
Information Systems Education Journal (ISEDJ) 13 (1) 
ISSN: 1545-679X January 2015 

©2015 EDSIG (Education Special Interest Group of the AITP)   Page 30 

www.aitp-edsig.org /www.isedj.org 

IT0: Discrete Math and Programming Logic Topics 

as a Hybrid Alternative to CS0 

Nancy L. Martin 
nlmartin@siu.edu 

Information Systems Technologies 

Southern Illinois University 
Carbondale, IL 62901, U.S.A. 

Abstract 

This paper describes the development of a hybrid introductory course for students in their first or 
second year of an information systems technologies degree program at a large Midwestern university. 
The course combines topics from discrete mathematics and programming logic and design, a unique 
twist on most introductory courses. The objective of the new course is to better prepare students for 
more advanced computing courses.  Two primary drivers motivated development of the new course: 
1) faculty evidence of deficient foundation skills in advanced level courses, and 2) consideration of

program accreditation criteria. 

Keywords: Course Design, Introductory Course, Programming, Discrete Mathematics, IT2008 Model 
Curriculum, Course Development 

1. PROGRAM BACKGROUND

Since its inception more than twenty years ago, 
the Information Systems Technologies (IST) 
degree program has continually evolved to meet 
the changing needs of its stakeholders. The IST 
program is housed in the College of Applied 
Sciences and Arts, reflecting its focus on applied, 

hands-on skills in the field of information 
technology (IT).  Since the late 1990’s, the IST 
major has progressed from an office systems 
degree that was based on the Organizational 
and End-user Information Systems (OEIS) 
curricula guide (The Organizational Systems 

Research Association, 2004) to today’s program 

with courses in programming, networking, 
databases, web systems development, and other 
core topics. Concentrations are currently 
available in two tracks: network and information 
security and web systems development.  

As the IST major grew from the OEIS model, 
more and more technical courses were added to 
the curriculum. For example, several information 
assurance-focused courses are now part of the 

Network and Information Security Track, and the 

program earned designation as a National 
Center of Academic Excellence in Information 
Assurance Education in 2011. In recent years, 
faculty have implemented numerous new 
elective courses and revised courses in the core 
and tracks to keep the curriculum current with 
the needs of the program stakeholders and the 

job market. Also, as the program has 
progressed, the technical components of the 
courses have become more rigorous.  

The IST program consists of 16 core courses 
plus elective courses, some of which are offered 

in specialized tracks. Students may complete a 

track or combine a variety of elective courses to 
create a more personalized program.   University 
core curriculum requirements comprise 41 credit 
hours; the IST core comprises another 49 credit 
hours, and the remaining 30 hours are open to 
IST electives. All courses are one-semester, 

three credit hours except the required 
internship, which is four credit hours. For a 
mathematical foundation, IST students have 
been required to take an applied statistics 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 31 

www.aitp-edsig.org /www.isedj.org  

course and only the minimal mathematics 
required in the university core curriculum. 
Students are encouraged to take a philosophy-
based logic course as part of the university core 

curriculum, but it is not required. The IST core 
courses, electives, and tracks are listed in 
Appendix A.  
 
Student Demographics 
In recent years, average enrollment for the IST 
program has been 215 students, and the 

program confers an average of 73 degrees 
annually. Most students are male, with only 
about 15 percent female enrollment. About five 
percent of students enroll directly into the 

program as freshman. The majority of students 
transfer from pre-major or other majors within 

the university, and roughly 11 percent transfer 
from community colleges or other universities. 
Most within-university transfers come from 
computer science and computer engineering. 
The IST program does not require calculus or 
other upper level mathematics courses which 
draws many students to the program from 

computer science and engineering. The retention 
rate in IST is one of the highest in the 
university, averaging over 90 percent.  
 
IST graduates are recruited by a number of 
international, national, and regional companies. 
Examples of major employers include a large 

aircraft company, a national insurance company, 
an international information security company, 
and a national healthcare software vendor. A 
recent survey of graduates found that about 32 
percent were employed or had job offers prior to 
graduation and another 53 percent were 

employed within six months of graduation 
(Legier, Woodward, & Martin, 2013).  
 

2. MOTIVATION 
 

Two primary factors motivated the development 
of a new foundation course in the IST major. 

First, anecdotal evidence from faculty revealed 
that some students in higher-level courses 
struggle with concepts normally covered in 

prerequisite courses such as discrete 
mathematics and programming logic. Second, 
faculty began considering the feasibility of 
seeking accreditation for the IST program.  

 
Student Performance 
Curriculum enhancements over the past several 
years have created a stronger, more current 
program with courses such as advanced web 
systems development, software engineering, 

and advanced enterprise networking. As more 
advanced courses were developed, lower level 
courses were also updated to better equip 
students both for later courses and also for the 

job market in general.  For example, systems 
analysis and design was previously taught as a 
two-course sequence with the first course 
offered in the sophomore year and the second 
course offered in the senior year. Those two 
courses have now been combined into one upper 
level course. Another example is that client side 

web technologies was taught as a separate 
course, but that content has now been “pushed” 
down into the introductory web applications 
course. Additionally, students were only required 

to take one Java-based programming course, 
and relatively few took the Programming II 

course. Coverage in the first course was 
restricted to basic programming concepts and 
initial coverage of arrays, which is considered 
limited programming knowledge in the IST 
curriculum. 
 
Over time it became clear to faculty of upper 

level programming, web development, and 
network and security courses that some 
students lacked foundation skills needed to be 
successful in those advanced topics. For 
example, some students found their initial real 
application of binary and hexadecimal number 
systems in the first information assurance 

course. The instructor found it necessary to 
spend valuable course time reviewing those 
topics; similarly, faculty in advanced web 
systems and software engineering courses spent 
too much reviewing basic programming 
concepts.  

 
Curriculum Review for Accreditation 
Curriculum review is an ongoing process for IST 
faculty. However, in spring of 2013, IST faculty 
undertook a comprehensive review of the 
curriculum in consideration of pursuing program 
accreditation through the Accreditation Board for 

Engineering and Technology (ABET). The first 
step was to determine where the IST program 
best fit within ABET computing programs. The 

IST program was obviously not a computer 
science program; so, only information systems 
and information technology programs were 
considered. Also, as part of the review process, 

model curricula were considered for information 
technology (IT2008) (Lunt et al., 2008) and 
information systems (IS2010) (Topi et al., 
2010). 
 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 32 

www.aitp-edsig.org /www.isedj.org  

Careful comparison of IST program objectives 
and desired student outcomes with ABET 
accreditation criteria revealed a good alignment 
with ABET’s information technology program 

(ABET, 2012); similarly, the IT2008 curriculum 
model philosophy, body of knowledge, and 
learning outcomes most closely fit with the   
existing IST program. Although the entire review 
is outside the scope of this paper, two areas 
were important in the creation of a new 
foundation course: programming and 

mathematics. 
 

3. COMPUTING CURRICULA 
 

There are a variety of computing degrees 
available to today’s college students. The 

Association of Computing Machinery defines five 
distinct computing curricula (CC2005): computer 
engineering (CE), computer science (CS), 
information systems (IS), information 
technology (IT), and software engineering (SE) 
(ACM/AIS/IEEE-CS Joint Task Force for 
Computing Curricula, 2005). The difference 

among the five is a varying emphasis on 
computing knowledge areas, goals, and 
capabilities of graduates. It is also important to 
note that there are options other than the five 
distinct areas since some programs blur the lines 
of distinction between the ACM curricula (e.g., 
Connolly & Paterson, 2011). Regardless of the 

curricula followed, one commonality is that some 
degree of programming knowledge and some 
level of mathematics are recommended.  
 
CC2005, for the first time, defined IT separately 
from other computing degrees. Soon after, the 

first model curriculum, IT2008, was released 
and provided this definition: “IT, as an academic 
discipline, is concerned with issues related to 
advocating for users and meeting their needs 
within an organizational and societal context 
through the selection, creation, application, 
integration and administration of computing 

technologies” (Lunt, et al., 2008, p. 9). IT 
degree programs had arisen from an industry 
need for “professionals to select, create, apply, 

integrate, and administer an organizational IT 
infrastructure” (Lunt, Ekstrom, Reichgelt, Bailey, 
& LeBlanc, 2010, p. 133) and that need was not 
being met by computer science or information 

systems programs. The IST program evolved in 
the same way and in parallel to the IT academic 
discipline.  
 
 
 

Programming in the IT2008 Curriculum 
IT2008 defines 13 knowledge areas which are 
subdivided into units and topics within units.   
The Programming Fundamentals knowledge area 

comprises five units with the recommended 
minimum coverage hours displayed in Table 1. 
The recommended coverage totals 38 hours, 
which, in a three-credit hour course 
environment, could be delivered in a one-
semester course. This approach is the most 
common in computing programs. IT2008 points 

out “that the number of core hours prescribed 
for this knowledge area is dependent on some 
previous programming experience” (Lunt, et al., 
2008, p. 103).  

 
 

Unit 
Recommended 

Min Hours 

Fundamental Data Structures 10 

Fundamental Programming 
Constructs 

10 

Object-Oriented Programming 9 

Algorithms and Problem-Solving 6 

Event-Driven Programming 3 

Table 1. IT2008 Programming 
Fundamentals Units 

 
The introductory programming course, often 
called CS1, is the cornerstone of any computing 
curricula. However, over the past decade, 

universities have become increasingly concerned 

about declining enrollments and retention in 
computing programs.  Eager to find solutions to 
those problems, the CS1 course has been an 
obvious place to focus efforts. Many students 
come into a computing major with little or no 

previous programming experience, a category of 
learners dubbed “novice programmers”. If 
student performance in CS1 can be improved, 
future success in a computing major is more 
likely.  
 
However, learning to program is notoriously 

difficult for novice programmers, and as a result, 
much attention and research has focused on this 
perennial problem. (See Robins, Rountree, & 
Rountree, 2003). Many have studied the 

characteristics, habits, and success factors of 
novices in the CS1 course (e.g., Bennedsen & 
Caspersen, 2005a; Porter, Guzdial, McDowell, & 

Simon, 2013; Rountree, Rountree, & Robins, 
2002). Others have focused on specific methods 
or approaches to improve performance in the 
CS1 course  (e.g., Benander & Benander, 2008; 
Bennedsen & Caspersen, 2005b; Gill & Holton, 
2006; Pears et al., 2007; Vihavainen, Paksula, & 

Luukkainen, 2011; Williams, Wiebe, Yang, Ferzli, 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 33 

www.aitp-edsig.org /www.isedj.org  

& Miller, 2002; Zhang, Zhang, Stafford, & 
Zhang, 2013).  
 
The CS0 Course 

One approach to improve CS1 performance is to 
require CS0, a “preprogramming” course. In 
some computing curricula, the CS1 course is 
preceded by CS0 or some other form of 
introductory course, and these prerequisite 
courses can improve performance in CS1 
(Brown, 2013; Chor & Hod, 2012; Dierbach, 

Taylor, Zhou, & Zimand, 2005; Faux, 2006).  
 
CS0 was first introduced as an orientation to the 
computer science major (Cook, 1997), and was 

implemented similarly to orientation courses in 
other disciplines. In addition to basic computing 

skills, the course included topics on time 
management, problem solving, professionalism, 
and career exploration. Over time, CS0 course 
designers embraced a variety of approaches and 
topics. Two common formats are breadth-first 
and depth-first. In a breadth-first CS0 course, 
exposure to programming language is limited to 

basic concepts. Topics may include those similar 
to (Cook, 1997), or focus on “authentic” 
everyday computing tasks to help students more 
easily comprehend computer science concepts 
(McFall & DeJongh, 2011). A depth-first 
approach usually depends on a specific 
programming language to develop problem-

solving skills (Tucker & Garnick, 1991). More 
recently, CS0 courses are being implemented 
using a high level language in an attempt to 
attract students to a major in computing or to 
improve retention rates for at-risk students 
(e.g., Rizvi & Humphries, 2012; Uludag, 

Karakus, & Turner, 2011).   
 
Another common form of CS0 is a programming 
logic course; however, some have found that 
particular type of course did not improve 
students’ performance in advanced 
programming (Hoskey & Murino, 2011). Others 

have developed the CS0 course to address 
specific deficiencies. For example, one CS0 
course focuses on mental models and concepts 

of programming (Dierbach, et al., 2005).  
Another found that emphasis on problem solving 
techniques and algorithm development prior to 
programming is beneficial (Faux, 2006). Others 

have also reported success with a CS0 course 
focused on problem solving skills (e.g., Cortina, 
2007; Middleton, 2012; Mitchell, 2001; Van 
Dyne & Braun, 2014).  
 

Regardless of the course arrangement or focus, 
the common objective of a CS0 course remains: 
to improve success in subsequent programming 
and computing courses. With the same objective 

in mind and recalling that the IT2008 coverage 
recommendations for programming assume 
some sort of previous exposure or experience, 
the IST faculty began planning the development 
of an introductory course, IT0.  
 
Mathematics in the IT2008 Curriculum 

IT2008 also addresses fundamental IT 
knowledge areas including mathematical 
foundations. The Math and Statistics for IT 
knowledge area comprises seven units with the 

specific recommended minimum coverage 
displayed in Table 2. The total recommended 

coverage is 38 hours. 
 

 
Unit 

Recommended 
Min Hours 

Basic Logic 10 

Discrete Probability 6 

Functions, Relations and Sets 6 

Hypothesis Testing 5 

Sampling and Descriptive 
Statistics 

5 

Graphs and Trees 4 

Application of Math & Statistics 
to IT 

2 

Table 2. IT2008 Math and Statistics for IT 
Units 

 
The emphasis in IT2008 is on topics in statistics 
and discrete mathematics with a notable 
absence of calculus. Rigorous math 
requirements such as calculus have likely scared 

more than a few students away from computing 
majors, especially since some students have 
difficulty understanding how abstract 
mathematical concepts relate to the real world.  
  
In research, the relationship between students’ 

math background and success in computing 
courses has been a topic of interest for decades. 
How students perform in mathematics courses 
can sometimes predict success or failure in 

programming courses or in the entire computing 
curriculum (e.g., Campbell & McCabe, 1984; 
Capstick, Gordon, & Salvadori, 1975; Konvalina, 

Wileman, & Stephens, 1983; White & 
Sivitanides, 2003; Wilson & Shrock, 2001). 
Studies have usually focused on the number or 
type of mathematics courses taken or on scores 
on standardized tests. Regardless of findings, 
educators overwhelmingly agree that skills in 
mathematical thinking and reasoning transfer to 

success in working with abstract concepts and 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 34 

www.aitp-edsig.org /www.isedj.org  

symbol manipulation in programming (e.g., 
Bruce, Scot, Kelemen, & Tucker, 2003; 
Henderson, 2005; Kelemen, Tucker, Henderson, 
Astrachan, & Bruce, 2000; Ralston, 2005). 

 
There is also an ongoing debate as to exactly 
what kind of mathematics is really needed in 
various computing programs (e.g., Bruce, et al., 
2003; Glass, 2000). However, a common theme 
throughout the literature is that of all 
mathematics courses taken, discrete 

mathematics may be the most important 
predictor of success in computing (Pioro, 2006; 
Sidbury, 1986). Moreover, a further dissection of 
the “how much math” debate reveals that most 

educators agree that topics in discrete 
mathematics are the most relevant for 

computing professionals. This sentiment toward 
coverage of topics in discrete mathematics is 
evident in the IT2008 model curriculum. 
 
The Discrete Mathematics Course 
Discrete mathematics is commonly taught in a 
one or two semester sequence in computing 

programs. Topics covered in these courses 
include logic, sets, functions, relations, counting, 
proofs, probability, and trees and graphs, among 
others. As with other mathematics courses, 
students do not necessarily recognize how 
discrete mathematics applies to their profession 
or to their future studies (Remshagen, 2010).   

 
While the approaches to teaching discrete 
mathematics are not as varied or numerous as 
those for CS0, some universities have taken an 
integrative approach, incorporating discrete 
mathematics topics into core curriculum 

(Harvey, Wu, Turchek, & Longenecker, 2007), or 
into other courses such as data structures or 
formal methods, or simply focusing on making 
the topics more relevant to students. (Gegg-
Harrison, 2005; Remshagen, 2010). Others have 
argued for combining discrete mathematics and 
functional programming into one course 

(VanDrunen, 2011). 
 
Seeing the need for relevance in information 

systems programs, an interdisciplinary 
committee of faculty at one university developed 
a unique discrete mathematics course. The 
course was designed to relate real world uses 

and examples to selected discrete mathematics 
topics, all while “making learning easier and 
enjoyable” and increasing student confidence 
(Wood, Harvey, & Kohun, 2005, p. 387). The 
team developed customized course materials 

and have found their approach valuable in the 
information systems curriculum.  

 
4. THE IT0 COURSE 

 
Motivated by the need to better equip IST 
students for advanced coursework and the 
possibility of seeking ABET accreditation, the 
concept for a new IT0 course was formed. While 
the programming topics recommended in IT2008 
were already being covered, the depth of 

coverage and the assumption of prior experience 
needed to be addressed.  Additionally, within the 
mathematics knowledge area, some topics were 
covered in the applied statistics course; however 

other topics were only being haphazardly 
addressed elsewhere in the curriculum.  

 
Overall, IST faculty felt that combining portions 
of both the Math and Statistics and the 
Programming Fundamentals knowledge areas 
from IT2008 would create a well-rounded 
preparatory course for the IST program and 
would greatly benefit IST students. However, 

there was not room in the curriculum to 
incorporate an additional mathematics course 
and a CS0-type course. Moreover, an entire 
semester of either course was not deemed 
necessary for the IST program.  An opportunity 
presented itself when the former two course 
systems analysis and design sequence was 

compressed into one course. That change freed 
up a sophomore level course which would be 
used to create the hybrid discrete mathematics 
and programming logic and design course, IT0.  
 
Course Content 

With a one-course equivalent available in the 
curriculum, faculty began researching options or 
models for a combined discrete mathematics 
topics/programming logic course. Unfortunately, 
none were found, and it became clear the course 
would need to be developed from scratch. Since 
the IST program is most closely aligned with 

IT2008, faculty turned to those requirements for 
guidance in creating the new IT0 hybrid course.   
 

The IT2008 Programming Fundamentals 
knowledge area units and recommended 
coverage hours were shown in Table 1. All 
programming units were previously covered in 

the introductory programming course, however 
some were covered only at a shallow level due 
to the time constraint of a one-semester course. 
With the new IT0 course, most units move to 
the new hybrid course and object-oriented 
programming will be introduced only in the 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 35 

www.aitp-edsig.org /www.isedj.org  

context of simple problem solving exercises. 
Coverage for the new course is shown in Table 
3. 
 

 

Unit 

 

Hours 

Covered in 

Intro. 

Programming 
Course 

Covered 

in New 

IT0 
Course 

Fundamental Data 
Structures 

10 X  

Fundamental 

Programming 

Constructs 

10 X X 

Object-Oriented 

Programming 
9 X  

Algorithms and 

Problem-Solving 
6 X X 

Event-Driven 

Programming 
3 X  

Table 3. Programming Fundamentals Unit 
Coverage 

 

IT2008 also provides specific topics and learning 
outcomes for each knowledge area unit. This 
detail-enabled faculty to clearly define learning 
objectives for the new course and ensure it met 
the prerequisite needs of more advanced 
courses in the IST program.  The Programming 

Fundamentals units and specific topics with the 
associated learning outcomes as described in 
IT2008 are provided in Appendix B. 
 

 
Unit 

 
Hours 

Covered 
in 

Statistics 
Course 

Covered 
in New 

IT0 
Course 

Basic Logic 10  X 

Discrete Probability 6 X  

Functions, 
Relations and Sets 

6  X 

Hypothesis Testing 5 X  

Sampling and 
Descriptive 
Statistics 

5 X  

Graphs and Trees 4  X 

Application of Math 
& Statistics to IT 

2 X X 

Table 4: Math and Statistics for IT Unit 
Coverage 

 
The Math and Statistics knowledge area units 

and hours were outlined in Table 2. Table 4 
displays which of those units are currently 
covered in the applied statistics course for IST. 
Upon review, the topics of Basic Logic, 
Functions, Relations and Sets, and Graphs and 
Trees were nearly exact matches to the topic list 
IST faculty had devised as being areas of 

deficiency. These units will be addressed in the 
new IT0 course. Specific topics and learning 
outcomes for the discrete mathematics portion 

of the new course were also taken from IT2008 
and are available in Appendix C.  
 
The master course syllabus identifies the 

amount of time to be dedicated to each topic 
area and is included as Appendix D. 
 
Course Materials 
Since introductory courses in the IST program 
are sometimes taught by term instructors, the 
program requires the use of textbooks and other 

materials that are listed in the master syllabus 
for a course as a means to insure consistency. 
To assure the new IT0 course meets the stated 
objectives, the next task was to identify 

standard course materials. Needless to say, one 
textbook that covered all the IT0 topics did not 

exist.  
 
Selecting a resource to cover the programming 
fundamentals portion of the course was fairly 
easy; a book by the same publisher and author 
as is used in the introductory programming 
course was selected. The similarity in the 

language and approach of the texts would afford 
a smoother transition to more advanced 
programming concepts for IST students.  
 
Finding an appropriate resource for the 
mathematics portion of the class proved to be 
more difficult. Dozens of books and numerous 

web resources in the areas of discrete 
mathematics and introduction to computer 
science were reviewed. In each case, the text 
contained a great deal of information that would 
not be covered and thus not warrant requiring 
students to purchase a second book for the IT0 

course. Faculty then began searching for freely 
available sources including entire books or 
individual modules in an effort to provide future 
instructors with a complete set of course 
materials. As of this writing, material for the 
mathematics portion of the IT0 course will be 
prepared by the assigned instructor.  

 
5. CONCLUSION 

 

The primary goal of creating the IT0 course was 
to provide IST students with a firm foundation in 
mathematical reasoning and problem-solving 
skills while introducing major programming 

concepts needed for success in more advanced 
courses. Identifying the IT2008 model 
curriculum components that closely aligned with 
the deficiencies observed by the faculty 
confirmed the need for such a course. 
 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 36 

www.aitp-edsig.org /www.isedj.org  

The opportunity to cover basic programming 
concepts in an earlier course means that the 
introductory programming course can now 
provide deeper coverage of important topics 

such as object orientation. Also, by providing all 
students with a solid foundation in discrete 
mathematics topics and problem-solving skills, 
higher-level courses across the curriculum will 
benefit. For example, the domino effect of 
pushing content from the introductory 
programming course into the IT0 course allows 

content from the advanced programming course 
to be pushed into the introductory course. This 
move allows some courses that previously had 
Programming II as a prerequisite to now only 

require introductory programming. Additionally, 
information security and database programming 

courses can spend less time covering basic 
concepts, thereby addressing more advanced 
content. 
 
The new IT0 course has been approved through 
university channels and will be offered, and 
required, for the first time in fall 2014. While the 

initial work is complete, there is much more to 
be done. For example, faculty must now 
measure the effectiveness of the new approach. 
Plans are underway to provide a pretest and 
post-test for the IT0 course to ensure learning 
objectives are being met. Additionally, faculty in 
upper level courses will monitor the 

preparedness of IST students, some also using a 
pretest. It will be difficult to measure the direct 
impact on the introductory programming course 
since the content is changing along with the new 
IT0 prerequisite. However, faculty will be keenly 
aware of any needed adjustments with the new 

curriculum. 
 
In addition to measuring effectiveness, future 
plans for the IT0 course include the development 
of a custom textbook that will meet the 
students’ needs and serve as a basis in the 
event instructor assignments change.  

 
Our experience reinforces the fact that each 
program and its stakeholders are different. 

While others have found success eliminating a 
two semester approach to teaching 
programming (e.g., Colton & Curtis, 2010), ours 
has been the opposite experience. We believe 

that the new IT0 course, based on a widely 
accepted curriculum model, will provide the 
foundation skills our students need to be 
successful not only in the IST program, but also 
as future IT professionals. Further, we hope that 
our experience in creating a hybrid course to 

meet specific program needs will be of value to 
other educators. 
 

6. REFERENCES 

 
ABET. (2012). Criteria for accrediting computing 

programs. Retrieved from 
http://www.abet.org/DisplayTemplates/Docs
Handbook.aspx?id=3148 

ACM/AIS/IEEE-CS Joint Task Force for 
Computing Curricula. (2005). Computing 

curricula 2005: The overview report. 

Benander, A. C., & Benander, B. A. (2008). 

Student monks - Teaching recursion in an IS 
or CS programming course using the Towers 
of Hanoi. Journal of Information Systems 
Education, 19(4), 455-467. 

Bennedsen, J., & Caspersen, M. E. (2005a). An 
investigation of potential success factors for 
an introductory model-driven programming 
course. Proceedings of the First International 
Workshop on Computing Education 
Research, Seattle, WA.  

Bennedsen, J., & Caspersen, M. E. (2005b). 

Revealing the programming process. SIGCSE 
Bulletin, 37(1), 186-190. 

Brown, M. (2013). CS0 as an indicator of 
student risk for failure to complete a degree 
in computing. Journal of Computing Sciences 
in Colleges, 28(5), 9-16. 

Bruce, K. B., Scot, R. L., Kelemen, C., & Tucker, 

A. (2003). Why math? Communications of 
the ACM, 46(9), 41-44. 

Campbell, P. F., & McCabe, G. P. (1984). 
Predicting the success of freshmen in a 
computer science major. Communications of 
the ACM, 27(11), 1108-1113. 

Capstick, C. K., Gordon, J. D., & Salvadori, A. 

(1975). Predicting performance by university 
students in introductory computing courses. 
SIGCSE Bulletin, 7(3), 21-29. 

Chor, B., & Hod, R. (2012). Cs1001.Py: A topic-
based introduction to computer science. 
Proceedings of the 17th Annual Conference 

on Innovation and Technology in Computer 
Science Education, Haifa, Israel. 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 37 

www.aitp-edsig.org /www.isedj.org  

Colton, D., & Curtis, A. (2010). Programming 
proficiency in one semester: Lessons 
learned. Information Systems Education 
Journal, 8(48), 3-15. 

Connolly, R. W., & Paterson, B. (2011). Even so 
with the pieces borrowed from others: 
Dressing an IS program in IT clothing. 
Proceedings of the 2011 Conference on 
Information Technology Education, West 
Point, NY. 

Cook, C. R. (1997). CS0: Computer science 

orientation course. SIGCSE Bulletin, 29(1), 
87-91. 

Cortina, T. J. (2007). An introduction to 
computer science for non-majors using 
principles of computation. SIGCSE Bulletin, 
39(1), 218-222. 

Dierbach, C., Taylor, B., Zhou, H., & Zimand, I. 
(2005). Experiences with a CS0 course 
targeted for CS1 success. SIGCSE Bulletin, 
37(1), 317-320. 

Faux, R. (2006). Impact of preprogramming 
course curriculum on learning in the first 
programming course. IEEE Transactions on 

Education, 49(1), 11-15. 

Gegg-Harrison, T. S. (2005). Constructing 
contracts: Making discrete mathematics 
relevant to beginning programmers. Journal 
on Educational Resources in Computing, 
5(2), 3. 

Gill, G., & Holton, C. F. (2006). A self-paced 

introductory programming course. Journal of 
Information Technology Education, 5, 95-
105. 

Glass, R. L. (2000). A new answer to "How 
important is mathematics to the software 
practitioner?". IEEE Software, 17(6), 135-

136. 

Harvey, V. J., Wu, P. Y., Turchek, J. C., & 
Longenecker, J., Herbert E. (2007). 
Coordinated topic presentations for 
information systems core curriculum and 
discrete mathematics courses. Information 
Systems Education Journal, 5(8), 3-10. 

Henderson, P. B. (2005). Mathematics in the 
curricula. SIGCSE Bulletin, 37(2), 20-22. 

Hoskey, A., & Murino, P. S. (2011). Beyond 
introductory programming: Success factors 
for advanced programming. Information 
Systems Education Journal, 9(5), 61-70. 

Kelemen, C., Tucker, A., Henderson, P., 
Astrachan, O., & Bruce, K. (2000). Has our 
curriculum become math-phobic? (an 
American perspective). Proceedings of the 
5th Annual Conference on Innovation and 
Technology in Computer Science Education, 
Helsinki, Finland.  

Konvalina, J., Wileman, S. A., & Stephens, L. J. 
(1983). Math proficiency: A key to success 

for computer science students. 
Communications of the ACM, 26(5), 377-
382. 

Legier, J., Woodward, B., & Martin, N. (2013). 

Reassessing the skills required of graduates 
of an information systems program: An 
updated analysis. Information Systems 
Education Journal, 11(3), 79-89. 

Lunt, B., Ekstrom, J. J., Gorka, S., Hislop, G., 
Kamali, R., Lawson, E., . . . Miller, J. (2008). 
Information technology 2008, curriculum 

guidelines for undergraduate programs in 
information technology: ACM and IEEE 

Computer Society. 

Lunt, B., Ekstrom, J. J., Reichgelt, H., Bailey, M., 
& LeBlanc, R. (2010). IT 2008: The history 
of a new computing discipline. 
Communications of the ACM, 53(12), 133-

141. 

McFall, R. L., & DeJongh, M. (2011). Increasing 
engagement and enrollment in breadth-first 
introductory courses using authentic 
computing tasks. Proceedings of the 42nd 
Technical Symposium on Computer Science 

Education (pp. 429-434). Dallas, TX. 

Middleton, D. (2012). Trying to teach problem-

solving instead of just assigning it: Some 
practical issues. Journal of Computing 
Sciences in Colleges, 27(5), 60-65. 

Mitchell, W. (2001). Another look at CS0. 
Journal of Computing Sciences in Colleges, 

17(1), 194-205. 

Pears, A., Seidman, S., Malmi, L., Mannila, L., 
Adams, E., Bennedsen, J., Paterson, J. 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 38 

www.aitp-edsig.org /www.isedj.org  

(2007). A survey of literature on the 
teaching of introductory programming. 
SIGCSE Bulletin, 39(4), 204-223. 

Pioro, B. T. (2006). Introductory computer 

programming: Gender, major, discrete 
mathematics, and calculus. Journal of 
Computing Sciences in Colleges, 21(5), 123-
129. 

Porter, L., Guzdial, M., McDowell, C., & Simon, 
B. (2013). Success in introductory 
programming: What works? Communications 

of the ACM, 56(8), 34-36. 

Ralston, A. (2005). Do we need any 
mathematics in computer science curricula? 
SIGCSE Bulletin, 37(2), 6-9. 

Remshagen, A. (2010). Making discrete 
mathematics relevant. Proceedings of the 

48th Annual ACM Southeast Regional 
Conference, Oxford, MS.  

Rizvi, M., & Humphries, T. (2012). A Scratch-
based CS0 course for at-risk computer 
science majors. Proceedings of the Frontiers 
in Education Conference, Seattle, WA. 

Robins, A., Rountree, J., & Rountree, N. (2003). 

Learning and teaching programming: A 
review and discussion. Computer Science 
Education, 13(2), 137-172. 

Rountree, N., Rountree, J., & Robins, A. (2002). 
Predictors of success and failure in a CS1 
course. SIGCSE Bulletin, 34(4), 121-124. 

Sidbury, J. R. (1986). A statistical analysis of the 

effect of discrete mathematics on the 
performance of computer science majors in 
beginning computing classes. SIGCSE 
Bulletin, 18(1), 134-137. 

The Organizational Systems Research 
Association. (2004). Organizational & end-

user information systems model curriculum.  

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K. 
M., Nunamaker, Jr., J.F., Sipior, J. C., & de 
Vreede, G. J. (2010). IS2010: Curriculum 
guidelines for undergraduate degree 
programs in information systems. 

Tucker, A., & Garnick, D. (1991). A breadth-first 
introductory curriculum in computing. 
Computer Science Education, 2(3), 271. 

Uludag, S., Karakus, M., & Turner, S. W. (2011). 

Implementing IT0/CS0 with Scratch, App 
Inventor for Android, and Lego Mindstorms. 
Proceedings of the 2011 Conference on 
Information Technology Education, West 
Point, NY. 

Van Dyne, M., & Braun, J. (2014). Effectiveness 
of a computational thinking (CS0) course on 

student analytical skills. Proceedings of the 
45th Technical Symposium on Computer 

Science Education, Atlanta, GA. 

VanDrunen, T. (2011). The case for teaching 
functional programming in discrete math. 
Proceedings of the ACM International 

Conference on Object Oriented Programming 
Systems Languages and Applications, 
Portland, OR.  

Vihavainen, A., Paksula, M., & Luukkainen, M. 
(2011). Extreme apprenticeship method in 
teaching programming for beginners. 
Proceedings of the 42nd Technical 

Symposium on Computer Science Education, 
Dallas, TX. 

White, G., & Sivitanides, M. (2003). An empirical 
investigation of the relationship between 
success in mathematics and visual 
programming courses. Journal of 
Information Systems Education, 14(4), 409-

416. 

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & 
Miller, C. (2002). In support of pair 
programming in the introductory computer 
science course. Computer Science Education, 
12(3), 197. 

Wilson, B. C., & Shrock, S. (2001). Contributing 
to success in an introductory computer 

science course: A study of twelve factors. 
SIGCSE Bulletin, 33(1), 184-188. 

Wood, D. F., Harvey, V. J., & Kohun, F. (2005). 
Life-long learning - Making discrete math 
relevant for information systems 

professionals. Issues In Information 
Systems, VI(1), 386-390. 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 39 

www.aitp-edsig.org /www.isedj.org  

Zhang, X., Zhang, C., Stafford, T. F., & Zhang, 
P. (2013). Teaching introductory 
programming to IS students: The impact of 

teaching approaches on learning 
performance. Journal of Information 
Systems Education, 24(2), 147-155. 

 

 
 
 

 

Editor’s Note: 

This paper was selected for inclusion in the journal as an ISECON 2014 Meritorious Paper. The 
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more 
peers including three or more former best papers authors who did not submit a paper in 2014. 

 
 
 
 
 
 
 

 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 40 

www.aitp-edsig.org /www.isedj.org  

APPENDIX A 
IST Core Courses 

Year 1  

 Installing & Upgrading Computer Systems 

 Optimizing & Troubleshooting Operating 
Systems 

 Computing for Business Administration 

Year 2  

 LAN Installation & Administration 

 Fiscal Aspects of Applied Sciences 

 Intro to Programming Logic & Design (IT0 
course) 

 Introduction to Programming 

Year 3  

 Data Applications & Interpretation 

 Technical Communication  

 Ethical & Legal Issues in IT 

 Database Design 

 Database Programming 

 Web-Based Applications 

 IST Electives – 4 courses 

Year 4  

 Systems Analysis & Design 

 IT Project Management 

 Internship 

 IST Electives – 6 courses 

 
 
 

IST Tracks and Electives 
Track: Network &  

Information Security 

Track: Web Systems 

Development 

 

Non-Track Electives 

Information Assurance Programming II Android Application Development 

Network Security Server-Side Web Development Application Development Environments 

WAN Installation & Admin Advanced Web Application 
Development 

Assistive Technologies & Accessible Web 
Design 

Enterprise Network Mgmt Software Engineering & Mgmt Cases in Information Systems Technology 

Advanced Enterprise Net Mgmt  Database Administration 

  Desktop Publishing Applications 

  Health Information Technology 

  Information Storage & Mgmt 

  Intro to Video Game Design & Industry 

 

 
 
 

  



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 41 

www.aitp-edsig.org /www.isedj.org  

APPENDIX B 
IT2008 Programming Fundamentals Units/Topics and Core Learning Outcomes in IT0 

 

Topics Core Learning Outcomes 

Fundamental Programming Constructs: 10 hours 

 Basic syntax and semantics of 
a higher-level language 

 Variables, types, expressions, 
and assignment 

 Conditional and iterative 
control structures 

 Simple I/O 
 Functions and parameter 

passing 
 Structured decomposition 

 Recursion 
 

1. Analyze and explain the behavior of simple programs involving 
the fundamental programming constructs covered by this unit. 

2. Modify and expand short programs that use standard 
conditional and iterative control structures and functions. 

3. Design, implement, test, and debug a program that uses each 
of the following fundamental programming constructs: basic 
computation, simple I/O, standard conditional and iterative 
structures, and the definition of functions. 

4. Choose appropriate conditional and iteration constructs for a 

given programming task. 
5. Apply the techniques of structured (functional) decomposition 

to break a program into smaller pieces. 
6. Describe the mechanics of parameter passing and the issues 

associated with scoping. 
7. Describe the concept of recursion and give examples of its use. 

Algorithms and Problem Solving: 6 hours 

 Problem solving strategies 
 The role of algorithms in the 

problem-solving process 
 Implementation strategies for 

algorithms 
 Debugging strategies 
 The concept and properties of 

algorithms 

1. Discuss the importance of algorithms in the problem-solving 
process. 

2. Identify the necessary properties of good algorithms. 
3. Create algorithms for solving simple problems. 

4. Use a programming language to implement, test, and debug 

algorithms for solving simple problems. 
5. Apply effective debugging strategies. 

 
  



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 42 

www.aitp-edsig.org /www.isedj.org  

APPENDIX C 
IT2008 Math and Statistics for IT Units/Topics and Core Learning Outcomes in IT0 

 

Topics Core Learning Outcomes 

Basic Logic: 10 hours 

 Propositional logic 
 Logical connectives 
 Truth tables and validity 
 Predicate logic 
 Universal and existential 

quantification 
 Limitations of predicate logic 

1. Apply formal methods of propositional and predicate logic. 
2. Create a truth table to determine whether a given formula in 

predicate logic is valid. 
3. Render a well-formed formula in predicate logic in English. 
4. Explain the importance and limitations of predicate logic. 

Functions, Relations and Sets: 6 hours 

 Functions 
 Relations 
 Sets and set operations 

1. Explain, with examples, the basic terminology of functions, 
relations, and sets. 

2. Perform the standard operations associated with sets, 
functions, and relations. 

3. Relate practical examples to the appropriate set, functions, or 
relation model, and interpret the associated operations and 
terminology in context. 

Graphs and Trees: 4 hours 

 Trees 
 Undirected graphs 
 Directed graphs 

 Spanning trees 
 Traversal strategies 

1. Illustrate, by example, the basic terminology of graph theory, 
and some of the properties and special cases of each type of 
graph. 

2. Demonstrate different traversal methods for trees and graphs. 
3. Model problems in IT using graphs and trees. 

 

 
 

 



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 43 

www.aitp-edsig.org /www.isedj.org  

  



Information Systems Education Journal (ISEDJ)  13 (1) 
ISSN: 1545-679X  January 2015 

 

 

©2015 EDSIG (Education Special Interest Group of the AITP)                                            Page 44 

www.aitp-edsig.org /www.isedj.org  

 




