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Polygons, Pillars and Pavilions: Discovering Connections  
between Geometry and Architecture

Sean Patrick Madden
University High School, Greeley, Colorado

Crowning the second semester of geometry, taught within a Catholic middle school, 
the author's students explored connections between the geometry of regular polygons 
and architecture of local buildings. They went on to explore how these principles 
apply famous buildings around the world such as the monuments of Washington, 
D.C. and the elliptical piazza of Saint Peter's Basilica at Vatican City within 
Rome, Italy.

Keywords: Catholic middle school mathematics, geometry, architecture, 
education

Connecting the beautiful, though often abstract, ideas of geometry with 
tangible human experience is one of our goals as mathematics teachers.  
To that end, I would like to share a series of lessons I have developed, 

intended to foster my students’ discovery of the geometric principles used by 
architects to enhance the aesthetic appeal of the buildings they design.  This 
unit begins with an exploration of the properties of regular, convex polygons 
and culminates with an analysis of symmetry exhibited by buildings as mun-
dane as gazebos found in parks and as sublime as the monuments found in 
great cities like Washington, D.C. and Rome, Italy.

Excellent line drawings of regular polygons are easily downloaded from 
internet sites or from clip art libraries like the one found within Microsoft 
Word. I print multiple copies of equilateral triangles, squares, and other regu-
lar polygons such as pentagons, hexagons and septagons, and distribute these 
to my students at the beginning of the unit. I expect my students to collabo-
rate in pairs or groups of three to answer the following questions:

•• What are the lengths of the sides of each polygon?
•• What are the measures of the central, interior, and exterior angles?
•• What patterns do you notice?

Of course, answering these questions requires students to make a variety of 
measurements.



216 Journal of Catholic Education / March 2017

I provide protractors and rulers if students don’t bring their own.  I don’t 
make the assumption that all students will be skilled in the use of these in-
struments and am always prepared to demonstrate their use.  However, I find 
that this exploration activity retains the most intrigue for students if I pro-
vide only the most necessary instructions to get them started.  As they work, 
students will naturally ask questions such as:

•• “How do I measure the central angles of a polygon?”
•• Suggested answer: use a straight-edge to draw a set of greatest diagonals 
between vertices.  These will intersect at the center.  The central angles will 
be those with a vertex at this intersection, whose rays pass through adja-
cent vertices of the polygon.  (See Figure 1).
•• “How do I measure the exterior angles?”
•• Suggested answer: Moving in one direction along the outside of the poly-
gon, extend the sides with a straightedge until you’ve got rays large enough 
to measure with a protractor.  (See Figure 1).
•• “How do I measure the interior angles?”
•• Suggested answer: No additional work required here, the sides of the 
polygon represent the rays of the angle you want to measure.

Figure 1.  A line drawing showing how to find the central and exterior angles of a 
polygon.
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As they work, I ask my students to record their data in a table such as that 
in Figure 2.

The data students gather from this initial exploration invites observations, 
which, if they are not voiced by the students themselves, should be raised by 
the teacher.  Among the conclusions they will inevitably draw are:

•• The central angles follow the pattern 360˚/n, where n is the number of sides.
•• The interior angles follow the pattern (n – 2)(180˚)/n, where n is the number 
of sides.
•• The exterior angles follow the same pattern as the central angles.

Figure 2.  One student’s table capturing data on the measurement of regular polygons.

In addition to creating the table, students prepare a summary explaining 
the process by which they drew their conclusions. (See Figure 3.)

Figure 3.  One student’s summary of her observations from the first two parts of our 
unit on polygons and architecture.
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Aside from the numbers in the table, I ask my students to examine the 
rotational symmetry of each polygon and to look for differences in the 
rotational symmetry of polygons with an odd number of vertices compared 
to those with an even number of vertices.  In other words, I ask them to 
rotate their polygons about the center counting how many times the image 
superimposes itself.  I also ask them to observe how many sets of parallel 
sides their polygons contain and whether they contain any parallel diagonals.  
Figures 4 and 5 illustrate this idea for the regular octagon.  

Figure 4.  A line drawing demonstrating one manner in which columns which are 
part of parallel sides or minor diagonals align.

Figure 5.  A line drawing demonstrating a second a manner in which the columns 
standing at parallel diagonals align with one another.  Note that the outer columns 
are symmetrically spaced from the center as well.
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Their observations might also be recorded in a table such as Table 1 below.   
Alternatively, the teacher might simply present this data and ask students to 
look for patterns.

Table 1

Sample Polygon Observation Table

Polygon Odd or 
even # of 
vertices

Degree of 
rotational 
symmetry

Degrees 
per turn

Sets of 
parallel 
sides

Sets of 
parallel 

diagonals?

Equilateral triangle Odd 3 120 0 0

Square Even 4 90 2 0

Regular pentagon Odd 5 72 0 0

Regular hexagon Even 6 60 3
3 sets 
of 2

Regular septagon Odd 7 ≈51.4 0 0

Regular octagon Even 8 45 4

4 sets 
of 2
4 sets 
of 3

Patterns I point out from this analysis include:
•• Polygons with an odd number of vertices never form diagonal parallels or 
parallels between sides.
•• Polygons with an even number of vertices form at least two sets of parallel 
sides and beginning with a hexagon, at least three sets of parallel diagonals.
•• As the number of sides in even sided polygons increases, the number of 
parallel sides and diagonals increases as well.
•• Beginning with the octagon, parallel diagonals include sets that contain 
the diagonal through the center, which are distinct from sets of parallel 
diagonals that do not include the diagonal through the center.  (See Fig-
ures 4 and 5.)

Teachers may want to encourage motivated students to explore these 
patterns further as an enrichment activity.  Nevertheless, these observations 
become important when analyzing architecture based on polygons. 
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I next ask my students to imagine that the line drawings of these poly-
gons were the floor plans of pavilions, temples, monuments, or gazebos.  I 
ask them to place dry erase markers at the vertices of each polygon as if they 
were columns supporting a roof.  Next, I ask them to walk around this minia-
ture model of a building, keeping the columns at their eye level.  The artistic 
concept of vanishing point becomes important now.  Students must maintain 
some distance between themselves and their models in order to witness col-
umns that are parts of parallel pairs of line segments align with one another.  
This is an important point for teachers to make, if students don’t discover 
it for themselves:  As our point of perspective moves further away from the 
center of the polygon, the columns (or dry erase markers) standing at ver-
tices will “line up” with respect to the parallel sides and diagonals of which 
they are a part.  The photo below shows two of my students examining their 
model pavilion in the classroom.

Students examining the properties of polygonal models, like this one, based on the 
regular octagon. (Photograph taken by author; used with permission).
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While students are engaged in this task I ask them questions such as:
•• “Do you notice anything about the behavior of the columns as you walk 
around your dry erase marker building?”
•• “How does your model building demonstrate rotational symmetry as you 
walk around it?”
•• “How do the model buildings with an odd number of vertices differ in 
their behavior from those with an even number of vertices?”

I find that my students discover the answers to these questions quite readily 
and often express their ideas elegantly. .For those who don’t make the con-
nection on their own, I invite them to follow me around their models as I 
point out the following:

•• For odd polygons, though we can witness rotational symmetry as we walk 
around our model pavilions, no more than two columns ever align with 
one another.
•• For even polygons, we see rotational symmetry as we walk around the 
exterior of the model.  Moreover, we also see groups of columns align in 
two ways.

•• When we stand at a point along the center line through a great  
diagonal and,
•• When we stand at a point along the center line between two adjacent 
columns.

Having progressed from making measurements on line drawings of poly-
gons to making observations on classroom models of columns placed at the 
vertices of these polygons, the next step is to ask, “Do architects really make 
use of these principles when designing buildings?”  To answer this question 
I schedule a field trip in which my students and I observe and make mea-
surements on gazebos, pavilions and other local buildings.  Our list includes 
gazebos in the yards of local residents near our school, as well as local land-
marks.  At each of these buildings students are able to take measurements 
with protractors and string to verify the lengths of the sides and the measures 
of the central, interior, and exterior angles of the structures.  Finding agree-
ment between these measurements and those data collected in the classroom 
provides powerful reinforcement of the lesson.  The following photos show 
my students making measurements on some of these buildings.
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Students preparing to measure the geometric features of a local bed and breakfast built on 
an octagonal floor plan. (Photograph taken by author; used with permission).

Students measuring interior angles of a regular octagonal building.  (Photograph 
taken by author; used with permission).
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The next phase of the unit addresses the question:  “What sorts of ex-
amples of regular-polygonal architecture exist outside of our city?”  Using the 
internet or examples from their own travel experience my students and I have 
captured images that demonstrate not only that there are many beautiful 
polygonal buildings in the world, but that they exhibit the same principles of 
symmetry and alignment of columns we initially discovered in the classroom.  
These include the District of Columbia War Memorial., the Gazebo on 
Turret Hill, Dromoland Castle in Ireland, and the Tomb of Andrew Jack-
son. Based on their classroom observations, students can easily imagine the 
parallel pairs of columns of these buildings snapping into alignment from a 
vantage point outside the structure. 

Capstone Activity
Many monumental buildings visually interact with their visitors.  This 

behavior is a testament to the genius of their architects.  Examples include 
the Washington Monument and its Reflecting Pool, the Jefferson Memorial 
(also located in the United States capital), as well as the colonnade enclos-
ing the elliptical piazza of Saint Peter’s Basilica in the Vatican City, within 
Rome, Italy.  As a capstone to this unit on geometry and architecture I lead 
my students on a discussion of the geometry of Saint Peter’s Square, which 
was designed in the sixteenth century by Gian Bernini.  For those not fortu-
nate enough to visit Italy in person, a virtual tour of the piazza may be made 
through Google Earth (http://www.google.com/earth/.)

The plan of the piazza is an ellipse, at the center of which stands an 
Egyptian obelisk.  Each focus of this ellipse is marked by a brass plate laid 
into the cobblestone.  Surrounding the piazza are four concentric (or more 
accurately, con-elliptical) colonnades.  Each column weighs many tons and 
is several feet in diameter.  Together, this forest of stone columns towers over 
the visitors below and seems to create an enclosed park.  When an observer 
moves toward one of the foci, however, this forest of stone columns snap into 
place.  When standing at one focus the outer columns are completely ob-
scured by the inner most ring of columns.  One can then clearly see between 
the columns to the city streets beyond, which seem to disappear again when 
stepping away from the focus.  This dramatic effect is still delightful to wit-
ness hundreds of years after the square was built and is a consequence of the 
fact that the columns have been carefully and equidistantly placed along lines 
of sight emanating from the two foci.

https://commons.wikimedia.org/wiki/File:District_of_Columbia_War_Memorial.JPG
https://commons.wikimedia.org/wiki/File:Dromoland_gazebo.jpg
https://commons.wikimedia.org/wiki/File:Dromoland_gazebo.jpg
https://commons.wikimedia.org/wiki/File:Andrew_Jackson_Tomb.jpg
https://commons.wikimedia.org/wiki/File:Andrew_Jackson_Tomb.jpg
http://www.google.com/earth/
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Visitors to Saint Peter’s Square in Rome, seemingly enclosed by a wall of columns in 
the background.  (Photograph taken by author.)

Standing at one of the foci of the elliptical colonnade, a visitor sees only the columns 
in the inner ring (the others are standing behind this first set along the line of sight).  
The city beyond is clearly visible.  (Photograph taken by author.)
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To end this unit I ask my students to recreate this effect by building a 
scale model of Saint Peter’s Square in the school parking lot using common 
materials found in the classroom or brought from home.  We begin in the 
classic manner, by tracing a line on the pavement using a piece of chalk held 
by string stretched across two nails acting as the foci.  This process is re-
peated with different lengths of string to create four sets of ellipses using the 
same foci.  We then draw lines of sight emanating from the foci and mark 
the points of intersection with the ellipses.  At these points of intersection 
students stand as if they were the columns of Saint Peter’s Square.  They take 
turns at the focus viewing this human model as their classmates step in and 
out of the lines of sight, thus recreating the visual effect one might witness in 
the piazza itself.

Concluding Thoughts

Demonstrating the classic technique of drawing ellipses.  (Photograph taken by 
author; used with permission).
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Students using the classic technique to trace a set of ellipses in the school play-
ground.  (Photograph taken by author; used with permission).

Students standing in for their model colonnade.  (Photograph taken by author; 
used with permission).
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Concluding Thoughts
My hope in sharing the lesson described in this paper is that teachers and 

students who engage in it will appreciate that mathematics finds expression 
in architecture.  James S. Ackerman has written, “Expression in architecture 
is the communication of quality and meaning.  The functions and the tech-
niques of building are interpreted and transformed by expression into art, as 
sounds are made into music and words into literature” (https://www.britan-
nica.com/topic/architecture/Framed-structures#toc31842).

Sean Madden, Ph.D, Pharm. D., teaches Advanced Placement Calculus AB at 
University High School in Greeley, Colorado. He is passionate about connect-
ing mathematics to the real world in order to stimulate student interest in the 
field. Correspondence regarding this article can be directed to Dr. Madden at  
smadden@universityschools.com

Students stepping out of line, thus demonstrating the design of the colonnade at 
Saint Peter’s Square.  (Photograph taken by author; used with permission).

https://www.britannica.com/topic/architecture/Framed-structures#toc31842
https://www.britannica.com/topic/architecture/Framed-structures#toc31842
mailto:smadden%40universityschools.com?subject=
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