
Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 24
www.aitp-edsig.org /www.isedj.org

Whatever Happened to Richard Reid’s List

of First Programming Languages?

Robert M. Siegfried
siegfrie@adelphi.edu

Daniel M. Greco

DanielGreco@mail.adelphi.edu

Nicholas G. Miceli
NicholasMiceli@mail.adelphi.edu

Jason P. Siegfried

jasonpsiegfried@yahoo.com

Department of Mathematics and Computer Science
Adelphi University

Garden City, NY 11530 USA

Abstract

Throughout the 1990s, Richard Reid of Michigan State University maintained a list showing the first
programming language used in introductory programming courses taken by computer science and
information systems majors; it was updated for several years afterwards by Frances Van Scoy of West
Virginia University. However, it has been 5 years since the last Reid List was released. An updated
list was compiled revealing the most popular programming languages. The resultant correspondence
with faculty members at many of the 410 Reid List colleges and universities indicates several trends,
some of which are contradictory, as well as the reasons for the language choices of the participating
schools. We present several conclusions from our findings.

Keywords: introductory programming, programming languages, objects early approach, Java, C++,
Python

1. INTRODUCTION

The choice of programming language and
pedagogic approach used in teaching an
introductory programming course for computer
science and information systems majors has
been a subject of debate for the past forty
years. Holt (1973) criticized the use of PL/I in
beginning programming courses while Conway
and Wilcox developed a PL/I compiler that was
better suited to student use. Pascal was the
dominant programming language in introductory
courses after Wirth (1971) introduced it, but not

even Pascal at the peak of its popularity was
immune from criticism. Kernighan (1981)
described it as “meant for learning” but he found
it ill-suited for serious programming work;
Habermann (1973) concurred with this
assessment. Brilliant and Wiseman (1996)
found that most of the faculty whom they
surveyed favored Pascal but considered it too
dated for continued use as an instructional
language. Johnson (1995) considered C too
complex a language for beginning programming
students (the faculty surveyed by Brilliant and
Wiseman agreed).

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 25
www.aitp-edsig.org /www.isedj.org

More recently, the Advanced Placement exams
in Computer Science has moved from using
Pascal to C++ and more recently to Java. While
the move from Pascal to C++ reflected the
growing popularity of object-oriented
programming and the maturity of the C++
language, the shift to Java came about partly
because of the belief that it was an easier
language to learn (Hadjerroult 1998; Madden
and Chambers 2002). However, Java presents
its own challenges as a teaching language. King
(1997) considered Java to have many
advantages as an introductory language,
although he recognized that it also had many
disadvantages. This has led to a sort of
dichotomy, where many computer science and
information systems programs use Java because
of its popularity, or its inherent advantages,
while other schools choose not to use it as a first
language because they consider it too difficult to
teach to beginners.

The very fact that Java is an inherently object-
oriented language has led to a debate on the
approach that ought to be used in teaching
programming, i.e., whether objects should be
introduced early or somewhat later. Bruce
(2004), Buck and Stucki (2000), and Decker and
Hirschfeld (1994) all argue in favor of an object-
early approach. However, Reges (2006) claimed
that returning to an objects later approach
helped improve retention in the introductory
programming sequence at the University of
Washington. McConnell and Burhans (2002)
noted how much thicker introductory
programming texts had become and the need to
cover objects led to fewer pages on fundamental
topics such as repetition and selection
statements.

As a result, the question of the language and
pedagogic approach to be used when teaching
introductory programming courses remains a
“hot button” topic within the computer science
and information systems educational
communities. The adoption of Java as the
language of the Advanced Placement courses
appears to make it the unofficial programming
language of introductory programming;
however, there are several other languages in
common use, and many colleges that use Java
as their programming language of instruction
differ in their choice of approach, with some
schools teaching objects early, others teaching
objects later and some essentially teaching Java
as an imperative language.

The purpose of this study was to see if there is
any commonality among computer science and
information systems programs in the way in
which they teach introductory programming. It
would be ideal to conduct a census similar to the
ones conducted by deRaadt, Watson and
Toleman (2004; 2002), where they surveyed
university computing programs in Australia and
New Zealand, to determine their language of
instruction, programming paradigm and the
reasons for these choices. Unfortunately, while
it is possible to do this in Australia and New
Zealand, where there are only 37 and 8 teaching
universities respectively, it becomes much more
difficult to do this in the United States where
there are over 3000 colleges and universities, of
which an estimated 1350 have a computing
program (Davies, Polack-Wahl and Anewalt
2011). For this reason, we elected to use the
Reid List of First Programming Languages as a
representation of the population.

.
2. WHAT IS THE REID LIST?

Richard Reid, who taught Computer Science at
Michigan State University, began tracking
colleges computing programs and the languages
that they used in their introductory
programming course in the early 1990s. To
some extent, the sample was self-selecting;
colleges were included on the list if they replied
to Dr. Reid and provided him with reliable
information about the language used in the
computing program. The list was updated
continuously and when 10% of the colleges on
the list changed their language of instruction, a
new list was released (Reid 1992). New lists
appeared approximately twice per year until
Reid’s retirement in 1999. Subsequently,
Frances Van Scoy, a former student of Dr. Reid,
continued compiling the list, with the twenty-
fifth Reid List in 2006 being the last one released
(Van Scoy 2006).

The twenty-fifth Reid List included 410 colleges
and universities, with 391 of the colleges
representing the District of Columbia and 49
states (Wyoming is the only state without
representation). A breakdown by region
appears in Table 1. While there is reasonable
geographic balance, there are some states that
are far more heavily represented than others.
Table 2 shows the states with 10 or more
colleges in the Reid List. While New York,
California and Pennsylvania are among the more
populous states, their influence on the List may
be overstated when compared to the number of

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 26
www.aitp-edsig.org /www.isedj.org

colleges in Texas and Florida. Additionally,
Massachusetts and the New England states as a
whole are significantly overrepresented in
comparison to its college-age population. This
is partially due to the presence of all eight Ivy
League colleges and MIT, in addition to four of
the five University of Massachusetts’ campuses
(the fifth is the Medical School). Both New York
and California have decentralized public
universities; all four of the main campuses of the
State University of New York (SUNY) are
included as well as five of the smaller SUNY
colleges. Eight of the ten University of California
campuses are included as well as eleven of the
twenty-three California State University
campuses.

Table 1. Geographic Breakdown of the US
 colleges in the Reid List

Region Colleges
New England 41
MidAtlantic (incl. DC) 87
Southeast 72
Kentucky and W. Virginia 10
MidWest 95
SouthWest 68
Northwest 16
Alaska and Hawaii 2

Table 2. States with ten or more colleges in
the Reid List.

States Colleges
New York 34
California 32
Pennsylvania 29
Massachusetts 20
Ohio 17
Missouri 13
Texas 13
Virginia 13
Illinois 11
North Carolina 11
Florida 10
Indiana 10
Michigan 10
New Jersey 10

There were also nineteen universities from
outside the United States. Fourteen of the
schools were from English-speaking countries,
with eight from the United Kingdom, five from

Canada and one from Australia. The other five
universities were European.

Table 3 shows the breakdown by the highest
degree program offered in computing. There is
an almost even breakdown between
undergraduate, master’s- and doctorate-
granting departments; however, only nine of the
programs were in community colleges, which are
significantly underrepresented. There was one
vocational/technical school on the list.

Table 3. Breakdown by Highest Degree
Offered in Computing

Highest Degree
Awarded in
Computing Colleges
Associate’s 9
Bachelor’s 128
Master’s 109
Doctorate 157
No longer offering a
computing program 7

A breakdown of the sample indicates that 250 of
the colleges were public and the rest were
private with the exception of the University of
Delaware which is a state-supported private
university. Of the 158 private colleges, seventy-
four are affiliated with religious denominations,
with the thirty-one Catholic colleges being the
most heavily represented religious affiliation.

Finally, seven of the schools, including the only
vocational/technical school, no longer offer a
computing program. E-mail correspondence and
telephone conversations confirmed that these
programs were discontinued due to low
enrollment.

3. METHODOLOGY

The colleges and universities included in this
survey were taken from the twenty-fourth Reid
List; many of the 410 schools listed on the
twenty-fourth list did not appear on the twenty-
fifth list, which only listed 153 schools. The
requirements for the Bachelor’s program in
Computer Science were examined to determine
what the first required programming course was.
If the school offered both Bachelor of Arts and
Bachelor of Science programs, the requirements
for the BS were used. In the case of the
community colleges, the requirements for an
Associate’s degree in Computer Science were
examined. Finally, if the school did not have a

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 27
www.aitp-edsig.org /www.isedj.org

Computer Science program, the requirements
for the Information Systems program were used.

After finding the first programming course, the
course description was examined to see if it
included the programming language of
instruction; however, most did not specify the
language. If a current syllabus for the course
was available online, then an examination of its
content was used to make a determination of
the language used in the course. However, if
there was no syllabus online, the bookstore’s
web site was checked for a textbook adoption; in
some cases, the bookstore was called in an
attempt to get this information. Lastly, if these
steps did not provide the programming language
in use, then members of the department were
contacted to obtain this information.

4. THE TWENTY-SIXTH REID LIST

Table 4. The programming language(s)
used and the frequency of occurrence

Language
Programs
using it

Java 197
C++ 82
Python 43
C 18
Scheme or Racket 11
Java with another language 9
Visual Basic 7
Ada 5
C/C++ 4
Ada or Python 2
Alice and Java 2
Alice 1
C# 1
C or Matlab 1
C++ or Matlab 1
C++ and Resolve 1
Haskell 1
HTML/JavaScript 1
Processing 1
Processing / Java 1
Python/Java 1
Python or Java 1
Python or C# 1
Python or C# or Matlab 1
Scheme/Python 1
Visual Basic or C# 1

Of the 403 schools still offering computing
programs, we were able to determine the first
programming language for majors in 393 cases.
The language (or languages) used in these
courses and the number of occurrences appear
in Table 4. It should not surprise anyone to see
Java dominate the list, although it is interesting
that it is the sole language of instruction or is
used in conjunction with another language in
just over half the colleges for which languages
were determined. C++ remains fairly popular,
with 88 colleges using it, 4 colleges teaching it
after teaching C, and one using it in some
sections of their first programming course. The
Ohio State University uses C++ together with
the Resolve programming framework.
Additionally, 18 colleges use C in their first
course without switching to C++.

Python has become much more popular in the
past few years, with 47 schools currently using it
in all or at least several of their course sections
and a few others preparing to adopt it either this
year or in 2012. The University of Minnesota
begins their course in Scheme before switching
over to Python. The remainder of the colleges
used a variety of languages, including Visual
Basic, Ada, C#, Haskell, and Processing. An
examination of community colleges,
undergraduate and graduate institutions showed
that choice of language did not depend on
highest degree offered by the department.

5. QUALITATIVE DISCUSSION

While most of the e-mail replies from faculty
simply stated the programming language used in
their introductory programming course for
majors, there were many replies that provided
more information about the decision to use a
particular programming language, the previous
language used in this course, the language used
in subsequent courses and in some cases, the
reasons for the choices that various departments
had made. While the choices and the reasons
behind them varied, there were some trends
that could be discerned.

Many Programs Used Different
Programming Languages after the
Introductory Course

While many schools use the same language
throughout much of their program, this is not
always the case; many schools that taught their
introductory course in Python taught the
subsequent course in another language, most

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 28
www.aitp-edsig.org /www.isedj.org

likely Java or C++. But Python followed by Java
was not the only sequence of languages that
was used. Two schools started their students in
C and then switched the following semester to
Java; one school used Java followed by C. One
program started their students in Haskell or
Visual Basic (depending on the course and
section) before switching over to Java. Another
school began their students in C# before moving
to Java while another went through a three
semester sequence of Java to C and then to
C++. In this last case, the sequence was
dictated by the choice of language in later
courses; C++ was used in Data Structures while
the Operating Systems course used C (no clear
reason was given for the use of Java in the
introductory course.).

Movement Away From Java

Several instructors spoke of their department
moving from Java to another language, most
commonly Python, in their introductory course.
Various reasons were given for this: Java was
too difficult for beginners, “industrial” languages
were not necessarily good as instructional
languages; Java was too difficult for beginners.
One professor said that “[it] seems
now that many students feel that programming
means searching the class library for a class that
implements their program.” Another faculty
member said that his department “felt that the
emphasis on objects was distracting students
from fundamentals.”

Movement To Java

Three instructors wrote how their departments
are adopting Java. All three schools were using
either C or C++. None of the replies included a
reason for the transition at this point in time.

Different Themes and Language in the
Introductory Course

A significant number of schools had different
introductory courses or different sections of the
same course where different approaches,
different themes and/or different languages
were used. This was done for several reasons:
some departments were experimenting to see if
one approach was more successful in attracting
students than another approach; some
programs designed different introductory
courses to meet the needs of different
programs. One school used different languages
for introductory courses in computer science and

information systems because the two programs
had different goals for their graduates.

Several colleges used a different programming
language in the programming course for non-
majors than they used in the course for majors.
Replies from two different schools spoke of
courses for non-majors in Python and for majors
in Java.

Language Should Not Matter

Two different instructors from different colleges
spoke about the greater importance of teaching
problem solving and algorithmic skills than
language skills and how language is used as a
tool in teaching the development of algorithms.

Reasons for Choosing a Particular
Language

Given the number of complaints about the
difficulties that students have with Java, C++,
and C, one might wonder why anyone would
choose to use any of these languages. Yet
several faculty members articulated specific
reasons for the choices.

Java’s overall popularity was a significant reason
for it being the most commonly used language.
This very popularity led to its use in the AP
Computer Science exams and the large number
of textbooks covering introductory programming
in Java; these, too, were cited as reasons for
adopting Java. One instructor also appreciated
the availability of IDEs available for neophyte
Java programmers.

One correspondent wrote of his school’s decision
to use C++ because it facilitated the student’s
search for internships. While no one gave a
similar reason for adopting Java, it is quite
possible that it may have been the case,
although someone did suggest that there is
declining interest in Java in the private sector
and that this may be responsible for switching
away from Java.

The most common change in programming
language that was reported was programs that
were switching to Python. The reasons for the
change all seemed related to Python’s simplicity
compared to Java and C++ and the fact that
teaching students about objects could be easily
postponed.

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 29
www.aitp-edsig.org /www.isedj.org

6. CONCLUSIONS

Because of the smaller number of schools
included in the twenty-fifth Reid List, it is
difficult to compare it to the current list, which
has more than double the schools included.
However, some trends were impossible to
ignore.

While Java remains the most commonly used
language in an introductory programming
course, its popularity in the first course is
waning. While Java was used by 60% of the
schools on the twenty-fifth list, only 50% of
colleges on the current list use it in their first
course. While this may be somewhat misleading
because of the inclusion of so many colleges left
off the 2006 list, comments made by responding
faculty suggest that the decline is real, even if it
may not be as severe as indicated here.

C++ remains surprisingly popular, with no
decline from the 2006 list. While the current list
and the 2006 list may not offer a reasonable
basis for comparison, the anecdotal evidence
supplied by the responding faculty suggested
that programs are as likely to switch to C++ as
to switch from it.

The growth in Python’s popularity is undeniable.
Not only have more schools reported using it in
their first programming course, but responding
faculty talk about having adopted it, adopting it
either last year or this coming year or how their
programs are seriously considering the change.

These results corroborate the finding of Davies,
Polack-Wahl and Anewalt (2011), who found
that Java remained the most popular
programming language in CS1 course, with C++
and Python in second and third place
respectively. However, Python was nowhere
near as popular in CS2 classes, with both Java
and C++ being more popular for CS2 classes
than CS1 classes. This suggests that many
schools are starting their computing majors in
Python and later switching to either Java or
C++.

There seems to be many reasons why Python is
replacing Java in many programs; complexity of
the Java programming language and the
difficulties of teaching objects early seem to
make programs interested in considering
alternative approaches. McIver (2001) points
out that Java’s modular structure and its
requirement that every data item and method

be part of a class mandate a certain minimum
size for every program, no matter how simple it
may be:

public class MyFirst {
 public static void main(String[] args) {
 System.out.println
 ("This is my first Java program.");
 }
}

Writing a comparable program in C, C++, or
Python will be significantly shorter and does not
require teaching as much syntax to beginning
programmers. And let’s not forget the
complexity that is added to this by introducing
objects early. This can best be summed up by
Elliot Koffman’s (2005) comment on the SIGCSE
mailing list, “I fear that we have reinvented the
‘new math’ syndrome and many of us are
unaware of it.” One faculty respondent said that
many of his colleagues felt that the objects early
approach was a major contributor to the
confusion that their introductory students had.
As a result, his department chose to adopt Ada.

It was also clear that there was no need to teach
programming courses for non-majors using the
same approach or language as in the
introductory courses for majors. The survey of
Davies et al. (2011) confirms this; the schools
surveyed were more likely to use Alice, Python
and Visual Basic than Java in courses for non -
majors.

The language and approach used in an
introductory programming course remains a
controversial topic and many departments still
have lengthy arguments over their approach to
teaching introductory programming classes.
Pears et al. published a review of the literature
on this subject in 2007, citing one hundred and
one papers and many others have been written
since then. It is unlikely that there will clear
consensus anytime soon.
Reid List 26 will be available at
http://home.adelphi.edu/~siegfried/ReidList

7. REFERENCES

Astrachan, A. K., Bruce K., Koffman E., Kölling

M. & Reges S. (2005). Resolved: Objects
Early Has Failed. ACM SIGCSE Bulletin
37(1), 451-452. Quoted in Reges S. (2006).
Back to Basics in CS1 and CS2. ACM SIGCSE
Bulletin 38(1), 293-297.

Information Systems Education Journal (ISEDJ) 10 (4)
 August 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 30
www.aitp-edsig.org /www.isedj.org

Brilliant, S. & Wiseman T. (1996). The First
Programming Paradigm and Language
Dilemma. ACM SIGCSE Bulletin 28(1), 338-
342.

Bruce, K. B. (2004). Controversy on how to
teach CS 1: a discussion on the SIGCSE-
members mailing list. ACM SIGCSE Bulletin,
36(4), 29-34.

Buck, D. & Stucki D. J. (2000). Design early
considered harmful: graduated exposure to
complexity and structure based on levels of
cognitive development. ACM SIGCSE
Bulletin, 32(1), 75-79.

Conway, R. W. & Wilcox T. R. (1973). Design
and Implementation of a Diagnostic
Compiler for PL/I. Communications of the
ACM 16(3), 169-179.

Davies, S., Polack-Wahl J. A. & Anewalt K.
(2011). A Snapshot of Current Practices in
Teaching the Introductory Programming
Sequence. ACM SIGCSE Bulletin 43(1), 625-
630.

Decker, R. & Hirschfield S. (1994). The Top 10
Reasons Why Object Oriented Programming
Can’t Be Taught in CS 1. ACM SIGCSE
Bulletin 26(1), 51-55.

de Raadt, M., Watson R. & Toleman M. (2004).
Introductory Programming: What’s
Happening Today and Will There Be Any
Students to Teach Tomorrow. Australian
Computer Science Communications 26(5),
277 - 284.

de Raadt, M., Watson R. & Toleman M., (2002).
Language Trends in Introductory
Programming Courses. The Proceedings of
Informing Science, 329 - 337.

Habermann, A. N. (1973). Critical Comments
on the Programming Language Pascal. Acta
Informatica 3(1), 47-57.

Hadjerroult, S. (1998). Java as First
Programming Language: A Critical
Evaluation. ACM SIGCSE Bulletin, 30(2),
43-47.

Holt, R. C. (1973). Teaching the Fatal Disease or
Introductory Computer Programming Using
PL/I. ACM SIGPLAN Notices, 8(5), 8-23.

Johnson, L. F. (1995). C In The First Course
Considered Harmful. Communications of the
ACM, 38(5), 99-101.

Kernighan, B. W. (1981). Why Pascal Is Not My
Favorite Programming Language, Compu-
ting Science Technical Report 100. Murray
Hill, NJ: AT&T Bell Laboratories.

King, K. N., (1997) The Case for Java as a First
Language. Proceedings of the 35th Annual
Southeast ACM Conference (Murfreesboro,
TN, April, 1997), 124-131. New York: ACM
Press. Print.

Madden, M. & Chambers D. (2002). Evaluation
of Student Attitudes to Learning the Java
Language. Proceedings of Conference on the
Principles and Practice of Programming in
Java, (Trinity College Dublin, June 2002),
pp. 125-130. New York: ACM Press. Print.

McConnell, J. J., & Burhans D. T. (2002). The
Evolution of CS1 Textbooks. 32nd Annual
Frontiers in Education (FIE’02), (Boston, MA,
USA, November 6-9, 2002), vol.1 p. T4G1-
6.

McIver, L. (2001). Syntactic and Semantic
Issues in Introductory Programming
Education. Ph.D. Dissertation, Monash
University. Received via e-mail from author,
June 30, 2007.

Pears, A., Seidman S., Malmi L., Mannila L.,
Adams E., Bennedsen J., Devlin M. &
Paterson J. (2007). A Survey of Literature
on the Teaching of Introductory
Programming. ACM SIGCSE Bulletin 39(4),
204-223.

Reges, S. (2006). Back to Basics in CS1 and
CS2. ACM SIGCSE Bulletin 38(1), 293-297.

Reid, R. J. (1992). First Course Language For
Computer Science Majors. Retrieved from
http://www.csee.wvu.edu/~vanscoy/REID06
.HTM on July 12, 2011.

Van Scoy, F. (2006). The Reid List 25.
Retrieved from http://groups.google.com/
group/comp.edu/browse_thread/thread/
4f00b5f437ce261a/3267514419052033?q=R
eid+List#3267514419052033 on July 15,
2011.

Wirth, N. (1971). The Programming Language
Pascal. Acta Informatica 1(1), 35-63.

