most studies examining growth for SWD have con-
trolled for the influence of demographic characteristics 
(e.g., Judge & Watson, 2011; Wei et al., 2013). Including 
demographic characteristics in studies of SWD is important 
because many demographic characteristics related to stu-
dent achievement growth are also related to SWD identifi-
cation and placement. For example, poor or Black students 
are more likely to be identified as LD once they enter school 
(Sullivan & Bal, 2013), but less likely to receive early inter-
vention services (Morgan, Farkas, Hillemeier, et al., 2015). 
Males are more likely than females to be identified as SWD 
across all ages, and for the exceptionality of LD, outnumber 
females by a ratio of two to one by 10th grade (Coutinho, 
Oswald, & Best, 2002; Shifrer, Muller, & Callahan, 2011). 
Given the cumulative nature of risk factors (Evans, Li, & 
Whipple, 2013), failing to consider the complex interplay 
of student demographic characteristics and disability status 
when examining achievement growth may mask groups 
that are particularly at risk for low achievement and mislead 
practitioners and policy makers regarding the true nature of 
group differences and achievement gaps and fail to identify 
the subgroups of students most in need of early identifica-
tion or intensive intervention.

Using Early Childhood Longitudinal Study–Kindergarten 
data, Judge and Watson (2011) found that students with LD 
had significantly lower achievement growth over Grades K 
to 5 if they were female, African American, Hispanic, or 
lower socioeconomic status (SES). Morgan, Farkas, and 
Wu (2009) found that female, non-White, lower SES stu-
dents identified as having a mathematics learning difficulty 
scored significantly lower on initial status and had lower 
mathematics growth rates than peers over Grades 1 to 5. 
Wei et al. (2013) found significantly lower mathematics 
achievement for students in several specific exceptionality 
categories in comparison to students with LD. Wei et al. 
also found significantly lower mathematics achievement for 
students who were Black, Hispanic, or Other ethnicity, 
male, or lower SES. Stevens et al. (2015) examined the 
achievement growth of seven exceptionality groups includ-
ing students with LD and found that the addition of demo-
graphic predictors to growth models resulted in (a) 
substantial changes in the magnitude of intercept coeffi-
cients for most exceptionalities, (b) no appreciable changes 
in the size of linear growth coefficients, and (c) only two 
differences in rate of curvature.

The Importance of Interaction Effects

In studies of student achievement, a regression model that 
adds demographic characteristics to the equation exerts 
control over the demographic predictors through a 
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statistical process known as “partialling.” Although these 
“control” predictors often theoretically fill the role of mod-
erating variables (see Note 1), which are hypothesized to 
impact the strength or direction of the relationship between 
a focal predictor (e.g., LD status) and an outcome (e.g., 
mathematics achievement), they are not interaction effects 
(see Hayes, 2013; Jaccard & Turrisi, 2003). Nonetheless, 
researchers often describe and interpret partial results as 
though they were interaction effects.

This conflation of partial and interaction effects can lead 
to important misinterpretations of regression results by 
researchers, practitioners, or policy makers when multiple 
predictors are used in single or multilevel regression equa-
tions. Take as an example a regression analysis with two 
dichotomous predictors in which LD status (coded 0 for 
SWoD and 1 for LD) and free or reduced lunch (FRL) sub-
sidy (coded 0 for no subsidy and 1 for subsidy) are used as 
predictors of the outcome (with no interaction term) and the 
LD and the FRL dummy variables are both found to be sta-
tistically significant. The correct interpretation of the LD 
coefficient is that LD students averaged over the two FRL 
groups differ from SWoD-not FRL students (the group rep-
resented by the intercept). But many researchers interpret 
the coefficient associated with the LD predictor as referring 
to differences between all LD and all SWoD students and 
do not realize that specific differences among the six pos-
sible combinations of the four LD and FRL groups have 
never been directly compared nor tested, thereby ignoring 
contrasts that may be of greater theoretical interest (e.g., Do 
LD-FRL students differ significantly from SWoD-FRL stu-
dents? Do LD-FRL students differ significantly from 
LD-not FRL students?). To correctly test interaction effects, 
a product term based on the multiplication of the predictors 
is required, and when the product term is statistically sig-
nificant, observed differences need to be evaluated using 
post hoc follow-up tests (see Aiken & West, 1991; Cohen, 
Cohen, West, & Aiken, 2003; Hayes, 2013; Jaccard & 
Turrisi, 2003; Pedhazur, 1997). We describe partial regres-
sion effects and the testing of interaction effects in greater 
detail in the appendix.

Few studies in the achievement growth literature have 
fully tested and interpreted interaction effects and previous 
research examining the impact of demographic characteris-
tics on the effects of LD status on mathematics growth has 
usually examined only partial effects, not interactions. For 
example, Judge and Watson (2011), Morgan et al. (2009, 
2011), and Wei et al. (2013) all explored relationships 
between LD status, demographic characteristics, and 
growth in mathematics achievement using multilevel mod-
els. However, none of these studies explicitly modeled 
interaction effects using product terms. In these and other 
studies, interaction hypotheses were addressed in some 
cases by descriptive statistics and in others by visual inspec-
tion of graphical results rather than by conducting the 

statistical testing required to establish whether what appears 
to be different descriptively or visually is reliably different 
(Hayes, 2013).

Purpose and Research Questions

The purpose of the present study was to examine the math-
ematics achievement growth trajectories of students with 
LD and SWoD in Grades 3 to 7 using multilevel longitudi-
nal models and explicitly test interactions of LD status with 
student demographic characteristics. We addressed two 
main questions about mathematics growth of students with 
and without LD: (a) How do mathematics growth trajecto-
ries interact with student LD status on a statewide mathe-
matics achievement test? (b) Do student demographic 
characteristics interact with LD status and mathematics 
growth trajectories? In addressing these questions, we draw 
attention to frequent imprecise interpretations in research 
based on multiple regression and multilevel models using 
multiple predictor variables without including interaction 
effects.

Method

Sample

We analyzed data from students in North Carolina who 
were in the third grade in 2000–2001 and had not been 
retained in grade from the previous year. We excluded stu-
dents if they did not follow the expected annual grade level 
sequence from Grades 3 to 7; never participated in the 
mathematics test; were missing Wave 1, third grade demo-
graphic information; or were in exceptionality categories 
other than students with LD. After students meeting one or 
more of these exclusion criteria had been eliminated, the 
analytic sample consisted of 79,554 students, of whom 
5,221 (6.6%) were students with LD. Student characteris-
tics of the sample were 2,648 (3.3%) ELL, 40,889 (51.4%) 
females, and 33,465 (42.1%) FRL. The racial/ethnic com-
position of the sample was 1,194 American Indian (1.5%), 
1,533 (1.9%) Asian, 23,243 (29.2%) Black, 4,325 (5.4%) 
Hispanic, and 47,854 (62.0%) White students. Students 
who were in Grade 3 in 2000–2001 were matched to all suc-
ceeding years through Grade 7 (2004–2005), after which 
the state introduced a new test edition that could have con-
founded estimates of mathematics growth. Students were 
included in the analyses as long as they had at least one 
mathematics score; 81.9% had mathematics scores in all 5 
years, 4.9% in 4 years, 4.0% in 3 years, 3.4% in 2 years, and 
5.7% in only one year. The numbers of students tested in 
mathematics in Grades 3 to 7 were 78,437, 73,850, 71,372, 
69,588, and 67,843, respectively.

We identified students as LD or a SWoD on the basis of 
students’ exceptionality classification in third grade, 
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according to state accountability testing records. At that 
time, to be identified as a student with LD, North Carolina 
required students to have a severe discrepancy between 
ability and achievement (a) through a 15 standard score 
point discrepancy between ability and achievement on indi-
vidually administered ability and achievement tests or (b) 
through the provision of work samples and other data that 
provided strong and consistent evidence of the presence of 
a severe ability/achievement discrepancy, even though it 
had not been observed on standardized measures. This sec-
ond option was used infrequently. The LD group consisted 
of students identified as having an LD in any academic area. 
We considered including only students with documented 
LD in mathematics, but elected to include all students with 
LD given that as a group, students with LD are likely to 
have lower achievement in mathematics even if they do not 
meet diagnostic criteria for a specific mathematics disabil-
ity (Cirino, Fuchs, Elias, Powell, & Schumacher, 2015; 
Stevens et al., 2015) and mathematics LD and reading LD 
are frequently comorbid (Watson & Gable, 2013).

Measures

The outcome measure for all analyses was the scale score on 
the standardized, second edition North Carolina End of 
Grade Mathematics Test. The test was designed to measure 
four mathematics strands: (a) number sense, numeration, 
and numerical operations; (b) spatial sense, measurement, 
and geometry; (c) patterns, relationships, and functions; and 
(d) data, probability, and statistics (North Carolina 
Department of Public Instruction, 2006). Developmental 
scale scores across the four strands were constructed using a 
three parameter, logistic item response theory model 
(Thissen & Orlando, 2001) and are based on vertical linking 
using a common items design to create a developmental 
scale spanning all grades. Reliability and validity for the NC 
mathematics tests are provided in state technical reports 
(North Carolina Department of Public Instruction, 2006) 
including total score internal consistency estimates above 
.90 and evidence of content and criterion-related validity 
established through teacher content ratings of how well 
items represented the state’s mathematics curriculum, cor-
relations between teacher judgments of students’ expected 
mathematics performance and their test scores, and correla-
tions between student scores on other mathematics assess-
ments and the state test (correlations ranged from .56 to .86).

Analytic Methods

We applied multilevel, random effects, longitudinal analy-
ses computed using HLM 7.0 (Raudenbush, Bryk, Cheong, 
Congdon, & du Toit, 2011) and full maximum likelihood 
estimation. Time was centered at the first testing occasion 
(Grade 3). Because our interest was in student achievement 

not school effects and because we did not want to exclude 
students who moved schools during the study time period, 
we did not include a third, school level in analyses.

The longitudinal, multilevel model specified the relation 
between mathematics score and a curvilinear function of 
time (grade) at Level 1 and student characteristics at Level 2:
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We evaluated linear and curvilinear models to describe 
the functional form of the mathematics achievement growth 
trajectories at Level 1. We next added a dummy coded vari-
able representing LD status (0 = SWoD, 1 = LD). In the 
third model, we added three dichotomous student demo-
graphic variables (ELL, FRL, sex) and four dummy coded 
variables representing student race/ethnicity (American 
Indian, Asian, Black, Hispanic). We then computed multi-
ple additional models evaluating each possible three-way 
interaction of grade by LD by student demographic charac-
teristic, one interaction at a time. Note, however, we did not 
test an interaction for the American Indian group because of 
the relatively small sample size in the LD group (n = 78) 
that resulted in very small cell sizes for the interaction.

We evaluated interaction effects in two ways. First, when 
a student-level predictor (e.g., LD status) is used to predict 
growth at Level 1, a two-way, cross-level interaction is 
formed. When one of these terms was statistically signifi-
cant, we conducted post hoc tests to determine the source of 
the differences (e.g., Between SWoD vs. LD groups? From 
one grade to another?). The second type of interaction effect 
we tested involved the three-way interaction of Level 1 
growth trajectory by LD status by moderator variable (i.e., 
student demographic characteristic). This involved inclu-
sion of a multiplicative interaction term at Level 2 in the 
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growth model for each moderating variable. If the term was 
statistically significant, results were probed further to deter-
mine more specific, post hoc differences within the interac-
tion (i.e., Which combination of LD moderator groups was 
different? At which grades were differences significant?). 
The process of specifying and testing the interaction effects 
is described in greater detail in the appendix.

Because the repeated testing that occurs in post hoc anal-
ysis can result in the inflation of Type I error (see Pedhazur, 
1997), we applied Bonferroni’s adjustment whenever we 
conducted post hoc tests. One common approach is to divide 
alpha by the number of tests within a family of comparisons 
(see Pedhazur, 1997, p. 435). In this study there are different 
numbers of post hoc tests for different interactions. For sim-
plicity of presentation, we used the most conservative of 
these adjustments for the largest family of post hoc tests (α = 
.05/6 = .008) as the decision rule to determine statistical sig-
nificance for all post hoc tests of significant interactions.

Results

Multilevel Growth Models without Interaction 
Testing

Unconditional and longitudinal Level 1 models.  The first model 
applied was a fully unconditional random effects model that 
only estimated grand means and variance components. We then 
applied two-level longitudinal models that sequentially intro-
duced two polynomial terms (linear, quadratic). At each step, 
introduction of each polynomial term resulted in statistically 
significant improvements in model fit (p < .001). Although 
more complex functional forms were mathematically possible, 
previous research on this test (Stevens et al., 2015) has shown 
that more complex functional forms accounted for less than one 
tenth of 1% of variance. Thus, a quadratic model for these data 
was deemed most parsimonious.

Across all students, the estimated mean mathematics 
scale score in Grade 3 was 250.65 (see the first columns of 
Table 1). Average initial linear growth was significantly dif-
ferent than zero, at 6.96 scale score points (z = 491.06, SE = 
0.01, p < .001). The initial curvature in the growth function 
was –0.56 scale score points, also significantly different 
from zero (z = –158.73, SE = 0.01, p < .001), resulting in an 
initial rate of change of 6.40 scale score points from Grade 
3 to 4 (6.96 – 0.56 = 6.40). This model allowed each growth 
trajectory parameter (i.e., intercept, linear rate of change, 
rate of curvature) to vary randomly across students. A mul-
tiparameter variance component test indicated that this 
model provided a better fit to the data than a fixed effects 
model, χ2(5) = 37,087.79, p < .001, demonstrating that stu-
dents differed in their growth trajectories.

Conditional models.  We next applied two conditional models 
that added predictors to the quadratic, longitudinal model. 

In the first, we added a dummy coded predictor (LD) that 
reflected students’ status as a SWoD or a student identified 
with an LD. Results are shown in the middle columns of 
Table 1. It can be seen that the Level 1 intercept and linear 
growth parameter were significantly different (p < .001) as 
a function of LD status, but there was no statistically sig-
nificant difference in rate of curvature. Students with LD 
were 4.49 scale score points lower than their SWoD peers at 
Grade 3 and had an initial linear growth rate of 0.86 points 
less per year.

Variance components, psuedo-R2, and deviance statistics 
are presented at the bottom of Table 1 and show that addi-
tion of the LD predictor accounted for no change in the vari-
ance of the quadratic parameters and an additional 3% and 
2% of the variance in student intercepts and slopes, respec-
tively, in comparison to the unconditional longitudinal 
model. Comparison of model deviances between the uncon-
ditional longitudinal and conditional LD models resulted in 
a statistically significant reduction in unexplained variance, 
χ2(3) = 3,244.87, p < .001.

Learning disabilities and demographics model.  We then 
expanded the multilevel growth model by adding an addi-
tional set of predictors representing student demographics 
and background characteristics (see rightmost columns of 
Table 1). These results represent the partial effects dis-
cussed earlier and most commonly reported by researchers 
as a way to contextualize results for a focal predictor (i.e., 
LD status). The estimated intercept (253.85) now represents 
the average mathematics achievement in Grade 3 for White 
male SWoD who were not ELL and were not FRL (the ref-
erence group for contrasts with other predictors). The inter-
cept increased almost three scale score points as the 
reference group was refined but the magnitude of the other 
LD parameter estimates changed only slightly with addition 
of the demographic predictors. All else constant, examina-
tion of results for the added predictors showed that females 
(–0.48), ELL (–3.37), FRL (–2.76), Black students (–4.38), 
Hispanic students (–1.70), and American Indian students 
(–2.23) all had significantly lower mathematics perfor-
mance in Grade 3 than the reference group. Controlling for 
other predictors, Asian students had significantly higher 
achievement (+0.38) in Grade 3.

Results for linear rate of change showed that all predic-
tors except student sex and ELL showed statistically signifi-
cant differences in slope in comparison to the reference 
group. All else constant, students who were Asian (+1.26), 
Black (+0.20), or Hispanic (+0.87) showed greater initial 
rates of linear change. Students who were free or reduced 
lunch recipients (–0.24) or American Indians (–1.52) showed 
significantly lesser rates of linear change. Results for the 
quadratic parameter showed that, in addition to LD students, 
ELL students did not differ significantly from the reference 
group. Female students (+0.04) and American Indian 
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students (+0.30) showed acceleration in growth rate. FRL 
(–0.05), Asian (–0.07), Black (–0.11), and Hispanic (–0.16) 
students all showed statistically significant deceleration in 
growth rate.

Examination of psuedo-R2 and deviance statistics 
showed that addition of the demographic predictors 
accounted for approximately 24% and 9% of the variance in 
student intercepts and slopes, respectively, but no additional 
variance was explained for curvature in comparison to the 
unconditional longitudinal model. A deviance test between 
the LD only model and the model that added demographic 
predictors resulted in a statistically significant reduction in 
unexplained variance as well, χ2(21) = 18,837.00, p < .001. 
Intercorrelations of the model parameters between intercept 
and linear, intercept and curvilinear, and linear and curvilin-
ear parameters were .30, .07, and –.64, respectively. Thus, 
after controlling for demographic characteristics, there was 
a modest positive correlation between intercept and linear 
slope indicating a fan-spread relation in which, on average, 
those who scored higher in Grade 3 grew at a more rapid 
rate and those with lower Grade 3 scores grew at a slower 

rate. There was no relationship of intercept to curvature. 
And there was a strong negative relationship between linear 
and curvilinear growth parameters in which those with 
higher rates of initial linear change had the greatest decel-
eration in growth and those with lower rates of initial linear 
change had less deceleration in growth over time.

Figure 1 shows three of the largest partial regression 
effects from the LD and demographics model. The intercept 
or reference group is the same in all three panels of Figure 
1 and represents the performance of SWoD students who 
were White, male, not ELL, and not FRL whose estimated 
growth trajectory ranged from 253.85 in Grade 3 to 273.49 
in Grade 7. The left panel of Figure 1 contrasts the reference 
group with the FRL partial effect, that is, students who were 
FRL, controlling for special education status, race/ethnicity, 
sex, and ELL status. The empirical Bayes estimated growth 
trajectory for the FRL partial effect ranged from 251.09 in 
Grade 3 to 269.01 in Grade 7. The right panel of Figure 1 
contrasts the same reference group with the Black race/eth-
nicity partial effect, that is, students who were Black, con-
trolling for special education status, sex, FRL, and ELL 

Table 1.  Fixed and Random Effects Longitudinal Hierarchical Linear Model Regression Models, Grades 3–7.

Unconditional LD LD and demographics

Predictor Intercept Linear Quadratic Intercept Linear Quadratic Intercept Linear Quadratic

Mean 250.65*** 6.96*** − 0.56*** 250.95*** 7.02*** −0.56*** 253.85*** 7.02*** −0.53***
  (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.04) (0.02) (0.01)
LD −4.49*** −0.86*** 0.01 −4.55*** −0.81*** 0.02
  (0.10) (0.06) (0.02) (0.09) (0.06) (0.02)
Sex −0.48*** 0.00 0.04***
  (0.05) (0.03) (0.01)
ELL −3.37*** −0.12 0.01
  (0.17) (0.11) (0.03)
FRL −2.76*** −0.24*** −0.05***
  (0.05) (0.03) (0.01)
Asian 0.38* 1.26*** −0.07*
  (0.19) (0.11) (0.03)
Black −4.38*** 0.20*** −0.11***
  (0.05) (0.04) (0.01)
Hispanic −1.70*** 0.87*** −0.16***
  (0.13) (0.08) (0.02)
American Indian −2.23*** −1.52*** 0.30***
  (0.18) (0.1) (0.03)

Unconditional LD LD and demographics

Random effect Intercept Linear Quadratic Intercept Linear Quadratic Intercept Linear Quadratic

Variance component 40.47 1.38 0.13 39.23 1.35 0.13 30.65 1.25 0.13
  Residual 10.45 10.45 10.45  
  Pseudo-R2 — — — 3.06 2.17 0.00 24.26 9.42 0.00

Note. ELL = English language learner; FRL = free or reduced lunch; LD = learning disabilities. Standard errors are shown in parentheses.
*p < .05. ***p < .001.
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status. The estimated growth trajectory for the Black partial 
effect ranged from 249.47 in Grade 3 to 268.22 in Grade 7. 
The bottom panel of Figure 1 contrasts the reference group 
with the LD partial effect, that is, students who were LD, 
controlling for race/ethnicity, sex, FRL, and ELL status. 
The estimated growth trajectory for the LD partial effect 
ranged from 249.30 in Grade 3 to 266.01 in Grade 7.

Multilevel Growth Models with Interaction 
Testing

Two-way interaction of growth and LD status.  Although we 
knew from the results reported in Table 1 that differences in 
intercept and initial, growth rate between students with LD 
and SWoD were statistically significant (i.e., cross-level 
interaction of LD status with Level 1 intercepts and linear 

slopes), we did not have full information on the growth tra-
jectories of students with LD nor did we know how the two 
groups differed at each individual grade. We therefore con-
ducted additional analyses to probe these differences. For 
SWoD students, the growth function was represented by a 
Grade 3 score (intercept) of 253.85, an initial linear rate of 
change of 7.02, and a quadratic curvature of –0.53, all sta-
tistically significant (see upper portion of Table 2). The LD 
growth trajectory had a Grade 3 score (intercept) of 249.30, 
an initial linear rate of change of 6.21, and a quadratic cur-
vature of –0.51, all three parameters statistically significant. 
In comparing the two growth trajectories, the LD group 
intercept and linear growth parameters were significantly 
lower than the SWoD group (p < .001), but there was no 
statistically significant difference in rate of curvature 
between the two groups. The first two rows of Table 3 show 

Figure 1.  Partial regression effects from the learning disabilities (LD) and demographics model with the reference group (intercept) 
displayed in each panel and the partial effect of free or reduced lunch (FRL) status on the left, Black race/ethnicity on the right, and LD 
status on the bottom.
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the estimated mathematics achievement trajectories for 
each group by grade (see Note 2). Pairwise, post hoc tests 
showed that differences between the LD and SWoD groups 
were statistically significant (Bonferroni-adjusted p < .008) 
at each individual grade. It is noteworthy, however, that the 
difference between groups increased across grades from 4.6 
scale score points in Grade 3 to 7.5 points in Grade 7 (see 
Table 3). Expressed as an effect size (Cohen’s d), this rep-
resented an increased difference between groups from 0.66 
to 0.75 of a standard deviation representing medium to 
large effect sizes (Cohen, 1992) and indicating the presence 
of a fan-spread effect.

Three-way interactions of growth, LD, and demographic  
characteristics.  We next examined growth of LD and SWoD 
students as a function of interactions with other student char-
acteristics that served as moderators. The lower portion of 
Table 2 shows the results of these analyses. When an interac-
tion was significant, we conducted post hoc tests to determine 
the specific comparisons that were significantly different. 
Empirical Bayes estimates of mean mathematics achievement 
for the significant interactions are shown in the lower portion 
of Table 3 for each student subgroup by grade.

Three of the interaction effects tested were not statistically 
significant and did not result in reductions in unexplained vari-
ance: the interactions of LD by ELL, χ2(3) = 3.76, p = .287; LD 

by Asian race/ethnicity, χ2(3) = 4.88, p = .179; and LD by 
Hispanic race/ethnicity, χ2(3) = 0.33, p > .500 (see Note 3).

LD × Sex × Grade interaction.  The LD by sex interaction 
was a statistically significant predictor of Grade 3 achieve-
ment only (intercepts only; z = –0.73, SE = 0.19, p < .001). 
Differences among the four LD by sex groups at Grade 3 
were tested using a Bonferroni-adjusted p value. All six 
possible comparisons were statistically significant with the 
smallest difference in intercepts (ψ = 0.63, d = 0.09) occur-
ring between the SWoD-male and SWoD-female groups 
and the largest difference (ψ = 5.25, d = 0.75) between the 
SWoD-male and the LD-female groups.

LD × FRL × Grade interaction.  Addition of the LD by 
FRL by grade interaction resulted in a significant reduction 
in unexplained variance for the model as a whole, χ2(3) = 
13.40, p = .004, in comparison to the LD and demographics 
model. We then conducted post hoc tests to examine dif-
ferences among the four LD by FRL groups. Each group’s 
estimated growth trajectory is shown in Table 3 and dis-
played in the left panel of Figure 2. All four trajectories 
for both students with LD and SWoD showed significant 
growth as well as significant deceleration over grades. We 
then tested the pairwise differences among the four groups 
in their growth trajectories at each individual grade. In 

Table 3.  Empirical Bayes Estimated Mathematics Scale Score 
Means by Student Group and Grade for Statistically Significant 
Interactions (Total N = 79,554).

Grade

Student group 3 4 5 6 7

Grade by LD
  SWoD 253.85 260.34 265.78 270.17 273.49
  LD 249.30 255.00 259.69 263.36 266.01
Grade by LD by sex
  SWoD—male 251.62 257.46 263.50 267.46 270.23
  SWoD—female 251.00 256.81 262.88 267.24 270.05
  LD—male 248.06 252.98 258.48 261.68 263.79
  LD—female 246.69 251.69 257.24 260.93 262.97
Grade by LD by FRL
  SWoD—not FRL 253.86 260.35 265.79 270.18 273.51
  SWoD—FRL 249.46 256.06 261.38 265.42 268.20
  LD—not FRL 249.05 254.84 259.54 263.16 265.69
  LD—FRL 246.25 251.77 256.09 259.22 261.15
Grade by LD by Black race/ethnicity
  SWoD—White 253.86 260.35 265.78 270.17 273.50
  SWoD—Black 249.46 256.06 261.38 265.42 268.20
  LD—White 249.20 254.97 259.68 263.32 265.88
  LD—Black 244.80 250.68 255.27 258.57 260.58

Note. FRL = free or reduced lunch; LD = learning disabilities;  
SWoD = students without disabilities.

Table 2.  Longitudinal Hierarchical Linear Modeling Regression 
Model Interaction Effects.

Predictor Intercept Linear Quadratic

Simple effects of LD and growth (two-way cross-level interaction)
  SWoD 253.85*** 7.02*** −0.53***
  (0.03) (0.02) (0.01)
  LD 249.30*** 6.21*** −0.51***
  (0.10) (0.06) (0.02)
Interaction of LD, demographic characteristics, and growth 

(three-way interactions)
  LD × sex −0.73*** 0.13 −0.02
  (0.19) (0.13) (0.03)
  LD × Black 0.43* −0.41** 0.11**
  (0.19) (0.14) (0.03)
  LD × FRL 0.56** −0.28* 0.08**
  (0.18) (0.12) (0.03)
  LD × ELL 0.91 0.34 −0.05
  (0.65) (0.45) (0.12)
  LD × Asian 0.08 −1.34 0.19
  (1.32) (0.71) (0.18)
  LD × Hispanic −0.10 −0.10 0.03
  (0.49) (0.31) (0.08)

Note. ELL = English language learner; FRL = free or reduced lunch;  
LD = learning disabilities; SWoD = students without disabilities. 
Standard errors are shown in parentheses.
*p < .05. **p < .01. ***p < .001 for omnibus interaction effect.
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essence, this represents vertical comparisons of groups at 
each grade in the left panel of Figure 2. All pairwise differ-
ences between the four groups were statistically significant 
at all five grades (Bonferroni-adjusted p < .008). The larg-
est difference was between the SWoD-not FRL versus the 
LD-FRL groups in Grade 7, ψ = 12.23, which represented a 
large effect size (d = 1.21).

LD × Black × Grade interaction.  The three-way inter-
action of LD by Black race/ethnicity by grade was also 
statistically significant for all Level 1 growth parameters 
(intercept, slope, curvature) and resulted in a significant 
reduction in unexplained model variance, χ2(3) = 11.69, p = 
.009. We then tested the differences among the mathematics 
growth trajectories for each of the four Black versus White 
race/ethnicity by LD groups. Each group’s mean estimated 
growth trajectory is shown in Table 3 and displayed in the 
right panel of Figure 2. All trajectories showed signifi-
cant growth and significant deceleration over grades. We 
also examined differences between the four race/ethnicity 
by LD groups at each grade and found that all differences 
between the four groups were statistically significant at all 
five grades except for the difference between the SWoD-
Black group versus the LD-White group at Grade 3 (see the 
right panel of Figure 2). The largest difference was between 
the SWoD-White and LD-Black groups in Grade 7 (ψ = 
12.92), which represented a large effect size (d = 1.29).

Discussion

Mathematics achievement growth and gaps in perfor-
mance among disaggregated student subgroups are of cen-
tral importance in federal policy and educational reform 
efforts (Bloom et al., 2008; Reardon et al., 2013) and one 

of the subgroups of greatest concern is special education 
students (Eckes & Swando, 2009). Like a number of other 
recent studies (e.g., Morgan et al., 2008), the goal of our 
research was not to test a particular developmental model 
thought to cause the Matthew effect or explain the etiol-
ogy of mathematics difficulties. Rather we sought to iden-
tify and describe those subgroups of students with LD who 
are particularly at risk of lower mathematics performance 
and who are most likely to demonstrate increasing achieve-
ment gaps over time. Despite the import of such gaps for 
policy and practice, there have been almost no studies that 
model interaction effects or directly test the specifics of 
how SWD and SWoD students differ as a function of other 
student characteristics. Although there is a growing litera-
ture on the achievement growth of SWD and SWoD stu-
dents in reading and mathematics, all of these studies 
report the partial, unconditional relationships between 
SWD status and student demographic characteristics (e.g., 
Morgan et al., 2009; Wei et al., 2013). Most of these stud-
ies also use multilevel modeling methods, yet none have 
fully tested and interpreted either cross-level interactions 
or interactive relationships among focal and moderator 
variables. As a result, our knowledge of the way that 
demographic characteristics moderate the effects of being 
a SWD on mathematics achievement growth is incom-
plete. The present study provided valuable information on 
interactions in mathematics growth trajectories for stu-
dents on a statewide test used for accountability reporting. 
Explicit testing and interpretation of cross-level interac-
tions and the inclusion, testing, and exploration of interac-
tion terms in the current study provided additional 
information over previous research and some findings 
from direct interaction testing that differ substantially 
from conclusions drawn in other studies.

Figure 2.  Three-way interaction effects with the learning disabilities (LD) × free or reduced lunch (FRL) × grade interaction on the 
left and the LD × Black race/ethnicity × grade interaction on the right.
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Major Study Findings in Relation to Previous 
Research

Using multilevel models, we found that mathematics 
achievement growth over Grades 3 to 7 was best repre-
sented as a curvilinear function with achievement growth 
decelerating over time although the rate of curvature in 
scale score units was quite small (0.53 points per year, about 
0.07 of a standard deviation) and the percentage of variance 
explained by the curvature term (1%) also was small. These 
results agree with other recent studies (Bloom et al., 2008; 
Morgan et al., 2009, 2011; Wei et al., 2013) that all reported 
curvilinear mathematics growth. Also consistent with other 
studies (Judge & Watson, 2011; Morgan et al., 2011) were 
findings that there were significant differences between 
SWoD and LD students in initial mathematics performance 
in early grades and in the rate of growth across grades.

We included demographic characteristics of students as 
additional predictors of mathematics growth and found sta-
tistically significant differences in mathematics perfor-
mance as a function of sex, race/ethnicity, FRL, and 
language proficiency with male, White, no lunch subsidy, 
and native English speakers performing higher. These par-
tial regression results are consistent with a large body of 
research that establishes relationships of these student char-
acteristics with student achievement (V. E. Lee & Burkam, 
2002; Tate, 1997). However, after direct testing of interac-
tion effects we found substantially different results. 
Commonly reported partial effect differences for ELL, 
Asian, and Hispanic students were no longer statistically 
significant when directly tested as interaction effects. That 
is, the performance LD students did not change on the basis 
of these characteristics.

In contrast, through interaction testing, we found that 
LD-SWoD differences in intercepts were moderated by stu-
dent sex with the SWoD-male and the LD-female groups 
showing the largest difference in performance. Black race/
ethnicity and FRL status moderated LD-SWoD differences 
for intercepts, slopes, and curvature of growth trajectories. 
Further exploration of these effects showed that all sub-
groups showed significant growth over grades, but growth 
was largest for SWoD-White or SWoD-not FRL students 
and smallest for LD-Black or LD-FRL students. These 
results provided a more detailed account of the mathematics 
growth of specific demographic subgroups of students with 
LD than has been available in previous studies.

There is evidence that achievement gaps are already evi-
dent at Grade 3 on state-mandated accountability tests (V. 
E. Lee & Burkam, 2002). However, results conflict on the 
stability of the mathematics achievement gap with some 
studies reporting widening of the gap for SWD (e.g., Judge 
& Watson, 2011; Morgan et al., 2011) and others reporting 
stability or decreases over time (e.g., Jordan et al., 2002). 
Our analyses showed significant differences between SWoD 

and students with LD at each grade and a notable increase 
in the gap over time from an effect size of about 0.66 in 
Grade 3 to 0.75 in Grade 7. It is also noteworthy that use of 
partial regression results would result in a substantial under-
estimation of the size of the achievement gap between 
SWoD and specific subgroups of students with LD. The LD 
partial effect growth trajectory shown in Figure 1 is very 
similar to the growth trajectory for the LD-White students 
in the interaction effect results shown in the right panel of 
Figure 2. The partial regression results suggested an 
achievement gap between SWoD students (who were also 
white, not FRL, English-speaking) and FRL students of 
0.54, Black students of 0.64, and LD students of 0.90 stan-
dard deviation units. However, these partial effects substan-
tially underestimate the achievement gaps that result from 
directly testing interactions: 1.56 standard deviations for 
students who are both LD and Black or 1.49 standard devia-
tions for students who are both LD and FRL. As can be seen 
by comparing the partial growth trajectories in Figure 1 to 
the interaction trajectories in Figure 2, more substantial 
gaps in the performance of specific LD subgroups is “aver-
aged out” in the estimates from partial regression analysis.

It should also be noted that differences in findings across 
studies of achievement growth for different student groups 
may be due to misinterpretation of partial effects as moder-
ating effects, differences in which predictors are included in 
models (and therefore what is partialled), reliance on 
descriptive inspection or visual analysis to interpret results, 
making comparisons across scales that do not possess inter-
val-level measurement properties (Ho & Reardon, 2012), 
and the failure to use empirical methods (i.e., effect size 
measures) to describe the magnitude of group differences. 
Greater attention to these issues may lead to better under-
standing of group differences and greater agreement in 
study findings that describe academic achievement gaps.

Limitations

A number of limitations in the present study should be 
noted. First, we did not have available a more comprehen-
sive set of student and family characteristics that may be 
related to academic achievement (e.g., resources in the 
home, income level, family stability). Our results also may 
be limited by case exclusions for missing values on predic-
tor variables. Some attrition of the sample occurred over 
time, although the rate in the present study (approximately 
4% per year) was modest. It is also worth noting that, due to 
large sample size, small differences between groups in this 
study were statistically significant, but may not be substan-
tively important. To contextualize this issue we reported 
effect sizes to provide additional information.

The current study examined the mathematics growth of 
students with LD using a statewide accountability test and 
school identification as a student with an LD. Use of an 
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operational state accountability test and state-implemented 
(versus researcher-implemented) LD identification proce-
dures provides substantial ecological validity but may limit 
generalization of the study findings, given variations in 
state mathematics standards, large-scale assessment pro-
grams, and LD eligibility criteria (e.g., a more stringent dis-
crepancy criterion or response to intervention model for 
identifying students with LD).

In addition, the study treated students with LD as a uni-
tary group, regardless of whether the student had been iden-
tified as having a disability in mathematics, reading, or 
another academic area. This aspect of our methodology is in 
keeping with several other studies of mathematics growth 
in students with LD (e.g., Judge & Watson, 2011; Morgan 
et al., 2011; Wei et al., 2013), but may have masked differ-
ences in achievement growth for students identified with a 
specific LD in mathematics, those with comorbid reading 
and mathematics LD, and those with reading disabilities. 
Although the present study and others (e.g., Cirino et al., 
2015; Wei et al., 2013) confirm that students with LD in any 
academic area are at substantial risk of low mathematics 
achievement, the specific cognitive deficits underlying the 
mathematics difficulties may be different by LD subgroup. 
For example, Cirino et al. (2015) examined different sub-
groups of students with LD and found that students with 
mathematics LD or comorbid mathematics and reading LD 
had greater difficulties with processing speed, nonverbal 
reasoning, and most skill areas in mathematics (e.g., basic 
facts, word problems) than students who were LD in read-
ing only.

Conclusions and Future Directions

Our findings of significant, decelerating mathematics 
achievement growth of LD and SWoD students over grades 
were consistent with previously published research and we 
also extended a small number of studies examining mathe-
matics achievement growth for students with LD and the 
relationship of achievement to student demographic charac-
teristics. Unlike previous research, however, the present 
study directly tested interaction effects and cross-level 
interactions and found that growth model parameters were 
moderated only by student sex, FRL status, and Black race/
ethnicity.

Our study also empirically examined the achievement gap 
between LD and SWoD students at each individual grade and 
found a significant, increasing achievement gap over Grades 
3 to 7 from about 4.5 to 7.5 scale score points (d = 0.90) for 
LD students overall, from about 9 to 13 scale score points  
(d = 1.56) for LD-Black students, and from about 7.6 to 12.4  
scale score points for LD-FRL students (d = 1.49). Despite 
policy goals of closing achievement gaps, the empirical evi-
dence on student growth has not reliably indicated progress 
(Hedges & Nowell, 1999; Reardon et al., 2013) and results of 

the present study showed that the gap between students with 
LD and SWoD students increased over grades and may be 
substantially larger for certain LD subgroups than reported in 
previous studies.

There are a number of important implications of our 
findings for researchers, practitioners and policy makers. 
Our study demonstrated that students who are members of 
two or more at-risk subgroups may be especially in jeop-
ardy for lower mathematics achievement throughout their 
early school years. To effectively identify those students 
most in need of intervention to close achievement gaps, it is 
important that future researchers clearly test and explore 
interaction effects for specific student subgroups. The aver-
aging over other moderator groups that occurs with partial 
regression effects may mask important subgroup differ-
ences as demonstrated in this study. In the absence of care-
ful interpretation of partial regression results or explicit 
testing of interaction effects, practitioners and policy-mak-
ers may be misled about the student subgroups that are most 
at risk for learning difficulties and most in need of 
intervention.

From a practice standpoint, more fully understanding 
and intervening to address the factors that disadvantage stu-
dents, especially those who are from low-income, minority 
families (Jordan & Levine, 2009; Morgan, Farkas, 
Hillemeier, & Maczuga, 2012; Siegler, 2009), is important. 
Given differential access in early childhood to mathematics 
experiences (Siegler, 2009), poor and ethnic minority stu-
dents are more likely to enter school with lower mathemat-
ics skills (Fryer & Levitt, 2004; Morgan et al., 2009), and 
then more likely to attend poorer schools where they experi-
ence less time spent on mathematics instruction and lower 
quality core instruction in mathematics (Desimone & Long, 
2010; Fryer & Levitt, 2004). This lack of access to high-
quality preschool and early elementary mathematics pro-
grams may explain the greater initial impairment in third 
grade and slower mathematics growth seen in poor and 
Black students identified as LD in the present study. If this 
is the case, it argues for stronger core mathematics instruc-
tion and targeted mathematics interventions in the early 
grades, particularly in high poverty schools (Fuchs et al., 
2005; Fuchs, Fuchs, & Compton, 2012; Gersten et al., 
2009; Morgan, Farkas, & Maczuga, 2015).

However, another important factor contributing to the 
markedly poorer mathematics outcomes for students who 
are both LD and Black in the present study may be that 
ethnic minority students experiencing significant academic 
difficulties were less likely to receive LD services. When 
controlling for potential confounding variables such as 
age, low birth weight, SES, prior achievement, and self-
regulatory variables, some studies have found that minor-
ity students were less likely than otherwise similar White 
children to be identified as having an LD (Hibel, Farkas, & 
Morgan, 2010; Morgan, Farkas, Hillemeier, et al., 2015). 
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Lower LD placement rates for students who are ethnic 
minorities in the face of similar needs would likely result in 
a more impaired group of students who are both LD and 
Black. In addition to stronger core mathematics instruction 
and targeted interventions prior to referral, this explanation 
would argue for more special education referral procedures 
that ensure ethnic minority students are granted the same 
access to special education as White students (Morgan, 
Farkas, Hillemeier, et al., 2015) and attention to ensure that 
those students with the greatest need are afforded more 
intensive or differently designed intervention strategies 
once they are identified for special education (Bryant, Kim, 
Hartman, & Bryant, 2006; Jordan & Levine, 2009; Morgan 
et al., 2009).

Appendix

Partial Effects in Regression Models

In regression models the reference group or intercept repre-
sents the mean outcome for individuals coded zero on all 
dichotomous predictor variables (all predictors in this study 
are dichotomous). Thus, in the LD and demographics model 
reported in Table 1, the reference group represents SWoD 
students who are also male, not ELL, not FRL, and White 
race/ethnicity. The statistical estimate for each predictor 
variable is a partial regression coefficient. When there are 
two or more predictors, the partial regression coefficient 
represents the unique relationship of the predictor with the 
outcome controlling for or “partialling out” other predic-
tors. Partialling entails estimating the relation of the focal 
predictor with the outcome at the average value of the other 
predictors. For example, a regression model with LD status 
predicting mathematics achievement that includes FRL sta-
tus as a second predictor produces an LD partial regression 
coefficient that expresses the strength of relation with math-
ematics achievement for LD students who are at the 
weighted average of the two FRL groups. This can be con-
ceptualized as computing the LD-math relation for not FRL 
students, then separately calculating the LD-math correla-
tion for FRL students and then taking the average of the two 
LD-math correlations (see Pedhazur, 1997, p. 160). This 
average is the LD partial regression coefficient controlling 
for FRL status.

Thus, the LD partial regression coefficient in Table 1 
of –4.55 is an estimate of the relation of LD status with 
math achievement for students at the average of the sex, 
ELL, FRL, and race/ethnicity groups. A common misin-
terpretation of the LD coefficient is that it represents the 
difference between all LD students and all SWoD stu-
dents when it is actually a comparison between LD stu-
dents at the average of the other predictor groups versus 
SWoD male, not ELL, not FRL, and White race/ethnicity 
students (the intercept).

Interaction Effects in Multilevel Regression 
Models

We tested both two- and three-way interactions in the cur-
rent study. The two-way interaction was the cross-level 
interaction of LD × growth. This means that there was  
a product interaction term for LD status × intercept, LD 
status × linear slope, and LD status × quadratic change (see 
Equation 5). When cross-level interactions are statistically 
significant, formal statistical tests of interactions are required 
to probe the details of the interaction effect (see Curran, 
Bauer, & Willoughby, 2004; Hayes, 2013). The focus of the 
present study was on the interaction of LD status with sev-
eral dichotomously coded student characteristics. Analysis 
of interactions of dichotomous predictors is discussed by 
Hardy (1993) and Pedhazur (1997). The two-way interaction 
consisted of the difference between the LD and SWoD 
groups at each of the five grades.

We were also interested in the interaction between Level 
2 predictors (LD status and each demographic characteris-
tic, e.g., LD × FRL). To create a same-level interaction 
effect, a product term composed of the multiplication of 
two predictors was computed and included in the regres-
sion equation (along with the original two predictors). By 
manipulation of the resulting regression coefficients, true 
interaction effects can then be tested to determine which 
groups differ from which others. In our study, for example, 
testing the interaction of LD status (0, 1) with FRL status 
(0, 1) results in four interaction groups (SWoD-not FRL, 
SWoD-FRL, LD-not FRL, and LD-FRL). Means for each 
interaction group can be computed directly from the regres-
sion coefficients and used to statistically test pairwise dif-
ferences, t = (βj – βk) / SEinteraction. For example, in a 
regression equation with three predictors (LD, FRL, and 
LD × FRL, respectively), a 2 × 2 matrix of the interaction 
group means is composed of cell00 = β0, cell01 = β0 + β2, 
cell10 = β0 + β1, and cell11 = β0 + β1 + β2 + β3. There are then 
six possible pairwise comparisons among the four interac-
tion means (k[k-1]/2 = 4[3]/2 = 6). In the present study, 
however, we used multilevel software to calculate the 
parameters for each interaction cell by systematically rotat-
ing which groups were coded 0 or 1 so we could obtain 
empirical Bayes estimates of each interaction group’s 
intercept, slope and curvature parameters.

The three-way interactions in our study were formed by 
the product of the Level 2 interactions (e.g., LD × FRL) just 
discussed and Level 1 growth parameters (e.g., Level 1 inter-
cepts × LD × FRL, Level 1 slopes × LD × FRL, or Level 1 
curvature × LD × FRL). In addition, using the estimated 
growth trajectories for each interaction group, we tested dif-
ferences between the four groups at each of the five grades. 
As with the two-way interaction, we used multilevel software 
to calculate the parameters for each three-way interaction cell 
by systematically rotating group coding.
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Notes

1.	 The terms interaction and moderation are synonymous. We use 
these terms interchangeably.

2.	 Growth trajectories were calculated by taking the empirical 
Bayes estimates from the relevant hierarchical linear mod-
eling analysis and applying the following quadratic growth 
formula using the estimated parameters for intercept, linear 
change, and quadratic change for each relevant subgroup to 
estimate growth trajectories.

Yti i i ti i ti
’ * *= + +( ) ( )π π π0 1 2

2Time  Time

3.	 Observed means and standard deviations by grade by student 
subgroup; empirical Bayes estimated means for nonsignificant 
interaction effects; and more detailed post hoc test results for sig-
nificant interactions are available on request from the first author.
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