
Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org /www.isedj.org

Teaching Non-Beginner Programmers with App

Inventor: Survey Results and Implications

Andrey Soares
asoares@siu.edu

Nancy L. Martin
nlmartin@siu.edu

Information Systems Technologies

Southern Illinois University
Carbondale, IL 62901, USA

Abstract

This paper reports the results of a survey with 40 students enrolled in an Android Application
Development course offered during the spring semester of 2013 and 2014. The course used App
Inventor to build the apps and required students to have an introduction to programming course as a
prerequisite. The survey asked for demographic information and students’ opinions about
prerequisites, App Inventor, previous programming skills, new concepts learned, teamwork, and more.
The positive responses support the practice of using App Inventor to teach not only beginner

programmers, but also more experienced programmers. The paper also shows that App Inventor can

be used to support the teaching of more advanced computing concepts.

Keywords: App Inventor, Mobile Applications, Non-Beginner programmers, Survey.

1. INTRODUCTION

App Inventor is a visual programming language
developed by Google in 2010 and currently
hosted and maintained by the MIT Center for
Mobile Learning. App Inventor has been
successfully used to teach introductory
programming concepts to beginners in both

secondary and higher education courses
(Abelson, 2012; Haungs, Clark, Clements, &

Janzen, 2012; Robertson, 2014).

App Inventor can also be used to teach
programming and other computing concepts for
students that already have some programming

experience (Gestwicki & Ahmad, 2011; Soares,
2014). For example, Gestwicki and Ahmad
(2011) suggest that App Inventor and their
Studio-Based Learning approach can be used not
only to “introduce non-CS majors to concepts of
Computer Science-not just programming, but

also ideas that tend not to be covered in
conventional CS1 courses such as human-

computer interaction, incremental and iterative
design processes, collaboration, evaluation, and
quality assurance” (p. 55). Soares (2014)
discusses issues, challenges and opportunities
that instructors should be aware of when
designing a course in mobile application

development with an introductory programming
course as prerequisite.

This paper presents the results of a survey with
students enrolled in a mobile application
development course that used App Inventor as
the tool for teaching and building applications,

and required an introduction to programming
course as prerequisite.

The following section of the paper describes the
methods used for data collection. The results
and discussion of the data analysis are combined

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org /www.isedj.org

into the next section, and the paper closes with
conclusions and recommendations.

2. METHODS

The course, Android Application Development,
was offered during spring semester in 2013 and
2014, and had an introductory programming
course as a prerequisite.

In order to explore students’ perceptions about

the course, the instructor developed a brief
exploratory survey, and students were asked to
complete it during the last week of the
semester. The instructor explained that survey
completion was voluntary and anonymous and

was not in any way related to course grades. A

total of 40 students enrolled in the course
completed the survey, 16 in spring 2013 and 24
in spring 2014. The survey questions contained
37 unique data points that were designed to
gather students’ feedback on a variety of topics
related to the course. Questions asked for
demographic information and perceptions about

course prerequisites, the App Inventor tool, the
reinforcement of programming fundamentals,
concepts learned, teamwork, and an interest in
learning more about mobile application
development.

All questions, other than demographic related

ones, were answered on a 5-point Likert scale

ranging from strongly agree to strongly
disagree. Since the survey was exploratory in
nature with no predicted outcomes, the data was
analyzed using descriptive statistics, primarily
frequency analysis.

In the next section, the questions and their data
analysis are presented, along with a relevant
discussion of each topic.

3. RESULTS AND DISCUSSION

Demographics
Forty students completed the survey during the
spring semester in 2013 and 2014. Table 1
displays the breakdown by gender and class.

Males comprised 88 percent of the sample;
females comprised 10 percent, and one person
did not report gender. The students were either

juniors (22.5 percent) or seniors (77.5 percent).
As the course has the Introduction to
Programming course as a prerequisite and is
currently not required as prerequisite for any
other course in the program, students generally
take it in their third or fourth year.

Table 1: Sample demographics

Prerequisites

Although an introductory programming course
was a prerequisite for the Android course,
students were asked whether they agreed or
disagreed with the reference text’s statement
that no programming experienced is required. As

Figure 3 reflects, over 46 percent agreed that no

programming experience was required, while
only 18 percent disagreed and 36 percent were
neutral.

Students were also asked whether they believed
certain courses should be prerequisites for the
Android course. The results of that question are

shown in Figure 4. Interestingly, even though
about 46 percent of students agreed that no
programming experience was required for the
course, about 43 percent agreed that
Programming II should be required. A database
course was also identified by about 43 percent of
students as a recommended prerequisite.

Because some assignments were completed in
groups requiring close collaboration, some
students even considered Project Management
(21%) and Software Engineering (15%) as
prerequisites for the course. Almost all

assignments resulted in a new app created from
scratch, with some exceptions where students
improved their existing apps. That means, for
each app they were supposed to plan, design,
implement and test their apps. When working in
groups, students will most likely deal with scope
definition, scheduling, task management,

communication, human resources and other
activities needed to complete their apps.

App Inventor Tool for Beginners and for

Experienced Programmers
Respondents overwhelmingly agreed that App
Inventor is a great tool for teaching both

beginners and more experienced programming
students. Figure 5 shows that 87.5 percent
agreed or strongly agreed the tool was good for
beginners, and 85 percent reported the same
opinion related to those with some programming
experience.

App Inventor provides developers with the
ability to quickly design and implement an app

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org /www.isedj.org

using a variety of features from a mobile device.
The use of a visual tool reduces code-related
distractions (e.g., missing semi-colon, braces or
misspelled code) as students create the

application with blocks of code (Soares, 2014).
The tool hides some of the complexity of the
code by providing predefined blocks for specific
functions. Figure 6 shows examples of the event
Click for the component Button1 both as a visual
code and as a textual code. When the
component Button1 is created, the block “When-

Button1.Click-do” and several others are
automatically created and are available for
students to just drag-and-drop it into the blocks
editor.

Because of the blocks, students do not have to

worry about the syntax of the code, and they
can focus “more on the functionalities of the
application and what can be done with the
phone” (Soares, 2014, p. 59). Nonetheless, they
still need to know about the logic of
programming to complete the application,
especially the event-driven programming

approach. Ninety-five percent of the
respondents agreed/strongly agreed that App
Inventor helped them learn about developing
mobile applications, and 85 percent
demonstrated interest in learning more about
developing mobile applications for smartphones
and tablets. When asked if writing the code in

Java to create applications would be preferred

over the App Inventor, 47.5 percent of students
disagreed/strongly disagreed, 27.5 percent were
neutral, and 25 percent agreed/strongly agreed.

Similar to others’ experience (Robertson, 2014)

it appears that overall, both more and less
experienced students found value in the use of
App Inventor.

Reinforcing Fundamentals of Programming
Most students agreed that it was easy to apply
previous programming concepts to the App

Inventor environment. Figure 7 shows that 85
percent of the respondents agreed or strongly
agreed.

Students also generally agreed that developing
mobile applications with App Inventor helped
reinforce fundamentals of their programming

knowledge. Figure 8 displays the responses
related to several programming fundamentals.
The first three are the use of variables,
conditions, and loops. Eighty percent of students
agreed or strongly agreed that their knowledge
of variable use improved, and 82.5 felt the same

about the use of conditions. Fifty-five percent
reported knowledge reinforcement of loops.

Another area of previous programming
knowledge reinforced in class is the use of
procedures. Figure 8 also displays student
opinions about this topic. Regarding the use of

procedures with a return value, 60 percent of
students agreed/strongly agreed that App
Inventor helped them to reinforce the knowledge
on how to use procedures. Thirty percent were
neutral and 10 percent disagreed/strongly
disagreed. Regarding the use of procedures that
do not return any value, 77.5 percent of

students agreed/strongly, 17.5 were neutral and
5 percent disagreed/strongly disagreed that App
Inventor was a useful tool.

In some cases, students would create a global

variable and would use a procedure to change

its value, rather than making the procedure to
return a value. Creating input arguments to
allow data to be passed on to the procedures
was also challenging, and often students would
use global variables or read data from existing
components as a workaround. When the data to
be passed was related to a component, some

students explored the use of the advanced
blocks, which allows applications to work with
components dynamically.

Working with Lists (Arrays)
More than 80 percent of students reported that
mobile application development with App

Inventor strengthened their knowledge of both

single lists (i.e., arrays) and multidimensional
lists (i.e., multidimensional arrays). Specific
response percentages are shown in Figure 9.

Arrays are considered a difficult topic for

students to learn (Dale, 2006; Lahtinen, Ala-
Mutka, & Jarvinen, 2005). Considering the
prerequisite of an introduction to programming
course, “even students that are already familiar
with the concepts of arrays may need a period of
adjustment to translate and adapt their prior
knowledge with arrays into the new

environment” (Soares, 2014, p. 61).
Nonetheless, students taking the Android
Application Development course may have
different levels of programming experience. For

example, arrays may not have been covered in
the introduction to programming course and
thus will be a new topic, or students may have

taken other programming courses that cover the
topic of arrays and be fairly familiar with the
topic.

The concept of lists is introduced early in the
course because it is required for several

assignments, either as the main focus of an
assignment or as part of a larger application. For

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 27

www.aitp-edsig.org /www.isedj.org

example, an extended version of the App
Inventor’s “Map It” tutorial uses lists to store
information about the location (e.g., name,
latitude and longitude) of points of interest on

campus and around town. The app starts with a
pre-defined list of 10 locations selected by the
students (i.e., static list), but users of the app
can also add new items to the list or delete
existing ones (i.e., dynamic list).

App Inventor has a variety of functions built-in

to work with lists, but these functions generally
relate to single lists. To work with
multidimensional lists, students must write
additional code or create specific functions to
work with them.

Web Services
Besides learning how to build applications that
work with the features of the Android mobile
devices, students are also interested in creating
apps that can interact with other web
applications (Soares, 2014). Not surprising, “the
Web is evolving into a dynamic repository of

information on virtually every topic, including
people and their connections to one another as
well as to content” (Ramakrishnan & Tomkins,
2007, p. 63). And, many people, students
included, seek opportunities to be content
producers (e.g., share their data) and content
consumers (e.g., retrieve data from other

sources on the Web).

App Inventor has several components (i.e.,
TinyWebDB, ActivityStarter, FusionTables,
Twitter, and Web) that permit developers to
incorporate Web Services and APIs into the

applications, and permit instructors to use them
to teach a variety of topics. For example, the
Google Maps API is explored in combination with
the component Location Sensor, which reads
global positioning system (GPS) coordinates
from the device. Note that a developer can
interact with the Google Map app installed on

the phone, but can also interact with the Google
Map API available on the Web. Lim, Jong, and
Mahatanankoon (2005) discuss the potential of
integrating Web Services earlier into the

curriculum to make the course more interesting
and to expose students to Web Services and its
potential “to speed up application development

and reduce costs to access data on disparate
systems” (p.241).

This course included several assignments using
Web Services and APIs within the apps such as
displaying driving directions on a map or a pie

chart with data from an online survey app,
returning information about a product after

scanning a UPC code or an ISBN code, getting
the weather forecast or the list of businesses for
a given zip code, displaying Bible passages or
displaying products for sale from Craigslist. A

great source of Web Services and APIs is the
website www.programmableweb.com with a list
of over 11,500 APIs (as of July, 2014) that can
be used to build applications. However, Soares
(2014) cautions about the different formats of
responses returning from the APIs (e.g., XML,
JSON, etc.) and the need to teach students how

to parse the responses in order to use the
information needed for their apps.

Despite the issue with parsing Web Services
responses, when asked if developing mobile

applications with App Inventor helped in learning

about Web Services, over 76 percent of students
agreed or strongly agreed (see Figure 10).

Animation and Sensors
Designing games is a great approach to learn
about mobile application development, especially
about what the phone can do in terms of

interacting with users. Our results show that
more than 85 percent of students agreed that
they learned about animation (see Figure 10).

The basic tutorials such as PaintPot, MoleMash
and Ladybug Chase (see www.appinventor.org)
are great introductions to drawing and animation

components as they expose students to several

functionalities of the phone such as touching,
dragging, and tilting. Because of the relatively
small amount of code needed to work on the
tutorials, students usually get excited about
creating their own games. Of course, some

game ideas are too complex and will require
students to combine several concepts learned
throughout the course. Since this course started
being offered in spring 2012, many of the
students’ final projects utilized some of the
drawing and animation components; for
example, a chess game played over Bluetooth, a

flight combat game, a breakout game, and
more.

The component Clock is also used to implement

games and other applications that require
control of time (e.g., time left to play) or need
to take actions repeatedly (e.g., move an object

every tick of the clock). In addition, the
Accelerometer sensor, Location sensor, and
Orientation sensor can be added to the
applications to improve the users’ experience.

Table 2 presents a list of events and parameters

for the sensor components. The location sensor
works with the GPS and provides information on

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 28

www.aitp-edsig.org /www.isedj.org

latitude, longitude, altitude, and address; the
orientation sensor provides information about
the phone’s orientation (i.e., tilt and direction
pointing to); and the accelerometer sensor

detects acceleration using the X, Y, and Z
dimensions as well as the shaking of the phone.

Table 2: Events and parameters for the

sensor components

Participants were asked if developing mobile
applications with App Inventor helped them to
learn about sensors. About 88 percent

agreed/strongly agreed they learned about
Location sensor, 85 percent agreed/strongly

agreed they learned about Orientation sensor,
and 87.5 percent agreed/strongly agreed they
learned about Accelerometer sensor.

Event-Driven Programming
Even though events are considered an important
programming concept, they “are typically taught
late in the CS curriculum” (Turbak, Sherman,
Martin, Wolber, & Pokress, 2014, p. 81).
Because the prerequisite for this course is an
introduction to programming course, students

may not be familiar with the concept of events
or event-driven programming as it may not have
been covered in the prerequisite course.

Wolber, Abelson, Spertus, and Looney (2011)

explain that “with App Inventor, you design how
an app looks and then you design its behavior—

the set of event handlers that make an app
behave as you want” (p.227). They describe that
an app responds to user-initiated events,
initialization events, timer events, animation
events or external events. Students, especially
novice programmers may find it difficult to

identify all the events of a behavior (Soares,
2014; Wolber et al., 2011).

In this course, events are introduced in the first
week of class and then reinforced throughout
the course with examples, in-class discussions,
and lab assignments. In addition, for some

assignments, students are required to design
mockup screens of the applications to be
created, which helps them “to think not only
about the components but also about the
underlying events, functions and blocks that
need to be used to achieve the desired results”
(Soares, 2014, p. 59). In our survey, 82.5

percent of students agreed/strongly agreed that
developing mobile applications with App
Inventor helped them to learn about event-
driven programming (see Figure 10).

Database

The topic of database is covered in the course in
two ways. First, we discuss the phone’s internal
database and we use the component TinyDB to
store and retrieve data from the local database.
Second, we discuss the use of web databases,
starting with the component TinyWebDB and
later exploring the component Fusiontables.

Both TinyDB and TinyWebDB are fairly
straightforward since the developer simply uses
tags to store and retrieve data from the
databases. Fusiontables, on the other hand, has
more complexities and requires developers to
work with Google Drive and Google Fusiontables
API in order to create a table and make it

available to integrate with an app. During

implementation with App Inventor, developers
must understand the basics of database design
and Structured Query Language (SQL) to query
the tables. With Fusiontables, developers can
use commands to insert, update, delete and

select data from the tables. As Soares (2014)
describes, “the query results are in CSV or JSON
formats and can be transformed into lists with
the appropriate blocks in App Inventor” (p.61).

When asked if they would recommend a
database course as a prerequisite for the

Android Application Development course, 43
percent of students agreed/strongly agreed, 18
percent were neutral, and 41 percent
disagreed/strongly disagreed (see Figure 4).

Considering that the majority of students are
seniors and have likely taken a database course,
these answers are rather surprising, especially

since 80 percent of students agreed/strongly
agreed that they learned about web databases in
the course. On one hand, students may have
previous knowledge of database design and SQL,
and they considered the learning of how to work
with TinyWebDB and Fusiontables during the

course. On the other hand, students may be new

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 29

www.aitp-edsig.org /www.isedj.org

to the concept of database, and they considered
learning about the concept during the course.

User Interface and Input/Output

One of the main reasons students take the
Android application development course is the
excitement of building their own apps. It is
definitely fun, however some students feel
overwhelmed by the process of creating an app
and focusing on the user interaction with the
app and all the necessary validations and tests

involved.

As discussed earlier, the visual programming
approach of App Inventor helps to hide some of
the complexities of programming, providing

students with opportunities to concentrate on

the design of the application, its features, and
how users will interact with it. That means,
students should learn and practice the design of
user interfaces, user input and output, and input
validation as they play an important role in the
user’s experience with mobile applications.

More often than not, students will detect some
problems with their apps that can be a result of
poor user interface design. In particular, user
inputs are overlooked which will make apps
misbehave or crash when users enter
unexpected data or do not provide any data. Of
course, App Inventor provides several properties

to the components to allow developers to set up

the application as needed. For example, the
component TextBox can be set to number only
in order to restrict the type of data entered.
However, it is the developer’s responsibility to
define a range of acceptable numbers and to

create the appropriate code to validate it. Other
properties such as enable/disable and
visible/hidden provide ways for developers to
customize their apps. Soares (2014) suggests
the use of mockup screens during the planning
of applications to help define the apps’ user
interfaces and behaviors.

Students were asked whether they believed that
developing mobile applications with App
Inventor helped them to learn about user

interface design, user input and output, and
input validation. Ninety percent of students
answered that they agreed/strongly agreed to

have learned about user interfaces, and 77.5
percent of students agreed/strongly agreed to
have learned about user input validation (see
Figure 10). In addition, 87.5 percent of students
agreed/strongly agreed that they reinforced
their knowledge about handling user input, and

85 percent of students agreed/strongly agreed

their knowledge of user output was
strengthened.

Connections and Data Communication

According to a survey by the Pew Research
Center’s Internet & American Life Project
(Duggan & Smith, 2013), "six in ten cell phone
owners (63%) now go online using their mobile
phones, an eight-point increase from the 55% of
cell owners who did so at a similar point in
2012" (p.4). It is not surprising that people are

spending more time on their phones and using it
mainly for some sort of communications (e.g.,
with another person or a web/mobile
application). In fact, besides making phone calls,
the most popular cell phone activities are

(Duggan, 2013, p. 2):

 Send or receive text messages (81%)
 Access the internet (60%)
 Send or receive email (52%)
 Download apps (50%)
 Get directions, recommendations, or

other location-based information (49%)
 Listen to music (48%)

 Participate in a video call or video chat
(21%)

 Check in or share your location (8%)

Students in this course have demonstrated great
interest in creating applications that go beyond
the capabilities of the mobile device and explore

approaches to connect and communicate with

other people, devices and applications. During
the course, students had the opportunity to use
some of the App Inventor components that
support connectivity and communication. For
example, the Image component can link directly

to an image using its URL; the component
WebViewer permits the display of a webpage for
a specific URL; the component PhoneCall makes
a call to the phone number specified; the
component Texting permits users to send and
receive text messages from other devices; the
component FusionTablesControl permits the app

to interact with tables stored on Google Drive;
the component TinyWebDB connects with a web
service that provides database services; the
component ActivityStarter permits an app to

open an application such as a browser or a map;
the components BluetoothClient and
BluetoothServer support communication of

paired mobile devices; and the Web component
supports the use of HTTP methods (e.g., POST
and GET) for request-response connections.

Instructors can benefit from these components,
when designing course content and

assignments, and should encourage students to
explore the features of the phone that support

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 30

www.aitp-edsig.org /www.isedj.org

connections and data communications. Most
students agreed/strongly agreed that developing
mobile applications with App Inventor helped
them to learn about Bluetooth communication

(90%), Web Databases (80%), Web Services
(72.5%), and Text Messaging (65%).

Teamwork
Working in groups with App Inventor is not an
easy task. Students can work together to plan
their apps and share ideas, but when it is time

to design and implement their apps, the tool has
some limitations that make group work
challenging. For example, blocks cannot be
copied from one project to another, and two or
more people cannot work on the same project at

the same time. Even with the limitations of App

Inventor to support collaborative work, 68
percent of the respondents agreed/strongly
agreed they enjoyed working in teams to
develop mobile apps. The course included
several group assignments with group sizes of 2
to 5 students.

Besides teamwork, many assignments also
included time and scope constraints to challenge
and persuade students to manage their tasks
and progress. Students had to come up with
their own approach to make a group assignment
work. For example, groups spent more time
planning the app and creating mockup screens

to define the components and functionalities

needed before starting any code. On some
occasions, they even discussed how to name the
components so that other group members could
easily find them.

Some groups decided to separate their activities
and each member would work on their own to
complete their respective tasks. After that, they
would create a shared account to access App
Inventor and then each member would take
turns implementing their part of the project. One
group tried to get all members logged in on App

Inventor at the same time to work on the same
project using the same user account. However,
they quickly learned that the current version of
App Inventor does not support synchronous

collaboration. For some groups, each member
would work individually on their tasks and send
their work to a member that was responsible to

combine all parts into one project. Finally, for
other groups, the approach was one member
working on the computer and the other
members around him or her discussing the
project and providing support during the
implementation.

Learning More about Mobile Application
Development
The Android application development course can
be considered a success, with great feedback

from students, great student evaluations, and
students showing interest in learning more about
mobile application development. Two students
that took the course created their apps, alone or
in teams, to enter in the university’s App
competition.

When asked if, after the course, students would
be interested in learning more about developing
mobile applications for smartphones and tablets,
85 percent of participants answered that they
agreed/strongly agreed and 12.5 percent were

neutral. However, some students would prefer to

learn how to develop apps using Java (25%).

4. CONCLUSION AND RECOMMENDATIONS

This paper presented the results of a survey with
students enrolled in an Android Application
Development course with an introduction to

programming course as prerequisite. The results
show positive feedback from the students about
course prerequisites, App Inventor, reinforcing
fundamentals of programming, learning new
concepts, teamwork, building mobile apps, and
more. The paper presented a discussion of the
survey results and some recommendations

related to the use of App Inventor to teach

beginners and more experienced programmers
as well as to teach other advanced computing
concepts.

App Inventor has been used successfully for

teaching beginner programmers from
elementary school to higher education and from
CS/IS to other majors (Gray, Abelson, Wolber, &
Friend, 2012; MacKellar, 2012; Wolber, 2011).
In fact, the authors of this paper have
experienced firsthand the potential of using App
Inventor to introduce programming skills to

beginner programmers by offering a summer
camp to middle school girls on mobile app
development.

The visual programming approach of App
Inventor helps students to learn about
programming concepts and to apply their

existing skills to build mobile apps. As the
survey shows, 87.5 percent agreed or strongly
agreed the tool was good for beginners and 85
percent agreed or strongly agreed that it was
easy to apply previous programming knowledge
to the App Inventor environment. Some

students even mentioned during the course that
they would prefer to have the Android app

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 31

www.aitp-edsig.org /www.isedj.org

development course as the first introduction to
programming course rather than a Java course.
The reward of seeing quick results and not
dealing with the code behind the blocks seems

engaging to beginners, but a possible
disadvantage for more skilled programmers.

Students who took an introductory programming
course prior to this course had the opportunity
to apply and reinforce their knowledge on the
fundamentals of programming, and also to learn

new programming approaches and computing
concepts. According to Soares (2014), “the time
used for teaching logic and the fundamentals of
programming could be used to explore more
features of the phone and the App Inventor tool”

(p.58). It is not surprising to see that students

agreed/strongly agreed that App Inventor is a
great tool for teaching more experienced
programmers (85%). Because of the
assortment of features available on mobile
devices and the relatively easy way to handle
them with App Inventor, instructors can design
course assignments that use basic programming

skills but also require the application of more
advanced skills to build the apps. Each app
created with App Inventor provides students
with opportunities to practice different phases of
the development process, apply different
programming skills, and use different features of
the mobile device.

With the help of App Inventor, a mobile
development course should be fun and packed
with several computing concepts besides
programming, such as database, data
communication, software development, project

management, mobile applications development,
web services and more. Now that students have
built a background on app development,
instructors teaching more advanced courses can
illustrate the concepts of their specific courses
with the support of App Inventor. For example,
in a database course, students could create

forms to insert data into tables or display data
from the tables using both static and dynamic
queries. In a software engineering or systems
analysis and design course, students could

benefit from App Inventor’s support for rapid
development to plan, design, implement and
test mobile apps as part of course assignments

or projects. In particular, instructors could
explore principles and techniques for user
interface design. Also, it should not take long to
find units on campus or other organizations that
could use apps for their business and would be
interested in collaborating with students through

class projects. The Bluetooth communication
could be used, for example, in a biomedical or

heath information technology course, where
students could read data from medical
equipment to display the status of the machines
or the patients connected to the machines. For a

network and security course, the Web capability
of App Inventor could be used to monitor and
communicate the status of network devices.

5. REFERENCES

Abelson, H. (2012). From computational thinking

to computational values. Paper presented at
the Proceedings of the 43rd ACM technical
symposium on Computer Science Education,
Raleigh, North Carolina, USA.

Dale, N. B. (2006). Most difficult topics in CS1:
results of an online survey of educators.

SIGCSE Bulletin, 38(2), 49-53. doi:
10.1145/1138403.1138432

Duggan, M. (2013). Cell Phone Activities 2013.
Washington, D.C.: Pew Research Center’s
Internet & American Life Project - available
from http://www.pewresearch.org.

Duggan, M., & Smith, A. (2013). Cell Internet

Use 2013. Washington, D.C.: Pew Research
Center’s Internet & American Life Project -
available from http://www.pewresearch.org.

Gestwicki, P., & Ahmad, K. (2011). App inventor

for Android with studio-based learning.
Journal of Computer Science in Colleges,
27(1), 55-63.

Gray, J., Abelson, H., Wolber, D., & Friend, M.
(2012). Teaching CS principles with app
inventor. Paper presented at the Proceedings
of the 50th Annual Southeast Regional
Conference, Tuscaloosa, Alabama.

Haungs, M., Clark, C., Clements, J., & Janzen, D.

(2012). Improving first-year success and
retention through interest-based CS0
courses. Paper presented at the Proceedings
of the 43rd ACM technical symposium on

Computer Science Education, Raleigh, North
Carolina, USA.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M.

(2005). A study of the difficulties of novice
programmers. Paper presented at the
Proceedings of the 10th Annual Conference
on Innovation and Technology in Computer
Science Education (SIGCSE), Caparica,
Portugal.

http://www.pewresearch.org/
http://www.pewresearch.org/

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X October 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 32

www.aitp-edsig.org /www.isedj.org

Lim, B. B. L., Jong, C., & Mahatanankoon, P.
(2005). On integrating Web services from
the ground up into CS1/CS2. Paper
presented at the Proceedings of the 36th

Technical Symposium on Computer Science
Education (SIGCSE), St. Louis, Missouri,
USA.

MacKellar, B. (2012). App Inventor for Android
in a Healthcare IT course. Paper presented
at the Proceedings of the 13th Annual
Conference on Information Technology

Education, Calgary, Alberta, Canada.

Ramakrishnan, R., & Tomkins, A. (2007).
Toward a PeopleWeb. Computer, 40(8), 63-

72. doi: 10.1109/mc.2007.294

Robertson, J. (2014). Rethinking how to teach
programming to newcomers. Communication

of the ACM, 57(5), 18-19. doi:
10.1145/2591203

Soares, A. (2014). Reflections on teaching App
Inventor for non-beginner programmers:
Issues, challenges and opportunities.
Information Systems Education Journal,

12(4), 56-65. (A preliminary version appears
in The Proceedings of ISECON 2013).

Turbak, F., Sherman, M., Martin, F., Wolber, D.,
& Pokress, S. C. (2014). Events-first
programming in App Inventor. Journal of
Computer Science in Colleges, 29(6), 81-89.

Wolber, D. (2011). App Inventor and real-world

motivation. Paper presented at the
Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education,

Dallas, TX, USA.

Wolber, D., Abelson, H., Spertus, E., & Looney,
L. (2011). App Inventor: Create your own

Android Apps: O'Reilly Media.

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X September 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 33

www.aitp-edsig.org /www.isedj.org

APPENDIX

Figure 3: Student response to “no programming experience required”.

Figure 4: Student responses about Android course prerequisites (in percentages).

10

3

8
10

13

25

38

45
48

45

23

18

30
33

23

35

40

15

10

18

8

3
0 0

3

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Programming II Database Software
Engineering

Computer
Networks

Project
Management

Strongly Disagree Disagree Neutral Agree Strongly Agree

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X September 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 34

www.aitp-edsig.org /www.isedj.org

Figure 5: Student responses about App Inventor as a useful tool (in percentages).

Figure 6: Handling the event of a button clicked using Visual code (left) and Textual code
(right) (Soares, 2014, p. 58).

Figure 7: Student response to the ease of applying prior programming knowledge.

2.5
7.5

2.5

37.5

50.0

2.5 5.0
7.5

47.5

37.5

.0

10.0

20.0

30.0

40.0

50.0

60.0

Strongly
Disagree

Disagree Neutral Agree Strongly Agree

Beginner Experienced

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X September 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 35

www.aitp-edsig.org /www.isedj.org

Figure 8: Student responses about the reinforcement of fundamentals (in percentages).

Figure 9: Student responses that App Inventor reinforced knowledge of Lists (in
percentages).

2.5 2.5
7.5

37.5

47.5

2.5 5.0
10.0

30.0

52.5

.0

10.0

20.0

30.0

40.0

50.0

60.0

Strongly
Disagree

Disagree Neutral Agree Strongly Agree

Single Multidimensional

Information Systems Education Journal (ISEDJ) 13 (5)
ISSN: 1545-679X September 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 36

www.aitp-edsig.org /www.isedj.org

Figure 10: Student response to learning about various topics (in percentages).

2.5

2.5

2.5

2.5

2.5

2.5

5

20

10

7.5

7.5

5

12.5

10

5

15

2.5

25

37.5

32.5

35

32.5

35

50

52.5

40

45

45

32.5

35

50

52.5

52.5

52.5

32.5

27.5

50

32.5

45

32.5

0 10 20 30 40 50 60

Web Services

Animation

Location Sensor

Orientation Sensor

Accelerometer Sensor

Event-Driven Programming

Web Database

Interface Design

Input Validation

Bluetooth Comm

Text Messaging

Strongly Disagree Disagree Neutral Agree Strongly Agree

