
Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org /www.isedj.org

The Impact of Programming Experience on

Successfully Learning Systems Analysis and Design

Wang-chan Wong
wcwong@csudh.edu

Information Systems and Operations Management Department

California State University
Dominguez Hills

Carson, CA 90747, U.S.A.

Abstract

In this paper, the author reports the results of an empirical study on the relationship between a
student’s programming experience and their success in a traditional Systems Analysis and Design
(SA&D) class where technical skills such as dataflow analysis and entity relationship data modeling are
covered. While it is possible to teach these technical skills to students without programming

experience, the results of the study strongly suggest that students with programming experience
complete the course more successfully than those without.

Keywords: Systems Analysis and Design, Programming, IS Curriculum, Problem Solving

1. INTRODUCTION

For many of us formally trained in Systems
Analysis and Design (SA&D), it is a logical

assumption that some programming experience
is a pre-requisite for taking a course in SA&D.
However, as we have observed, many IS
departments have relaxed their programming
pre-requisite requirements, and this de-
emphasis is reflected in the 2010 IS curriculum

(Topi, et al, 2010). Thus, this current trend
prompts the question: Does the lack of a
programming background hinder understanding
and subsequent success? To answer this, from
2007 to 2013 the author collected the homework

scores of 15 SA&D classes from a total of 259
students. Statistical analysis of the data strongly

supports the notion that programming
experience is important for students to
successfully complete the course. There have
been similar studies conducted before, but they
were typically carried out in a single class with
limited sample size and for a short period of
time. With a large sample size spanning six

years, this study is more definitive and
conclusive.

The rest of the paper is organized as follows.

Section 2 is a literature review of teaching
SA&D, particularly regarding its relationship to
programming. Section 3 discusses the
background of the study, while the methodology
of the empirical study is explained in Section 4.
The data analysis results are presented in

Section 5. Finally, concluding remarks are given
in Section 6.

2. LITERATURE REVIEW

There is a significant gap between teaching and
research in SA&D (Bajaj, et al, 2005). This

situation is reflected by the low number of
research publications in this area. It is
particularly true in finding research reports on
teaching SA&D.

What do experts and scholars say regarding the
relationship between programming and learning

SA&D? Most acknowledge that programming is

mailto:wcwong@csudh.edu

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org /www.isedj.org

an essential foundation of SA&D. Yourdon and
Constantine’s book on Structured Design, a
classic in structured analysis and design,
discusses this relationship in the foreword:

“…we assume that the reader knows how to
code, and is capable of writing “good code”...”
(Yourdon and Constantine, 1978, page xvi)

Booch suggests that his object-oriented method
is “… most appropriate for courses in software
engineering and advanced programming, and as

a supplement to courses involving specific
object-oriented programming languages”
(Booch, 1994, page viii).

Rumbaugh, et al. propose Object Modeling
Technique (OMT) as a method to develop object-

oriented systems and to support object-oriented
programming. They suggest that pre-requisites
include “exposure to modern structured
programming languages and a knowledge of
basic computer science terms and concepts”
(Rumbaugh et al., 1991, page x).

Booth’s discussion of “folk pedagogies” in
software engineering asserts that students
should take a programming course before a
design course (Booth 2001).

Similarly, in his study on integrating
programming and system analysis, Guthrie

concludes that programming is the chicken, and
system design is the egg. He demonstrates that
a student’s design skill is directly related to their
programming skill (Guthrie, 2004).

Studies have been conducted to determine the

actual effect of a student’s prior background on
their design proficiency. Judith Sims-Knight
conducted a small empirical experiment in which
she taught high school students and computer
science students object-oriented design without
programming by using CRC cards. While she
found that the high school students were able to

adequately handle the design process (the study
did not screen whether the students had
programming exposure or not), they concluded

that the computer science students created
more complete designs and demonstrated a
deeper understanding of the design process
(Sims-Knight and Upchurch, 1993).

In an experiment teaching object-oriented
analysis and design (OOAD) to both computer
science and math students, Boberic-Krsticev et
al. (2013) note that the math students had basic
problems mastering the materials, such as

having difficulty acquiring fundamental concepts,
and even the UML terminology. The deficiency
has been attributed to the fact that these
students did not have object-oriented

programming backgrounds. Even with the
computer science students experienced in
object-oriented programming, they observe that
students created UML diagrams simply for the
sake of modeling; both groups of students failed
to make connections between the models and
their implementations. Similar to Guthrie

(2004), the authors recommend that teachers
should illustrate implementation in an OO
programming language so students may see the
connection between models and their

implementations.

Chen suggests that DFDs and ERDs are the most
important skills an analyst can have (Chen
2006). Only students with programming
backgrounds can have a greater appreciation for
the design principles that enable them to
analyze and design more complex systems.

Serva (1998) argues that the technical tasks in
SA&D are comparable to the difficulties of
managing a project to its completion. He offers
SA&D classes for non-IS students, but the
coverage of the course is to simulate the
difficulties of management within an IS
environment and not to teach formal systems

analysis and design.

Ultimately, many IS instructors, professionals,
and practitioners alike prefer students to have
programming experience before taking an SA&D
course (Stack Overflow 2013).

3. BACKGROUND AND EMPIRICAL STUDY

The studies surveyed in Section 2 support the
notion of learning programming before analysis
and design. However, they are mostly small-
scale experiments conducted for a short period

of time. In this paper, the author is reporting on
a study spanning over six years with a
comfortable sample size, providing a more

conclusive and definitive response to the issue.

The SA&D course in this investigation is offered
by a public university -- a comprehensive urban

university primarily serving a metropolitan area.
Information Systems, just like other business
majors such as accounting, finance, marketing,
etc., is a concentration of the College of
Business, instead of a single major. CIS 372
Analysis and Logical Design is a required course

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org /www.isedj.org

for IS and IS-related majors such as Information
Systems Security, and Global Logistics and
Supply Chain Management. However, the
department has dropped the programming pre-

requisite for CIS 372. The only pre-requisite of
CIS 372 is CIS 370, an introductory course on
Information Systems Theory and Practice. CIS
370 is also a required course for all business
undergraduate students. However, it does not
provide any programming training besides a few
Excel and ACCESS exercises with no coding

required. As it is, CIS 372 has enrolled non-IS
related students ranging from general business,
marketing, human resources, finance, sports,
entertainment and hospitality management,

international business, accounting, biology,
music, criminal justice, and sociology, in

addition to computer science and information
systems students. In fact, none of the non-IS
students in this study had any experience with
programming; even though IS and IS-related
students are advised to take an introductory
programming class before taking CIS 372, some
do not follow this advice.

4. EMPIRICAL STUDY - METHODOLOGY

Topics Assignments*

Introduction to Analysis

and Design

Analyzing the Business
Case

Analysis of a Business
Case

Managing Systems
Projects

Project management,
Gantt Diagram in MS

Project

Output and User
Interface

UI Design

Requirements Modeling
Requirements
Document

Data and Process
Modeling

DFD diagrams in Visio
and process
descriptions

Data Design
ERD in Visio and data
dictionary

Development Strategies Short questions

Systems Architecture Short questions

Managing Systems
Implementation

Short questions

Managing Systems
Support and Security

Short questions

*The requirements document, DFD and ERD amount to

25% of the weighted total.
Table 1: Major topics covered and student deliverables

in CIS 372

CIS 372 follows the traditional Systems Analysis
and Design undergraduate curriculum except
that it focuses on the functional (system)
approach while the object-oriented approach is

covered in another course. We used Systems
Analysis & Design in a Changing World by
Satzinger, Jackson, and Burd (Satzinger et al.,
2007) for several years and then changed to
Systems Analysis and Design by Shelly and
Rosenblatt (Shelly et al., 2010) in 2010. Topics
and major deliverables covered in the course

based on Shelly’s book are shown in Table 1.

The course is not project or team-based;
students work individually on homework

assignments for each chapter. Since the author
was interested in determining how well students

without programming backgrounds can master
technical skills, the homework scores of (1) the
requirements document, (2) the dataflow
diagram (DFD) design document, (3) the entity
relationship diagram design (ERD) document,
and (4) the weighted total of each student for
the class were collected. The justification to

select these four scores and the related
hypotheses are as follows:

1. The requirements document is important in
any system development, especially for non-IS
students. In reality, a non-IS business person
will have many opportunities to jointly develop

Request for Proposals (RFP) and the
requirements document with IS staff. Gaining
technical writing skills will greatly improve the
quality of the requirements document, RFPs, and
any other project-related documentation.

2. DFD design documents are demonstrative of
the technical skills that system
analysts/developers need to have. These
techniques train students how to capture the
dynamics and behavior of a system. Needless to
say, ERD is important because it trains students
to capture the objects being modeled and

relationships among them in the system.

3. The weighted total is the percentage of the

scores a student receives. It includes all other
homework assignments and exams. It is the
overall measure of a student’s success in this
course.

In the requirements document assignment,
students are asked to define both functional and
non-functional requirements for certain systems.
Students will generate the requirements
document similar to the clausal form example as

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org /www.isedj.org

shown in (Taylor, 2013). Grading for the
requirements document is based on clarity in
writing, organization, and the ability to capture
the major functional and non-functional

requirements of the system.
For the DFD and ERD assignments, questions
are typically taken from the end of chapters in
the textbook. The questions are based on small-
scale business scenarios that are manageable for
a single student. For the DFD assignment,
students are asked to draw the context diagram

and then decompose it to Level 0 and/or Level 1
diagrams in Visio. Students also need to write
high-level process descriptions for each primitive
DFD process. Structure charts are not covered,

since students without programming experience
have difficulty understanding parameter passing

and functional decomposition. Grading for the
DFD assignment is based on the syntactic
correctness of the diagrams, the appropriate
logical flow to capture the dynamics and
behavior of the system based on the scenario
given, and the clarity of process descriptions for
the primitive processes.

For the ERD assignment, students are asked to
create the crow’s foot model in Visio along with
its data dictionary. Grading on the ERD
assignment is based on how well the student
identifies the entities and their relationships,
including meaningful entity names, salient

attributes of these entities and appropriate
domain or data types for the attributes,
correctness of the relationships (cardinalities) for
these entities, correct primary key identification
and referential integrity enforcement, and
correct modeling of the logical and physical data

models using Visio.

Since any student may take CIS 372 without
fulfilling a programming pre-requisite, for the
purposes of this study students were asked
about their programming experience during the
first class meeting.

Hypotheses
The requirements document is in an itemized

clausal form by grouping system specifications
into categories and subcategories, mirroring the
hierarchical structure of a program and the
relationships of its components. In an

introductory programming class, students have
exposure to top-down modular design, structure
programming, and/or other programming
paradigms such as the object-oriented approach.
They are also introduced to the three basic
programming constructs: sequence, iteration,

and selection. In fact, if a student masters these
programming fundamentals, they will easily be
able to learn data flow analysis. Furthermore, in
programming class, we always emphasize

program documentation. When students
decompose a program into sub-modules, they
need to document the interface, function
descriptions, in-line comments, etc. Therefore,
the following two hypotheses are posited:

Hypothesis 1 (H1): A student’s requirements

document assignment score is positively
associated with his/her programming
knowledge. Students with programming
backgrounds have better scores than students

without programming backgrounds.

Hypothesis 2 (H2): A student’s data flow
assignment score is positively associated with
his/her programming knowledge. Students with
programming backgrounds have better scores
than students without programming
backgrounds.

In a typical introductory programming course,
students are exposed to basic data structures
such as record, array, files, and relational
databases. They will have seen how records are
linked and processed. Therefore, the following
hypothesis is posited:

Hypothesis 3 (H3): A student’s entity
relationship modeling assignment score is
positively associated with his/her programming
knowledge. Students with programming
backgrounds have better scores than students
without programming backgrounds.

Finally, if students are able to successfully
manage an introductory programming class with
the exposures we describe above, they will be
able to smoothly transition into learning SA&D.
Therefore, this gives rise to the following
hypothesis:

Hypothesis 4 (H4): A student’s weighted total is
positively associated with his/her programming

knowledge. Students with programming
backgrounds have better scores than students
without programming backgrounds.

The four hypotheses are depicted in Figure 1.

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org /www.isedj.org

Figure 1: Hypotheses Testing

5. DATA ANALYSIS

The scores of three assignments, i.e.

requirements document, DFD design, ERD
design, and the weighted total of each student
have been collected for the 15 classes that the

author has taught since 2007. A total of 259
student records were collected, in which 10 of
them had missing data and were subsequently
discarded. A total of 249 of them have been
used in this study. Each student record has 7
attributes. They are summarized in Table 2

below:

Student Record Structure in Analysis

Attribute Description Attribute Value

ID
Identifier to the
record

Integer

Class
The class that
the student
enrolled in.

Integer (1..15) for
the 15 classes the
author taught since
2007

IS?
Is the student
an IS or IS-
related student?

Boolean, 0=non-IS ,
1= IS/IS-related

PROG?
Has the student
taken any
programming?

Boolean, 0=no, 1=
yes

REQ
Score of the
requirements
document

Rounded up integer
(0..100)

DFD
Score of the
DFD design
assignment

Rounded up integer
(0..100)

ERD
Score of the
ERD design
assignment

Rounded up integer
(0..100)

Weighted
Total

The weighted
average of all
scores,
including other
homework
assignments
and tests of the
student

Percentage
(0..100%)

Table 2: Student Record Structure in the
Empirical Study

The data were loaded to SPSS version 21 for
statistical analysis. Among the 249 students
analyzed, 114 were non-IS students, while 135
were IS-related students. All non-IS students

in this sample did not have any programming
background prior to CIS372, while 14 out of the
135 IS-related students did not take
programming classes prior to CIS372. The
summary is tabulated in Table 3 below.

 Programming? Total

No Yes

IS?
No 114 0 114

Yes 14 121 135

Total 128 121 249

Table 3: IS/Non-IS with Programming
Background Summary

Their descriptive statistics are summarized in

Table 4 below.

Group Statistics

 PROG? N Mean Std.
Dev

Std. Error
Mean

REQ

Yes
121 78.5840 22.650

05
2.05910

No
128 69.6641 27.571

73
2.43702

DFD

Yes
121 63.9669 29.033

58
2.63942

No
128 54.9375 29.827

08
2.63637

ERD

Yes
121 66.1653 27.389

58
2.48996

No
128 53.6719 30.029

41
2.65425

Weigh
ted
Total

Yes
121 74.3473

%
13.027

08%
1.18428%

No
128 68.2066

%
13.919

50%
1.23032%

Table 4: Descriptive Statistics of the Empirical
Study

t-test

The mean scores of the requirements document,
DFD design, ERD design, and the overall

weighted total in Table 4 reveals that students

with programming backgrounds performed
better than students without any experience.
The consistency and validity of the test scores
are justifiable because the assignments have
similar degrees of difficulty and were graded by
the same instructor for a period of six years. To

further analyze the data, independent sample t-
tests were conducted in SPSS where the
Grouping Variable is the PROG?, and the Test
Variables are the REQ, DFD, ERD, and Weighted

Programming?

Reqs Document

DFD

ERD

Weighted Total

H1

H2

H3

H4

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org /www.isedj.org

Total. The null hypotheses predict that the mean
scores of the Test Variables are the same
between students who had taken programming
classes prior to taking CIS 372 and students who

had not.

The t-test results are summarized in Table 5.

 t-test for Equality of Means

t df
Sig.

(2-tail)
Mean

Difference
Std. Error
Difference

REQ 2.781 247 .006 8.91996 3.20798

DFD 2.419 247 .016 9.02944 3.73338

ERD 3.424 247 .001 12.49341 3.64880

Weig

hted
Total 3.589 247 .000 6.14071% 1.71088%

Table 5: Independent Samples t-test Results
(alpha = 0.05)

The t-test results clearly support the four
hypotheses shown in Figure 1. It is not
surprising that students with programming

experience perform better in DFD and ERD than
those with no experience. After all, these two
technical skills are equivalent to skills used in
programming. However, it is interesting to note
that students with programming knowledge also
outperformed students without programming

knowledge in the requirements document
assignment. This may be explained by the fact
that functional requirements are similar to

functional and procedural descriptions in
programming exercises. Requirements are
written at a higher level of abstraction but are
still modular in nature.

Regression Analysis
The author further performed a linear regression
as a predictive model to measure the potential
student completion success of the course. The
dependent variable is the Weighted Total, the
independent variables are the scores of the

requirements document, the DFD and ERD
assignment scores, and the control variables are
the IS?, PROG? and Class. The regression results
are summarized in Table 6.

Model Summary

Model R R
Square

Adjusted
R Square

Std. Error
of the

Estimate

1
.248a .061 .050 13.46328

%

2 .705b .497 .484 9.92102%

a. Predictors: (Constant), Prog, Class, IS

b. Predictors: (Constant), Prog, Class, IS, REQ,
DFD, ERD

Coefficientsa

Model Unstandardized
Coefficients

Stand.
Coeff

t Sig.

B Std. Err Beta

1

Const 70.990 2.139 33.189 .000

Class -.348 .203 -.106 -1.711 .088

IS 1.268 3.817 .046 .332 .740

Prog 4.876 3.802 .177 1.282 .201

2

Const 42.355 2.633 16.083 .000

Class -.050 .152 -.015 -.331 .741

IS 1.833 2.816 .066 .651 .516

Prog -.067 2.822 -.002 -.024 .981

REQ .118 .027 .218 4.405 .000

DFD .175 .023 .376 7.597 .000

ERD .154 .024 .329 6.474 .000

a. Dependent Variable: WeightedTotal

Table 6: Linear Regression Analysis Results

The regression analysis results in Model 2 show
that the scores of the requirements document,
DFD, and ERD are all significant at the 0.05
alpha level, confirming the results of the t-test
above. Hence, the regression equation is:

WeightedTotal =
42.355+0.175×DFD+0.154×ERD+0.118×REQ

The coefficients of the DFD, ERD, and REQ are
17.5%, 15.4% and 11.8%, respectively.
Tellingly, while these three assignments amount

to only 25% of the total course requirements,
the adjusted R2 is at 0.484. This suggests that,
among all other assignments and tests, the
scores of these three assignments alone can
explain almost 50% of a student’s overall
performance.

6. DISCUSSION AND CONCLUDING
REMARKS

Results of the empirical study strongly suggest
that students with programming experience will
complete the course more successfully than
those who don’t have experience.

Why is programming so important in learning

SA&D? In a paper written by Professor David

Gries at a 1974 ACM conference, he points out
that general problem-solving is very unique in
teaching programming (Gries, 1974). In the
same paper, Gries illustrates his arguments and
summarizes a four-phase process in problem-

solving proposed by Polya in 1945 (Polya,
1945). This process is nearly identical to what is
known today as SDLC. See Table 7 below for
the comparison.

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org /www.isedj.org

Polya’s 4-Phase
Process SDLC

Understand the
Problem

Planning

Analysis

Devise a plan Design

Carry out the plan Implementation

Look back Support/Enhancement

Table 7 Polya’s Problem Solving Process vs SDLC

In fact, Polya’s four-phase problem-solving
process already suggests the incremental and
iterative approach that we currently consider
best practice. In Gries’ words, “In a
programming course, we attempt to teach the
student how to program anything that can be

programmed -- that has an algorithmic solution”

(Gries, 1974, page 81). This “algorithmic”
discipline and training empowers students to
solve programs in a systematic way. With this
training, students can smoothly transition to
software engineering or SA&D, in which they
cope with the complexity of solving larger
problems in a more conceptual and abstract

manner.

Jeffries, et al. studied the processes involved in
designing software, and concluded that the
decomposition process is central to creating the
design (Jeffries, et al., 1981). The process is
similar to the stepwise refinement proposed by

Wirth; decomposition and stepwise refinement

are usually covered in introductory programming
class (Wirth, 1971).

The recent IS 2010 curriculum excludes
programming from the core requirements even
though Systems Analysis and Design (2010.6)
remains one of the seven core courses in the

guidelines (Topi, et al, 2010). The guidelines
proposed in 2010.6 have further replaced
technical skills, such as structured and object-
oriented approaches, with the less
programming-oriented business process
modeling. It is undeniable that these replaced
technical skills are crucial for students intending

to further develop their careers in application
development and system analysis. In a recent

survey conducted by The Economist, 38% of
respondents admit that “inadequate technical
skill sets” are the biggest challenges for CIOs
trying to align technology use with business

goals, while only 21% think “inadequate
management skills” are the biggest challenge
(The Economist, 2013). Another study from the
U.K. reports that almost 75% of current IT
leaders -- an overwhelming majority -- are
unsure that the CIOs of today will still be the

right people to lead IT businesses in 2018
(Nice, 2013). Nearly half (43%) of the
respondents are concerned by their potential
deficiency in technical skills.

Time and time again we are reminded that the
critical skills of an IT manager include project
management, communication, writing, etc.
While we all agree that these soft skills are
crucial competencies for an IT manager, they do
not necessarily mandate an undergraduate IS
curriculum. Realistically, most undergraduate

IS students will not be hired for management
positions right after graduation. A technical
position is still most likely be the first job for

many IS graduates. Consider the current IS/IT
job markets: reports show that programming
and application development is one of the top 10

hottest IT skills for 2013 and 2014 (Pratt, 2012;
Brandel, 2014; Simoneau, 2014; Wakefield,
2014). Another report suggests that 60% of the
surveyed companies claimed they would hire
more developers in 2013 (Pratt, 2012). Most
recently, U.S. News & World Report named
computer systems analysts as second place in

their ranking of 2014’s best jobs (Best Jobs,
2013).

If we intend to maximize the ability of our IS
students to successfully find employment, it is
our responsibility to properly equip them with
sufficient technical skills. For that reason, it is

necessary to continue encouraging programming

as a pre-requisite to Systems Analysis and
Design.

7. REFERENCES

Bajaj, Akhilesh, Batra, Dinesh, Hevner, Alan,

Parsons, Jeffrey and Siau, Keng. (2005).
Systems Analysis and Design: Should We Be
Researching What We Teach?
Communications of the Association for
Information Systems (Volume 15,
2005)478-493

Best Jobs 2013 (2013). US News. Retrieved

from:
http://money.usnews.com/careers/best-
jobs/computer-systems-analyst

Boberic-Krsticev, Danijela and Tesendic, Danijela

(2013), Experience in Teaching OOAD to

Various Students, Informatics in Education,
2013, Vol. 12, No. 1, 43-58

http://money.usnews.com/careers/best-jobs/computer-systems-analyst
http://money.usnews.com/careers/best-jobs/computer-systems-analyst

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 22

www.aitp-edsig.org /www.isedj.org

Booch, Grady (1986). “Object-Oriented
Development”, IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2.
February, 1986.

Booch, Grady (1994). Object-oriented Analysis

and Design with Applications. 2nd Edition,
the Benjamin/Cummings Publishing
Company, Inc., 1994, page viii.

Booth, S. (2001). "Learning Computer Science

and Engineering in Context." Computer
Science Education, 11(3), 169-188.

Brandel, Mary. (2014). 8 hot IT skills for 2014.

Computer World, September 23, 2013.
Retrieved from:

http://www.computerworld.com/s/article/92
42548/8_hot_IT_skills_for_2014

Chen, Brady, 2006. Teaching Systems Analysis

and Design: Bringing the Real World into the
Classroom, Information Systems Education
Journal, Volume 4, Number 84, September

27, 2006.
http://isedj.org/4/84/
Gorgone, John, Davis, Gordon, Valacich, Joseph,

Topi, Heikki, Feinstein, David and
Longenerecker, Herbert (2002). “IS 2002
Model Curriculum and Guidelines for
Undergraduate Degree Programs in

Information Systems”, by ACM, AIS and
AITP. Retrieved from:
http://www.acm.org/education/is2002.pdf

Gries, David (1974). “What should we teach in

an introductory programming course?”,

SIGCSE Bull. 6, 1 (January 1974), 81-89.
DOI=10.1145/953057.810447

URL:
http://doi.acm.org/10.1145/953057.810447

Guthrie, R.W. (2004). Integrating programming

and systems analysis course content:

resolving the chicken-or-the-egg dilemma in
introductory IS courses. Information
Systems Education Journal, 2(1).

Hammer, Michael (1990). Reengineering Work:

Don’t Automate, Obliterate. Harvard
Business Review, July-August 1990.

Hodgson, Lynda, and Wynne, James (2012).

“Adopting the IS 2010 Model Curriculum: A
Survey of Top MIS Programs”, Southeast
Decision Sciences Institute (SEDSI) 2012

Annual Meeting, Conference Proceedings,
February 2012, pp. 177-188.

IDC Research (2010). IDC Research, July 2010

http://www.enterpriseittools.com/sites/default/fi
les/SAP_whitepaper1012.pdf

Information Week (2013). 2014 IT Budget

Survey of organizations with 50 or more
employees, October, 2013.

http://www.informationweek.com/strategic-

cio/executive-insights-and-innovation/2014-
it-budget-survey/d/d-id/1112715

IS 2010 Task Force (2009). Response

Document. Retrieved from:
http://cis.bentley.edu/htopi/IS2010Respons

e_10-27-2009.pdf

Jeffries, R., Turner, A. A., Polson, P. G. &

Atwood, M. E. (1981). “The processes
involved in designing software”, Cognitive
skills and their acquisition. Edited by J. R.
Anderson, Erlbaum, Hillsdale, NJ, 1981, pp.

255-283.
Keen, P. G. W. (1999). “Middle-Out Ideas,”

Computerworld (56), April 12, 1999.

Nice, Steve (2013). “Skills Gap: What Does

2018 Hold For The CIO?”, Business
Computing World. Retrieved from:

http://www.businesscomputingworld.co.uk/s
kills-gap-what-does-2018-hold-for-the-cio/

Polya, G. (1945). How to Solve It. Princeton

University Press, Princeton, N.J., 1945.

Pratt, Mary (2012). 10 hot IT skills for 2013.
Computer World, September 24, 2012.
Retrieved from:
http://www.computerworld.com/s/article/92
31486/10_hot_IT_skills_for_2013

Reich, B. H., and Benbasat, I. (2000). “Factors

that Influence the Social Dimension of
Alignment between Business and
Information Technology Objectives,” MIS

Quarterly (24:1), March 2000, pp. 81-111.

Robey, Daniel (2001) "Blowing the whistle on

troubled software projects", Communications

of the ACM (44)4, pp. 87-93.

Rumbaugh, James, Balha, Michael, Lorensen,

William, Eddy, Frederick , and Premerlani,
William (1991). Object-Oriented Modeling

http://www.computerworld.com/s/article/9242548/8_hot_IT_skills_for_2014
http://www.computerworld.com/s/article/9242548/8_hot_IT_skills_for_2014
http://isedj.org/4/84/
http://www.acm.org/education/is2002.pdf

Information Systems Education Journal (ISEDJ) 13 (3)
ISSN: 1545-679X May 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 23

www.aitp-edsig.org /www.isedj.org

and Design, Prentice-Hall, Inc., 1991. Page
x in Preface.

Samson, Ted (2013). “Software developers

expected to see the highest IT job growth
come 2020”, February 12, 2013. Retrieved
from: http://www.infoworld.com/t/it-
jobs/software-developers-expected-see-the-
highest-it-job-growth-come-2020-212709

Satzinger, Jackson, and Burd (2007). Systems

Analysis & Design In A Changing World, 4th
Edition, 2007, Course Technology,

Shelly and Rosenblatt (2010). Systems Analysis

and Design, Eighth Edition, Video Enhanced,
Course Technology, 2010

Serva, Mark (1998). “Teaching Systems Analysis

and Design to Non-IS Majors: A
Management Simulation”, Decision Line, July
1998.

Simoneau, Paul (2014). “The Top Ten IT Skills

for 2014”, Global Knowledge. Retrieved
from:
http://www.globalknowledge.com/training/g
eneric.asp?pageid=3635

Sims-Knight, Judith and Upchurch, Richard

(1993). “Teaching Object-oriented Design

Without Programming: A Progress Report”,
Computer Science Education, 4, 135-156.

Stack Overflow (2013). Stack Overflow

Discussion Forum: “Teaching systems
analysis and design - how much

programming experience is needed?”
Retrieved from:
http://stackoverflow.com/questions/382797/

teaching-systems-analysis-and-design-how-
much-programming-experience-is-needed

Sulinier, Bruce and White, Bruce (2011). “IS

2010 and ABET accreditation: an analysis of
ABET-accredited information systems
programs”, Journal of Information Systems
Education, Dec 22, 2011.

Taylor, Dick (2013). Requirements Document

Example. Retrieved from:

www.ics.uci.edu/~taylor/ICS_52_FQ02/ics52
_Fall02_Req_Ver3.doc

The Economist (2013). The strategic CIO-

Risks, opportunities and outcomes. The

Economist Intelligence Unit Limited 2013

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K.

M., Nunamaker, Jr., J.F., Sipior, J.C., and
de Vreede, G.J. (2010). IS 2010 Curriculum
Guidelines for Undergraduate Degree
Programs in Information Systems, ACM and

AIS, 2010.

Wakefield, Kylie Jane (2014). Top IT Skills for

2014. Forbes, Transformational Tech,
4/22/2014. Retrieved from:
http://www.forbes.com/sites/emc/2014/04/
22/top-it-skills-for-2014/

Wirth, N. (1971). “Program development by
stepwise refinement” Communications of the
Association for Computing Machinery, Vol.
14, 1971, pp. 221-227.

Yourdon, Edward, and Constantine, Larry
(1978). Structured Design – Fundamentals
of a Discipline of Computer Program and
Systems Design, Prentice-Hall, 1978. Page
xvi.

