Themes in Science & Technology Education, 4(2), 53-74, 2011

Using SOLO taxonomy to explore students’ mental models
of the programming variable and the assignment statement

Athanassios Jimoyiannis
ajimoyia@uop.gr

Department of Social and Educational Policy, University of Peloponnese, Greece

Abstract. Introductory programming seems far from being successful at both university
and high school levels. Research data already published offer significant knowledge
regarding university students’ deficiencies in computer programming and the
alternative representations they built about abstract programming constructs. However,
secondary education students’ learning and development in computer programming has
not been extensively studied. This paper reports on the use of the SOLO taxonomy to
explore secondary education students’ representations of the concept of programming
variable and the assignment statement. Data was collected in the form of students’
written responses to programming tasks related to short code programs. The responses
were mapped to the different levels of the SOLO taxonomy. The results showed that
approximately more than one half of the students in the sample tended to manifest
prestructural, unistructural and multistructural responses to the research tasks. In
addition, the findings provide evidence that students’ thinking and application patterns
are prevalently based on mathematical-like mental models about the concepts of
programming variable and the assignment statement. The paper concludes with
suggestions for instructional design and practice to help students’ building coherent and
viable mental models of the programming variable and the assignment statement.

Keywords: Introductory programming, SOLO taxonomy, mental models, programming
variable, assignment statement

Introduction

Understanding how students learn to program has been a central topic in computer science
education for decades. Early research was focused on the psychology of programming and
studied the differences between novices and experts to solve programming problems (Hoc
et al, 1990; Rist, 1989; Soloway, 1986). Independent research studies into students’
programming ability, in various countries and educational contexts, have shown that
university students have similar difficulties in writing, tracing and designing programs
(McCracken et al., 2001; Chalk et al., 2003; Lister et al., 2004; Eckerdal et al., 2006; de Raadt,
2007). From a cognitive perspective, existing research has given interesting findings
regarding students’ difficulties, misconceptions or alternative conceptions when using
abstract programming concepts and constructs (e.g. variables, control structures, loops,
arrays, recursion), students’ inadequate planning skills and deficits s in programming for
problem solving, the common bugs/errors novices exhibit while programming and testing
their code etc. (Ebrahimi, 1994; Lane & VanLehn, 2005; Corritore & Wiedenbeck, 1991;
Postner & Stevens, 2005, Rogalski & Samurcay, 1990; Sleeman et al., 1986; Spohrer &
Soloway, 1989).

Investigating students’” development from concrete representations of programming
concepts to abstract mental models is one of the principal themes in computer science
education research (Cortney et al., 2011). However, existing research experiments did not
adequately reveal the many aspects of students’ programming thinking. Assessing the



54 A. Jimoyiannis

degree of novices’ ability to see the relationships between abstract programming concepts
and the constitutional parts of a program is currently an open research program
internationally (Lister, Fidge & Teague, 2009; Ma et al., 2011; Sheard et al., 2008). In addition,
addressing new instructional approaches and techniques that help students’ learning is still
an issue of interest in computer science education.

Towards this direction, the Structure of the Observed Learning Outcome (SOLO) taxonomy
proposed by Biggs & Collis (1982) was emerged in the recent years as a promising
educational taxonomy to study how novice programmers manifest their understanding of
programming constructs (Lister et al., 2006; 2009a; Thomson, 2007; Whalley et al., 2006).
Research findings have demonstrated that SOLO is a relevant and efficient framework for
studying students’ representations of programming concepts and studying their
development in programming (Lister et al., 2006; 2009; Sheard et al., 2008).

Despite that university students’ learning and development in computer programming has
been extensively studied, the relation of secondary education students and programming
instruction, in both the Greek educational context and internationally, is an under-
researched topic. Using the SOLO taxonomy, this study examines secondary education (K-
12) students’ programming thinking and their representations of the concepts of
programming variable and the assignment statement. Data was collected in the form of
students” written responses using a questionnaire testing their ability to predict the outcome
of executing short code programming tasks. The paper provides evidence that the
mathematical mental models of the concepts of programming variable and the assignment
statement are prevalent between the students in the sample.

The article is structured as follows: The first section presents a literature review addressing
both theoretical foundations and students” difficulties in programming and, specifically, in
using the programming variable and the assignment statement to solve typical
programming problems. Following, the methodology of the research is presented. Finally,
the research data analysed using the SOLO schema and the findings are presented.
Conclusions are drawn for educational practice in introductory programming courses and
further research in the area.

Literature review

Experts versus novice programmers

Previous investigations found that many students, not only at secondary education but also
at university level, confront critical difficulties in using abstract concepts, they hold non
efficient mental models of basic programming concepts and perform more poorly than
expected after experiencing programming courses. A study conducted in four universities
(McCracken, 2001) concluded that many computer science students, at the end of their
introductory courses, do not know how to program and lack the skills needed for getting a
program ready to run. Another research in seven countries by Lister et al. (2004) reiterated
similar findings showing that many students have a fragile grasp of both basic
programming principles and the ability to systematically carry out routine programming
tasks, such as code tracing. In addition, Simon et al. (2006) have looked for predictors of
students” programming success and found only very weak indicators.

There is a considerable amount of evidence that novices have severe problems in
understanding the basic concepts of programming. Most investigations in the decade of 80’s
have focused on the psychology of programming and have given considerable information
about students’ alternative conceptions of programming structures (Soloway & Spohrer,



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 55

1989; Hoc et al., 1990) and the cognitive difficulties they encounter when they solve
programming problems (Samurcay, 1989; Soloway & Spohrer, 1989; Hoc et al., 1990). The
classical book entitled “Studying the novice programmer”, edited by Soloway & Spohrer
(1989), collected various papers outlining the deficits of students in understanding basic
programming constructs (variables, loops, arrays, recursion), revealing the shortcomings in
code planning and testing, and showing how prior knowledge can be a source of errors for
novices.

It is a common conclusion that students have faulty or fragile mental models concerning
programming constructs, objects, attributes, and methods while they exhibit poor
performance in using elementary problem-solving strategies (Perkins et al., 1989; Eckerdal &
Thune, 2005; Eckerdal et al., 2006; Holland et al., 1997; Garner, Haden & Robins, 2005). The
majority of students face at serious difficulties and lack the skills necessary to function
abstractively, to consolidate a program as a single entity, to comprehend its main parts and
the relations among them, to compose new algorithms and to effectively adapt statements or
procedures using their previous programming knowledge (Robins et al., 2003).

The differences between novices and experts in computer programming have been studied
extensively and tend to confirm that novices do not have many of the abilities of experts
(Brooks, 1990; Gilmore, 1990; Putman et al., 1989; Rist, 1991; Wiedenbeck et al., 1993;
Winslow, 1996). Research findings indicate that expert programmers form abstract
representations based upon the purpose of the code whereas novices form concrete
representations based on how the code functions. On the other hand, novice programmers
are “very local and concrete in their comprehension of programs” (Wiedenbeck &
Ramalingam, 1999). The emergence of the expert programmer from the novice is a process
that involves the formation of multiple mental models, deep and interlinked knowledge
hierarchies, and abstract, generalized problem-solving patterns (Winslow, 1996). It is a
commonplace that traditional instruction of introductory programming, at both universities
and secondary schools, seem to be less successful than needed. McGettrick et al. (2005) note
that educators cited failure in introductory programming courses and/or disenchantment
with programming as major factors underlying the poor student retention in computing
degree programmes.

One possible reason for this is that novices hold ‘non-viable’ mental models of key
programming concepts which then cause misconceptions and difficulties (Ma et al. 2009).
Given a problem, the expert programmer can retrieve an appropriate solution schema. In
contrast, novice programmers are often restricted to a language or syntax-oriented
organization of their programming knowledge. This kind of knowledge does not allow a
new problem to be matched with a previously learned solution (Soloway, 1986; Rist, 1989).
As a result, novices have difficulties in assembling algorithms. In Table 1, we summarize the
most critical issues that shape the differences-alternative approaches in computer
programming between expert and novice programmers.

Secondary education students’ barriers in programming

This section outlines an educational framework regarding computer programming in
secondary education. This framework is addressed mainly to the Greek context but many of
the ideas could be of interest and transferable to other educational contexts. Unlike to the
fields of science and mathematics education, which have developed a coherent framework
of knowledge about how secondary education students understand and learn these subjects,
computer science educators in Greece are just beginning to consider the complex issues
involved in learning to program.



56

A. Jimoyiannis

Table 1. Major differences in programming between expert and novice programmers

Expert programmers

Students-novice programmers

Rely on plans or schemata to understand
programs

Tend to focus on the syntactic details of the
code and execute code line-by-line

Integrate the parts of a program into a
coherent structure

May understand the parts of a program but
struggle to organize those parts into a coherent
structure

Organize their programming knowledge in
sophisticated, flexible and viable mental
models

Lack detailed and viable mental models
Are limited to surface and superficially
organised programming knowledge

Organize their representations of code
segments into larger conceptual-programming
structures according to the function
performed by the code

Form concrete (local) representations based on
how the code functions

Focus on algorithmic approaches (algorithms,
models, schemata) rather than on commands
and the syntactic details of the particular
programming language

Lack algorithmic thinking and fail to apply
relevant knowledge to solve problems
Approach programming as line-by-line code
execution rather than using meaningful

program structures

Do not easily develop patterns (algorithms) that
allow them to match a problem with a
previously learned solution

Have a wide repertory of algorithms
applicable in solving new problems

Current research data concerning students’ misconceptions and mental models for
programming concepts indicate that teaching computer programming to secondary students
includes many more things than the syntactic details and the semantics of the specific
programming language used. In computer programming we are thinking about algorithms
and data in ways that are very different from those in other cognitive activities or areas (e.g.
mathematics or physics) and, most of all, in our everyday life. Students’ pre-existing
knowledge and experiences, coming from other related subjects play an important role in
their efforts to develop algorithmic thinking (Bonar & Soloway, 1985). However, in most of
the cases, this is not enough. For example, in programming students need to manipulate
many abstract entities that have no or little relation to their pre-existing knowledge and
everyday experience (e.g. logical data type, nested control structures, looping constructs,
initialization of variables, counters, arrays and pointers, recursion, etc.). These entities
concern, on the one hand, the programming language used and, on the other, how
statements should be used to produce meaningful combinations in order to construct a
complete program solving a problem.

It is reasonable, therefore, that students have many difficulties when they try to express
solutions which do not come spontaneously or have not previously been familiarized with,
e.g. as the natural consequence of the knowledge transferred to programming from other
cognitive subjects. For example, let us compare a typical Pascal or C program calculating the
summary of a series of numbers to the similar mathematical (by hand) procedure or to the
SUM function used in a spreadsheet. The instructional experience of the author indicates
that this particular mismatch in the way of thinking about solutions, e.g. how to express a
solution in a programming language, is a critical barrier for most secondary students.

In addition, students have no ability to negotiate the syntactic rules and the semantics of the
particular programming language used. In order to solve problems effectively, they need to
adapt their solutions to the syntactic and structural strictness of the programming
environment. This is inherent to computer programming and it is not easily achieved by the
majority of students.



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 57

Another source of difficulties is related to the representations of the students about the
concept of the program itself, which is a mechanism able to solve a problem when executed
correctly. The role of the machine (computer) is not easily accessible by the students, at least
in the introductory lessons. The computer and the programming environment have a two-
fold role: they constitute a mechanism which can be used for both developing and executing
other mechanisms (programs). Du Boulay (1986) introduced the term of notional machine to
describe the role of the computer in programming and the related perceptions of novices.
Jimoyiannis & Komis (2004) have shown that secondary education students lack efficient
representations of the machine and its internal operation during the execution of a program.
Students” faulty models of the notional machine constitute a factor inducing significant
barriers to their programming thinking.

The last issue concerns the typical programming environments and languages used in
instruction. They have been constructed for developing software applications rather than for
educational purposes. Consequently, programming environments are adapted to a
framework of knowledge and skills achieved by experienced programmers. This is a main
source of difficulties and obstacles for students as novices in programming. In the last
decade, there is a growing interest about using alternative instructional environments in
introductory programming courses; pseudocode and/or micro-languages (e.g. Logo, Karel,
Blue]), educational programming environments (e.g. MicroWolds Pro, RoboLab, Scratch,
BYOB), and algorithmic simulation environments, like Jeliot (Moreno et al., 2004), JHAVE
(Naps et al., 2003), Alvis (Hundhausen & Brown, 2007) etc.

The concepts of variable and the assignment statement

Teaching programming in secondary education constitutes a very interesting task with
specific characteristics and differences comparing with the other subjects in K-12
Curriculum. Algorithms are arguably the cornerstone of computer science and
programming. The effective use of variables is fundamental to computer programming and
the design of algorithms. Students’ efficient and viable models about variables is an essential
prerequisite to built other abstract constructs, e.g. counters, arrays, loops etc. However, the
use of variables in programming and especially their role in the program is a tacit implicit
knowledge that cannot be presented explicitly to students (Sajaniemi, 2002; Ma et al., 2011;
Sheard et al., 2008).

Early research findings have shown that secondary education students have various
difficulties to manipulate variables when they try to solve simple programming problems
(Samurcay, 1989; Soloway & Spohrer, 1989; Green 1990; Palumbo & Reed, 1991). Samurcay
(1989) investigated the different ways variables are related to assignment statements and
described the mental difficulties of novice programmers about dynamic modifications of
variables, like updating and initialisation. In addition, Du Boulay (1986) identified
misconceptions about variables, based upon the analogies used in class. Important issues
were revealed, like the role of initialisation, linking variables by assigning,
misunderstanding of temporal scope of variables etc. Perkins et al. (1989) reported other
form of misconceptions related to the names of variables.

In addition, Dehnadi and Bornat (2009) reported that students hold eleven different mental
models for the assignment statements. They argued that they had found a relationship
between the consistency of the mental models employed and students’ performance in
programming examinations. A recent survey on university students, enrolled in an
introductory computing course (Corney et al., 2011), reported that, in the third course week,
almost half of the students could not respond efficiently to a code consisting of just three
assignment statements, which swapped the values in two variables.



58 A. Jimoyiannis

Although students face at variables during early introductory programming courses, the
construction of efficient mental models appears to be a difficult task. Data processing and
storage in the form of variables, as perceived by the students through the use of symbols,
constitutes a main source of difficulties. The concept of programming variable is usually
built on students” pre-existing mathematical knowledge. In most cases, the first problems
that students are asked to solve in introductory lessons have a typical mathematical nature.
Moreover, the type of names used in the first programs are similar to those in mathematical
problems (e.g. X, y, z, a, b). On the other hand, the familiar (by hand) calculation processes,
well-known from mathematics, are used in introductory lessons with the objective to
support building of the concepts of variable and the assignment statement in students’
minds. These processes constitute a critical cognitive obstacle that students need also to
overcome.

It appears that the common perception of students about programming variable and the
assignment statement concepts is restricted to the mathematical representation, even after
many lessons in programming (Jimoyiannis & Komis, 2000). However, in mathematics a
variable has a static meaning and presents a mathematical-functional relation. This view is
not adequate for the students to comprehend the functional and dynamic meaning of
programming variable (Rogalski & Vergnaud, 1987). A programming variable is an
abstraction of a memory cell, i.e. an associated memory location inside the computer having
a constant capacity and containing a value of a data type predefined via a declaration
statement. During program execution, the value of a variable can be dynamically modified
as it is manipulated by assignment or input (read) statements.

The majority of students have not comprehended the dynamic interrelation between the
variable and the assignment concepts, e.g. through the assignment statement data are
registered upon the pre-existing value of a variable, which is lost afterwards. Many students
think that “variables can store more than one value at a time” or that “a variable can
‘remember’ the history of previous assignments”. In other words, they have a representation
of stack-type about the programming variable and, consequently, they believe that they can
recover all those previous values (Jimoyiannis, 2000).

The assignment statement is a command for assigning a value to a variable. The assignment
statement has also a mathematical sense, which emanates from the name of the variables
involved and the symbol used for the assignment operator (=, :=, €), which is often
confused with the mathematical symbol of equality. However, there is a main difference in
the deep meaning of the assignment operation and the symbols related to the variables
included. For example, the simple assignment statement B < A can be misinterpreted by
students as after the assignment statement “variables A and B are exchanged” or “the
variable A no longer contains any value”.

Let us consider another classical example of misconceptions for many secondary students:
the statement x € x + 5. The majority of the students are not able to comprehend that x does
not concern the same entity in both sides. In the left part, x is related to the memory location;
in the right part, x represents the current value of the variable x.

Swapping is another common example of students” misconceptions in most introductory
classes. A great number of students struggle in the early lessons with the code for swapping
the value of two variables.

Finally, the nature of the data involved in a problem with variables introduces additional
difficulties. For example, students can more easily manipulate variables representing
numerical data (integer or real), possibly because they are related to cognitive forms that
they are familiar with. On the other hand, the use of string or logical variables and,



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 59

moreover, complex structures, like arrays, demands new form of representations that
students cannot easily construct (Jimoyiannis, 2000).

The SOLO taxonomy

The Structure of the Observed Learning Outcome (SOLO) taxonomy was proposed by Biggs
& Collis (1982) as a general educational taxonomy. It is content independent and thus it can
be used as a generic measure of understanding across different disciplines. SOLO is a
developmental schema of classifying learning outcomes in terms of their complexity, thus
enabling instructors to assess students” work in terms of its quality not of how many
responses in a particular subject task or activity are correct (Chan et al., 2002).

SOLO taxonomy provides criteria that identify the levels of increasing complexity of
students’ performance for understanding when mastering new learning (Biggs, 1999). SOLO
can be used not only in assessment but also in designing the curriculum in terms of the
learning outcomes intended. It includes five levels revealing the structure complexity of
students” knowledge as they learn. The lower levels focus on quantity (the amount the
learner knows) while the higher levels focus on the integration, the development of
relationships between the details and other concepts outside the learning domain (the
integration of the details into a structural pattern).

As a general educational taxonomy, this schema is assumed to apply to any subject area.
Existing research provides supportive evidence of the potential of SOLO taxonomy in the
evaluation of students’ learning in various subjects, like mathematics, science, technology
etc. (Chick, 1998; Hazel, Prosser & Trigwell, 2002; Padiotis & Mikropoulos, 2010), learning
environments and educational levels (Chen & Zimitat, 2004; Chan et al., 2002).

Lister et al. (2006) first suggested the use of SOLO taxonomy to classify students’ responses
to computer programming problems not so much according to their correctness as according
to the level of integration that they demonstrate. The idea is that beyond the actually correct,
a more integrated answer is a convincing demonstration that the student has understood the
programming code. In this context, SOLO taxonomy describes five levels of student
understanding when solving programming problems. Following, we present a similar
interpretation of how SOLO taxonomy applies when novices manifest their understanding
of short code problems.

Prestructural: This is the least sophisticated type of response a student may give to a
programming task. A prestructural response manifests either a significant misconception of
programming or a preconception that is irrelevant to programming. The student lacks
knowledge of programming constructs and approaches the task under study in a non
appropriate or unrelated way.

Unistructural: This is a response where the student manifests a correct grasp of some but
not all aspects of the programming problem. The student has a partial understanding and
one or few aspects are picked up and used effectually. In many cases, students make what is
called an “educated guess” (Lister et al., 2004). For example, the student describes the
functioning of a part (one or two lines) of the code.

Multistructural: The student focuses on several relevant aspects but does not manifest an
awareness of the relationships between them or the whole. According to Lister et al. (2006),
the student fails “to see the forest for the trees”. For example, a student may provide a line-
by-line description of the code or execute the code by hand and arrive at a final value for a
particular variable. However, he is not able to see the code as a single coherent construct.



60 A. Jimoyiannis

Relational: This level corresponds to what is normally meant by adequate understanding of
the topic under study. The student makes sense of the various aspects of the topic, integrates
the parts of the problem into a coherent code structure, and uses this structure to solve the
problem. According to Lister et al. (2006), “the student sees the forest”. A relational response
is the most sophisticated type of response a student may give and may be either correct or
incorrect. For example, a student is able to describe the function performed by a particular
code segment without hand executing. The student may infer that the code counts the
number of elements in an array which are greater than a particular value.

Extended Abstract: In this highest SOLO level, the student response goes beyond the
particular problem to be solved, and links the problem to a broader context. The student is
able to extrapolate, to develop higher order principles and extend the topic to wider
application areas. For example, a possible extended abstract response may be a comment
that the code will only work for arrays that are sorted (Lister et al., 2006). While this is a very
interesting level to study, the tasks designed for the present study do not aimed at
promoting students” performance in the extended abstract level.

Research design and methodology

Research context

Computer Science was introduced in Greek upper secondary education (Lyceum) on 1998,
in the framework a new National Curriculum for upper secondary education (CF, 1998).
Two elective courses, related to introductory computer science and information and
communication technologies respectively, were established in the first and the second years
of Lyceum (K-10, K-11). In the third year of Lyceum (K-12), the students in the technological
direction need to attend an obligatory course, for 2 hours per week, under the title
“Development of Applications in Programming Environments” (DAPE). It is an
introductory course to procedural programming and algorithmic problem solving. The
subject content is included in the national university entrance examinations.

According to the Computer Science Curriculum (CF, 1998), the main objectives of the
instruction of programming in upper secondary education were

e to develop students” analytical and synthetic thinking

e to help students acquiring methodological and algorithmic thinking skills

¢ to enhance students’ abilities to solve problems using programming environments
e to develop students’ creativity and imagination.

The existing National Curriculum suggests the use of a pseudocode environment (named
LANGUAGE) for the instruction of the basic algorithmic and programming structures
(stepwise programming, variables, control and loop structures, arrays, procedures and
functions). The instruction combines both lectures and laboratory activities in which
students explore problems, and develop and analyze their solutions. During the lab sessions,
the students have the opportunity to use pseudocode and/or programming environments
(e.g. Pascal) for practice and solving simple programming problems.

The DAPE course was offered to K-12 students for the first time on 2000. The study
presented here is of particular interest considering that computer programming has a short
history in Greek secondary education.



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 61

Objectives

Most of the previous studies in the area were restricted to a descriptive survey of students’
ideas and misconceptions about programming constructs. Descriptive analysis of the
students’ responses shows only their different approaches to the various tasks. In this
particular analysis we have used SOLO taxonomy because it offers a thorough qualitative
insight into students” understanding of programming constructs and how they use them to
solve simple programming problems.

The survey was designed to provide information to better understand the factors that may
influence students’ representations and effective use of variables and the assignment
statement to solve programming problems. There were three main purposes justifying this
investigation:

e To replicate and extend previous research findings concerning students’ typical
patterns of response and their representations of the programming variable and the
assignment statement.

e To better understand how students typically approach short code programs and to
identify topics where students commonly experience difficulties related to the
assignment statement.

e To evaluate the applicability of a pedagogically sound theoretical framework (SOLO
taxonomy) in studying students’ performance and their difficulties to written code
tasks.

Research questions

In accordance with the research objectives and consistent with the related literature, the
following research questions were addressed in this study:

Research Question 1: What are the dominant mental models, built by secondary education
students, regarding the programming variable and the assignment statement?

Research Question 2: To what extend are students’ conceptions of the programming
variable and the assignment statement mutually related?

Research Question 3: Can SOLO taxonomy offer an efficient framework to study and assess
students’ representations and mental models of the programming variable and the
assignment statement?

The instrument

The research tool was an anonymous written questionnaire with six programming tasks
based on code segments in LANGUAGE, the pseudocode environment proposed by the
Curriculum and the textbook approved by the Greek Ministry of Education. The tasks
developed specifically for the purpose of this study with the aim to test students” ability to
predict the outcome of executing short code programs. The tasks represented students’
alternative conceptions and representations known from the literature and the teaching
experience of the author. Students were asked to give their responses including also a short
justification.

Demographic information such as gender, age, years of computer experience, type of
software applications used etc., were also requested.



62 A. Jimoyiannis

The sample

The survey presented here was administered in 2005 in five upper secondary schools from
the urban area of two Greek cities, namely loannina and Rhodes. The schools participated
were randomly selected while the research sample was representative of the students. A total
of 182 students, 99 (54.4%) boys and 83 (46.6%) girls, participated in the survey. The students
were aged between 17-18 years and attended the third year of upper secondary education (K-
12). They attended the DAPE course about algorithmic and introductory programming for 2
hours per week.

The majority of the students had no previous programming experience when entering this
course. 27% of the students reported that they were engaged in programming (using Logo,
Pascal, Basic or other environments) while attended the elective computer science course in
the first year of Lyceum. The majority of the students in the sample used computer games
and/or the Internet while only two students were also engaged into programming activities
for their personal interests.

The great majority of the students reported access to a PC either at home (84.1%), at their
friends (8.2%) and other places, like computer schools and internet cafés (2.8%). On the other
hand, 4.9% of the students in the sample had no opportunity to use computers in places out
of the school computer laboratory.

The procedure

The research presented took place about six weeks after the students had completed
introductory programming lessons in their schools and, especially, the unit related to the
programming variable and the assignment statement. No intervention took place before the
survey. Prior to their participation in the research all students had received traditional
instruction on these topics in the classroom and the computer laboratory.

All participants were volunteers. They were briefed on the purpose of this study and
informed of their rights to not participate or withdraw from completing the questionnaire at
anytime during the data collection. Participants took about 30 minutes to complete the
written task questionnaire.

Researcher’s role during students’ responding was restricted to answering their questions in
order to clarify the programming tasks under research. To ensure that all tasks included in
the questionnaire were clearly understood, a trial run of the survey was carried out in one
school. The trial group consisted of 23 K-12 students. Data from the trial were not included
in the analysis.

Results and analysis

Figure 1 shows the distribution of students’” responses to the research tasks according to the
SOLO categories. If we assume that students’ responses are a reasonably consistent
reflection of how they reason about programming code, then the students in the sample
manifested a relational response to the research tasks, approximately, at a percentage of 40-
50%. However, more than one half of the students exhibited prestructural and unistructural
responses to the tasks. It is apparent in Figure 1 that many of the weaker students showed a
consistent approach to the six tasks. They were not able to abstract from concrete code
representations to meaningful structures about the concept of programming variable and the
assignment statement. The students” exhibited the weakest performance in Task 6. They
were classified into the relational SOLO level at a percentage of 15.93%.



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 63

60

50 4 _ ]
;\a 40 4 ] ] B Prestructural
o B Unistructural
(=2}
8 304 O Multistructural
c
8 O Relational
)
o 20 4

10 4

0
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Figure 1. Distribution of students’” SOLO responses to the tasks

Following we present the research findings regarding students” responses to each particular
task using the SOLO schema of analysis.

Task 1
Consider the following program:

PROGRAM TASK1
VARIABLES
INTEGER: x, y
BEGIN

READy

READ x, y

WRITEy, x, y
END_PROGRAM TASK1

What do you expect to be displayed on the screen if you will repetitively input the values 3, 6, and 9?
Explain your answer.

Table 2 presents students’ responses to Task 1 according to SOLO taxonomy. Into the
prestructural level we classified students” responses which were unrelated to programming
thinking and indicated critical deficiencies. 10.99% of the students in the sample did not
answer to this task. Students’ justifications in this category were like

“There will be nothing displayed on the screen. This is a false problem because variable y cannot store
two values through READ statement”.

Table 2. Students’ responses to Task 1

SOLO level Percentage%
(N=182)
Prestructural 14.83
Unistructural 41.21
Multistructural 2.75
Relational 41.21

Total 100.00




64 A. Jimoyiannis

We have classified as unistructural the students’ responses (41.21%) which revealed a
representation of the variable concept which has the form of a stack or a box. Typical
responses of this SOLO level were

“There will be displayed on the screen the values 3, 6, 9”.

According to the justifications given, the students above believe that, after the execution of
the successive READ statements, the variable y can store two values (3 and 9). Both values
were stored in variable y and can be displayed on the screen when using a WRITE
statement.

2.75% of the students’ responses to this task were classified into the multistructural level.
They gave responses like

“There will be displayed on the screen the values 6 and 9”.

These students have built an effective representation of the READ statement and were able
to estimate the content of the two variables x and y. However, they exhibited deficiencies to
comprehend the meaning and the outcome of the WRITE statement; they responded giving
two values as the output of a WRITE statement acting on three variables (WRITE y, x, y).

41.21% of the students in the sample were classified into the relational level. They gave
complete and justified answers manifesting arguments of the type

“The values that will be displayed on the screen are 9, 6 and 9. After the execution of the statement
READ x, y the first input value (i.e. 3) of the variable y is lost and a new value (9) is assigned to y”.

Task 2

Consider the following program:

PROGRAM TASK2
VARIABLES
INTEGER: x, y

BEGIN
READ x
READ x
READy
WRITE y, x, x

END_PROGRAM TASK2

What do you expect to be displayed on the screen if you will repetitively input the values 3, 6, and 9?
Explain your answer.

Task 2 is similar to Task 1. Students” reasoning and responses appeared to be consistent in
both tasks. Table 3 shows the distribution of the responses to Task 2 categorized according
to the SOLO taxonomy.

Into the prestructural level we classified students” responses which were unrelated to
programming and indicated the same deficiencies recorded also in Task 1. The students did
not answer to this task (11.54%) or they gave justifications of the type

“There will be nothing displayed on the screen. This is a false problem because variable x cannot store
two values through READ statement”.

We have classified as unistructural the students’ responses (41.75%) which revealed a
representation of the variable concept which has the form of stack or box, e.g. the variable x
can store simultaneously two values (i.e. 3 and 6). Typical examples were

“There will be displayed on the screen the values 9, 3, 6”.



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 65

Table 3. Students’ responses to Task 2

SOLO level Percentage%
(N=182)
Prestructural 13.74
Unistructural 41.75
Multistructural 3.30
Relational 41.21
Total 100.00

“There will be displayed on the screen the values 9, 6, 3”.

Similar results have also been recorded as far as the multistructural SOLO level it regards.
3.30% of the students’ responses were classified in multistructural level with responses like

“There will be displayed on the screen the values 9 and 6”.

Finally, 41.21% of the students in the sample were classified into the relational level. They
gave complete and justified answers manifesting arguments of the type

“The values that will be displayed on the screen are 9, 6 and 6. The first input value of the variable x
(i.e. 3) is lost and a new value (6) is assigned after the execution of the statement READ x”.

Task 3
Consider the following program:

PROGRAM TASK3
VARIABLES
INTEGER: x,y

BEGIN
x€5
y € X
X € x+5
y € x+5
WRITE x,y

END_PROGRAM TASK3

What do you expect to be displayed on the screen when the above code finishes? Explain your answer.

Table 4 presents students responses to Task 3 categorized according to the SOLO taxonomy.
We have classified in the prestructural level the students’ responses which manifested
conceptions irrelevant to programming. 6.59% of the students in the sample gave no answer
at all. Into this category were also classified responses like

“After making the calculations I can found out the result”

“There will be displayed on the screen WRITE 10, 10”.

Approximately one out of three students were classified into the second SOLO level
(unistructural). It appears that the students into this category have not built a stable
representation of the successive nature of the assignments and the dynamic change of value
of the variables involved. Their approaches were clearly based on a mathematical
representation of both the concept of programming variable and the assignment statement.
Typical responses and justifications given were like

“Initially x=5. Consequently, the statement x<x+5 gives x=5+5=10. On the other hand, the
statement y«—x+5, means that y=x=10".



66 A. Jimoyiannis

Table 4. Students’ responses to Task 3

SOLO level Percentage%
(N=182)
Prestructural 9.34
Unistructural 30.22
Multistructural 12.09
Relational 48.35
Total 100.00

We have classified in multistructural level (12.09%) students’ responses which showed
correct program outcomes. However, the justification of their answers was based on a
mathematical representation of the successive assignments and the program as a structure.
According to their approach, the successive assignments were viewed as mathematical
calculations. Indicative responses of this type were

“After doing the calculations, the final result is x=10 and y=15".

Approximately one out of two students (48.35%) gave a correct and adequately justified
answer. Their responses were categorized into the relational SOLO level. Those students
responded that

“The values that will be displayed on the screen are 10 and 15”.

In most cases, the students used a value table showing the successive values of the variables
x and y after executing the successive statements of the program.

Task 4

Consider the following code segments:
A<€10 A<€10
B&5 B&5
A<€EB B< A
B< A A<EB
WRITE A, B WRITE A, B

Do you expect that these code segments are equivalent or not? Explain your answer.

Table 5 presents the results of the survey concerning student’s answers for Task 4. Into the
prestructural level we classified students’ responses indicating deficiencies and approaches
unrelated to programming. A percentage of 7.69% of the students gave no answer at all.
Typical examples of students” prestructural responses were

“The order of the assignments makes no difference to the values of the variables”
“The two segments are equivalent; they display the same output values, 5 and 5”.

“The two segments are equivalent since they produce the same output on the screen: values 15 and
15”.
The last response indicates that the students hold an ‘accumulative’” mental model for the
assignment statement. In other words, those students perceived the assignment statement as
a process in which “the value in the right is added to the content of the variable in the left
part of the statement”.

Into the unistructural level we have classified students’ responses (27.43%) that were not
based on a complete representation of the code segment. Characteristic answers of this
category were



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 67

Table 5. Students’ responses to Task 4

SOLO level Percentage%
(N=182)
Prestructural 21.42
Unistructural 19.23
Multistructural 9.89
Relational 49.45
Total 100.00

“The two segments are equivalent; they produce swapping of the values of the variables”.
“The two segments are equivalent since they produce the same output on the screen: values 5 and 10”.

“The two segments are not equivalent. The first displays on the screen the values 5 and 10 while the
second displays the values 10 and 5 for the variables A and B respectively”.

Into the multistructural level we have classified students” responses of the type
“The two code segments are not equivalent because the order of the assignments is different”

“The two code segments are not equivalent. After the execution of the first segment, the content of both
variables is 5. In the second segment, there will be displayed on the screen the values 5 and 10
respectively”.

45.14% of the students gave correct answers manifesting arguments of the type

“The two code segments are not equivalent. In the first segment, the content of both variables is 5, so
there will be displayed on the screen the values 5 and 5. In the second, the content of the two variables
is 5, so the values displayed on the screen are 10 and 10 respectively”.

In order to justify their responses to the task, the majority of the students used a table with
the successive values of the variables included in the code segment.

Task 5

Consider the following code segments:
A <10 A <10
B<&5 B<&5
A<€B H< A
B< A A<B
WRITE A, B B<H

WRITE A, B

Do you expect that these code segments are equivalent or not? Explain your answer.

Table 6 presents the results concerning students” responses to Task 5. Into the prestructural
level we classified students’ responses irrelative to programming thinking. Typical examples
of students’ prestructural responses were

“The two segments are equivalent; Variable H makes no difference”.
In addition, a percentage of 6.59% of students gave no answer at all.

Into the unistructural level we have classified students” responses (27.43%) that were not
based on a complete representation of the code segment. Characteristic answers of this level
were

“The two segments are not equivalent. The order of the assignments to the variables is different”



68 A. Jimoyiannis

Table 6. Students’” responses to Task 5

SOLO level Percentage%
(N=182)
Prestructural 18.68
Unistructural 16.49
Multistructural 13.19
Relational 51.65
Total 100.00

“The two segments are not equivalent. There is an extra variable (H) in the assignments”

“The two segments are not equivalent. The first displays on the screen the values 5 and 10 while the
second displays the values 10 and 5, for the variables A and B respectively”.

Into the multistructural level we have classified students’ responses which indicated a
correct aspect of the task (the swapping code). Indicative written justifications were like the
following

“The two segments are equivalent since they swap the values of the variables; they display the same
output values: 5 and 10”.

“The two code segments are not equivalent. The first segment will display on the screen the values 15
and 15. The second code is swapping and the values displayed on the screen will be 5 and 10 for the
variables A and B respectively”.

Into relational SOLO level we have classified 51.65% of the students which gave correct
answers writing arguments of the type

“The two code segments are not equivalent. In the first segment, both variables’ content is 5, so there
will be displayed on the screen the values 5 and 5. In the second, the values displayed on the screen are
5 and 10 for the variables A and B respectively.”

“The two code segments are not equivalent. In the first segment, the values 5 and 5 will be displayed
on the screen. The second code produces swapping of the two variables. So, there will be displayed on
the screen the values 5 and 10 for the variables A and B.”

The results above reiterate recent findings reported by Corney et al. (2011) regarding
university students” deficiencies about swapping of the values in two variables.

Task 6
Consider the following program:

PROGRAM TASK4
VARIABLES
INTEGER: x,y

BEGIN
READ x, y
x€Exty
y€x-y
x€ x-y
WRITE x,y

END_PROGRAM TASK4

What do you expect to be displayed on the screen when the above program finishes? Explain your
answer.

Table 7 shows students’ responses to Task 6 categorized into the SOLO levels. 24.18% of the
students in the sample were classified into the prestructural level. The majority of them
(21.43%) gave no answer at all. In addition, four students gave the next explanation:



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 69

Table 7. Students’ responses to Task 6

SOLO level Percentage%
(N=182)
Prestructural 2418
Unistructural 32.42
Multistructural 27.47
Relational 15.93
Total 100.00

“There will be nothing displayed on the screen. This is a false problem and cannot be solved”.

Approximately one out of three students’ responses was classified into the unistructural
SOLO level. Those students have built a rather mathematical representation of both the concept
of programming variable and the assignment statement. Typical responses and justifications
given were like

“After executing the successive statements y«—x-y and x<—x-y, the two variables x, y have the same
content value: x-y”.

“After executing the successive statements the variable y is equal to x-y=(x-y)+y=x. Because of the
statements y«—x-y and x«<—x-y the two variables (x and y) have the same content value, i.e. x”.

Into the multistructural level we have classified students’ responses which indicated a
correct approach and justification regarding the variable y. Those students manifested only
one aspect of the task (the swapping code). Indicative written justifications were as
following:

“After executing the statement y<—x-y the value of the variable y is equal to x, because y=x-y= (x+y)-
y=x. Following, after the execution of the statement x<—x-y, the value of the variable x is x=x-y=x-
x=0".

“After executing the statement y<—x-y the value of the variable y is equal to x. The statement y«—x-y
means that y=x-y or x=2y (the students treat this relation as a mathematical equation). So, the values
displayed on the screen will be 2y and x for the variables x and y respectively”.

In relational SOLO level we have classified 15.93% of the students which gave correct
answers writing arguments of the type:

“The values displayed on the screen will be y and x respectively”
“This code is swapping the two variables x and y”.

The majority of the students in relational level used a value table to calculate by hand the
intermediate and the final values of the variables x and y, after the successive assignments.

Discussion and conclusions

This paper reported on the investigation of K-12 students’ mental models of the
programming variable and the assignment statement by using SOLO taxonomy. Three
major findings can be drawn from this study in relation to the research questions as follows.

The first research question examined if the students have built adequate mental models of
the concepts of programming variable and the assignment statement. The majority of the
students revealed difficulties in linking variables by assignment and read (input) statements.
In addition, they exhibited misconceptions regarding the temporal scope of variables in a
program. We have recorded three different types of faulty mental models of the concept of
variable held by the students in the sample:



70 A. Jimoyiannis

e The mathematical model, i.e. a variable is considered like a parameter involved in a
calculation formula

e The box or stack model, i.e. a variable can store more than one values at a time

e The static model, i.e. the content value of a variable remains unchanged after a new
assignment.

The results indicated that more than half of the students have not comprehended the
dynamic meaning of the programming variable. In addition, they held the representation of
equality for the assignment statement while facing successive assignments as mathematical
relations. These findings are consistent with previous research which indicated that students
have difficulties to build adequate representations for the sequence construct of a program
and the dynamic change of the values of the variables (Du Boulay, 1986; Rogalski &
Vergnaud, 1987; Samurcay, 1989).

The second research question examined if, and to what extent, students’ conceptions of
programming variable and the assignment statement are mutually related. Our results
appeared to confirm the second research question, since the mathematical representation of
both constructs is prevalent between students in the sample. We have recorded three
different types of faulty mental models of the assignment statement confirming only three of
the eleven different mental models reported by Dehnadi & Bornat (2009):

e The mathematical model is prevalent among the students; they consider the successive
assignments as mathematical equations or calculation formulas rather than as dynamic
modifications acting on particular memory locations

e The accumulator model, i.e. the right value in the assignment is added to left

e The equality model, i.e. an assignment describes the relation between values (left and
right side) which are equal.

In addition, the findings are quite similar to the survey of Corney et al. (2011) which
reported that one half of university students, in an introductory computing course, could
not respond efficiently to a code swapping the values in two variables.

The third research question examined the degree of applicability of SOLO taxonomy as an
efficient framework to study and assess students’ representations and mental models of the
programming variable and the assignment statement. The results of SOLO analysis showed
that the majority of the students in the sample tended to manifest prestructural,
unistructural and multistructural responses to the research tasks. Despite that studying
extended abstract level is a very interesting issue for computer programming educational
research, the tasks designed for this particular study did not aim at students” performance in
this level. From a research perspective and confirming previous investigations (Lister et al.,
2006; 2009; Sheard et al., 2008), the results presented offered significant empirical evidence
supporting the assumptions regarding the efficacy of SOLO taxonomy to explain students’
mental models in computer programming.

Since this study was based on a convenience sample, generalizations to other educational
environments should be done with specific care. However, the research results could be of
interest and significance in broader or international educational contexts regarding
introductory computer programming.



Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 71

Implications for practice

The results of this study provided information about students” mental models and
representations of the programming variable and the assignment statement. Some of the
difficulties reported are intrinsic or inherent to programming but there are also themes for
redesigning instruction. The findings could be of value for the design and the successful
implementation of teaching interventions aiming at improving students’ learning in
computer programming,.

Traditional teaching approaches appeared to be inefficient to support students” developing
of appropriate mental models of the basic programming concepts. Undoubtedly, students as
novice programmers require time and they develop their programming knowledge in a slow
and progressive way. However, teaching the semantics of the programming language or
focusing on the features of a specific language is not adequate to help students develop
viable representations of the programming constructs and acquire the necessary
programming skills. Teachers should address a pedagogical change in their instruction by
emphasizing on problem-solving and algorithm design patterns rather than on the syntactic
details and the features of specific languages. In addition, it is of great importance for
instructional practice to systematically engage students into properly designed code tracing
and explaining activities, in both classroom and laboratory sessions.

Variables, the assignment statement and the sequence structure constitute the basic
constructs needed for students to understand the nature of programming. Our findings
strongly support the importance of starting with variables in introductory programming to
provide students with viable models of the basic programming constructs applicable in
problem solving. Only by knowing the basic programming building blocks students will be
able to combine programming constructs and integrate code segments into coherent
structures and effective algorithms. The approach of roles of variables proposed by Sajaniemi
& Kuittinen (2005) appears to be a promising framework, easily linked to code and
pseudocode programming paradigms.

In conclusion, educators need to place explicit pedagogical emphasis on the design of
students’ learning activities and the tools used to help students to improve their mental
models of programming concepts. The need to develop a coherent instructional framework
about the basic programming concepts is still an open research issue. To address this
problem we are working on a learning framework integrating inquiry and cognitive conflict
along with the simulation of programming concepts and programs (Vrachnos &
Jimoyiannis, 2008). The key ideas in this framework are the appropriate design of
scaffolding and supporting students” inquiry in order to help them recognise their flawed
models and actively transform them into viable representations of the basic programming
constructs.

Conclusion

In this paper we have presented an analysis of the representations held by secondary
education (K-12) students about the concepts of programming variable and the assignment
statement. Students” responses and justifications were mapped using the SOLO taxonomy.
The results showed that approximately more than one half of the students in the sample
tended to manifest prestructural, unistructural and multistructural representations. In
addition, the findings provided evidence that students’ programming thinking was
determined by three different models about the concept of variable and the assignment
statement. The paper ends with two main conclusions: a) SOLO taxonomy constitutes an



72 A. Jimoyiannis

efficient schema for research and students’ assessment in introductory programming
lessons; b) developing a pedagogically coherent instructional framework for introductory
programming should start with the concepts of variable and assignment as building blocks.

References

Biggs, J. (1999). Teaching for quality learning at university: What the student does. Buckingham: The Society for
Research into Higher Education and Open University Press.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed
Learning Outcome). New York: Academic Press.

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: a major source of misconceptions in novice
programmers, Human-Computer Interaction, 1, 133-161.

Brooks, R.E. (1990). Categories of programming knowledge and their application. International Journal of Man-
Machine Studies, 33, 241-246.

CF (1998). Curriculum Framework. Athens: Greek Ministry of Education, Pedagogical Institute (in Greek).

Chalk, P., Boyle, T., Pickard P., Bradley C., Jones, R., & Fisher, K. (2003). Improving pass rates in introductory
programming. Proceedings of the 4th Annual LTSN-ICS Conference (pp. 6-10). NUI Galway.

Chan, C. C., Chui, M. S., & Chan, M. Y. C. (2002). Applying the Structure of the Observed Learning Outcomes
(SOLO) taxonomy on student’s learning outcomes: an empirical study. Assessment & Evaluation in Higher
Education, 27(6), 511-527.

Chen, N. S,, & Zimitat, C. (2004). Differences in the quality of learning outcomes in a F2F blended versus wholly
online course. In R. Atkinson, C. McBeath, D. Jonas-Dwyer & R. Phillips (eds.), Beyond the comfort zone:
Proceedings of the 21st ASCILITE Conference (pp. 175-179). Perth, Australia. Retrieved 20 May 2010, from
http:/ /www.ascilite.org.au/conferences/ perth04/ procs/chen.html.

Chick, H. L. (1998). Cognition in the formal modes: Research mathematics and the SOLO taxonomy. Mathematics
Education Research Journal, 10(2), 4-26.

Corney, M., Lister R., & Teague D. (2011). Early relational reasoning and the novice programmer: Swapping as
the “Hello World” of relational reasoning. Proceedings of the 13th Australasian Computer Education Conference
(ACE 2011), Perth, Australia: Australian Computer Society, Inc.

Corritore, C. & Wiedenbeck, S. (1991). What do novices learn during program comprehension?. International
Journal of Human Computer Interaction, 3(2), 199-222.

Dehnadi, S., Bornat, R. & Adams R. (2009). Meta-analysis of the effect of consistency on success in early learning
of programming. Retrieved 20 May 2010, from
http:/ /www.eis.mdx.ac.uk/research/PhDArea/saeed /SD_PPIG_2009.pdf.

de Raadt, M. (2007). A review of Australian investigations into problem solving and the novice programmer.
Computer Science Education, 17(3), 201-213.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), 57-
73.

Du Boulay, B., O’Shea, T., & Monk, J. (1989). The black box inside the glass box: presenting computing concepts
to novices. In E. Soloway & J.C. Spohrer (eds.), Studying the novice programmer (pp. 431-446). Hillsdale, NJ:
Lawrence Erlbaum.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition. International Journal
of Human-Computer Studies, 41, 457-480.

Eckerdal, A., McCartney, R., Mostrom, J. E., Ratcliffe, M., & Zander, C. (2006). Can graduating students design
software systems?. ACM SIGCSE Bulletin, 38(1), 403-407.

Eckerdal, A., & Thune, M. (2005). Novice Java programmers’ conceptions of “object” and “class”, and variation
theory. ACM SIGCSE Bulletin, 37(3), pp. 89-93.

Garner, S., Haden, P., & Robins A. (2005). My program is correct but it doesn’t run: a preliminary investigation of
novice programmers’ problems. Proceedings of the Australasian Computing Education Conference 2005 (pp. 173-
180). Newcastle, Australia: Australian Computer Society, Inc.

Gilmore, D.J. (1990). Expert programming knowledge: A strategic approach. In J.M. Hoc, T.R.G. Green, R.
Samurcay & D.J. Gillmore (eds.), Psychology of Programming (pp. 223-234). London: Academic Press.

Green, T.R.G. (1990). Programming languages as information structures. In ].M. Hoc, T.R.G. Green, R. Samurcay
& D.J. Gillmore (eds.), Psychology of Programming (pp. 117-137). London: Academic Press.

Hazel, E., Prosser, M., & Trigwell, K. (2002). Variation in learning orchestration in university biology courses.
International Journal of Science Education, 24(7), 737-751.

Hoc, J.-M., Green, T. R. G., Samurcay, R., & Gilmore D. J. (1990). Psychology of Programming. London: Academic
Press.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. ACM SIGCSE Bulletin, 29(1),
131-134.




Using SOLO taxonomy to explore students’ mental models of the programming variable and the assignment statement 73

Hundhausen, C., & Brown, J. L. (2007). What you see is what you code: A ‘live’ algorithm development and
visualization environment for novice learners. Journal of Visual Languages and Computing, 18(1), 22-47.

Jimoyiannis, A. (2000). Teaching computer programming in secondary education. Students' difficulties and
perceptions of the concept of programming variable. The Base (vol. 2, pp. 35-42). Ioannina (in Greek).

Jimoyiannis, A., & Komis, V. (2000). The concept of variable in programming: Lyceum students’ difficulties and
misconceptions. In V. Komis (ed.), Proceedings of the 2nd Pan-Hellenic Conference “Information and
Communications Technologies in Education” (pp. 103-114). Patra, Greece (in Greek).

Jimoyiannis, A., & Komis, V. (2004). The study of Lyceum students’ representations of the computer data flow
and the role of the basic computer units. In P. Politis (ed.), Proceedings of the 2nd Pan-Hellenic Conference
“Didactics of Informatics” (pp. 73-85). Volos, Greece (in Greek).

Lane, H. C. &, VanLehn, K. (2005).Teaching the tacit knowledge of programming to novices with natural
language tutoring. Computer Science Education, 15(3), 183-201.

Lister, R., Adams, E. S,, Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostrom, E., Sanders,
K., Seppild, O., Simon, B., Thomas, L., (2004). A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36(4), 119-150.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 41(3), 118-122.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between explaining, tracing and
writing skills in introductory programming. ACM SIGCSE Bulletin, 41(3), 161-165.

Lister, R., Clear, T., Simon, Bouvier, D. ]., Carter, P., Eckerdal, A., Jackov4, J., Lopez, M., McCartney, R., Robbins,
P., Seppdld, O., & Thompson, E. (2009). Naturally occurring data as research instrument: Analyzing
examination responses to study the novice programmer. ACM SIGCSE Bulletin, 41(4), 156-173.

Ma, L., Ferguson, J., Roper, M., Ross, I, & Wood M. (2009). Improving the mental models held by novice
programmers using cognitive conflict and Jeliot visualisations. ACM SIGCSE Bulletin, 41(3), 166-170.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming
concepts held by novice programmers. Computer Science Education, 21(1), 57-80.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., et al. (2001). A multinational,
multi-institutional study of assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin,
33(4), 125-180.

McGettrick, A, Boyle, R, Ibbett, R, Lloyd, J, Lovegrove, L, and Mander, K. (2005). Grand challenges in computing
education - A summary. The Computer Journal, 48(1), 42-48.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing program with Jeliot3. International Working
Conference on Advanced Visual Interfaces (pp. 373-380).

Naps, T., Eagan, ]J.R., & Norton, L.L. (2003). JHAVE - An Environment to Actively Engage Students in Web-
based Algorithm Visualizations. 31st SIGCSE Technical Symposium on Computer Science Education (pp. 109-113).

Palumbo, D. B., & Reed, W. M. (1991). The effect of BASIC programming language instruction on high school
students” problem-solving ability and computer anxiety. Journal of Research on Computing in Education, 3, 343-
372.

Padiotis, 1., & Mikropoulos, T. A. (2010). Using SOLO to evaluate an educational virtual environment in a
technology education setting. Educational Technology & Society, 13 (3), 233-245.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1989). Conditions of learning in novice
programmers. In E. Soloway & J. C. Spohrer (eds.), Studying the Novice Programmer (pp. 261-279). Hillsdale,
NJ: Lawrence Erlbaum.

Postner, L., & Stevens, R. (2005). What resources do CS1 students use and how do they use them?. Computer
Science Education, 15(3), 165-182.

Putman, R., Sleeman, D., Baxter, ]. & Kuspa, L. (1989). A summary of misconceptions of high-school BASIC
programmers. In E. Soloway & J. C. Sprohrer (eds.), Studying the Novice Programmer (pp. 301-314). Hillsdale,
NJ: Lawrence Erlbaum.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.

Rist, R. S. (1991). Knowledge creation and retrieval in program design: A comparison of novice and intermediate
student programmers. Human-Computer Interaction, 6, 1-46.

Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137-172.

Rogalski, J., & Samurcay, R. (1990). Acquisition of programming knowledge and skills. In .M. Hoc, T.R.G. Green,
R. Samurcay, & D.J. Gillmore (eds.), Psychology of Programming (pp. 157-174). London: Academic Press.

Rogalski, J., & Vergnaud, G. (1987). Didactique de I'informatique et acquisitions cognitives en programmation.
Psychologie Frangaise, 32(2), 267-273.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. Proceedings of
IEEE 2002 Symposia on Human Centric Computing Languages and Environments (pp. 37-39).

Sajaniemi, J., & Kuittinen, M. (2005). An experiment on using roles of variables in teaching introductory
programming. Computer Science Education, 15(1), 59-82.



74 A. Jimoyiannis

Samurcay, R. (1989). The concept of variable in programming: Its meaning and use in problem solving by novice
programmers. In E. Soloway & J.C. Spohrer (eds.), Studying the novice programmer (pp. 161-178). Hillsdale, NJ:
Lawrence Erlbaum.

Sleeman, D., Putnam, R., Baxter, J., & Kuspa, L. (1986). Pascal and high school students: A study of errors. Journal
of Educational Computing Research, 2(1), 5-23.

Sheard J., Carbone A., Lister R., Simon B., Thompson E., & Whalley J. L. (2008). Going SOLO to assess novice
programmers. ACM SIGCSE Bulletin - ITiCSE '08, 40(3), 209-213.

Simon, Fincher, S., Robins, A., Baker, B., Box, 1., Cutts, Q., de Raadt, M., Haden, P., Hamer, J., Hamilton, M.,
Lister, R., Petre, M., Sutton, K., Tolhurst, D., & Tutty, J. (2006). Predictors of success in a first programming
course. Eighth Australasian Computing Education Conference, ACE2006 (pp. 189-196). Hobart, Tasmania:
Australian Computer Society.

Spohrer, J., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?. Communications of the ACM,
29(7), 624-632.

Spohrer, J.C., & Soloway, E. (1989). Novice mistakes: Are the folk wisdoms correct? In E. Soloway & J.C. Spohrer
(eds.), Studying the novice programmer (pp. 401-416). Hillsdale, NJ: Lawrence Erlbaum.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations. Communications of
the ACM, 29(9), 850-858.

Soloway, E., & Spohrer, ].C. (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum.

Thomson, E. (2007). Holistic assessment criteria: applying SOLO to programming projects. Proceedings of the 9th
Australian Computer Society (pp. 155-162). Ballarat, Victoria: Australian Computer Society.

Vrachnos, E. & Jimoyiannis, A. (2008). DAVE: A Dynamic Algorithm Visualization Environment for novice
learners. Proceedings of the 8th IEEE International Conference on Advanced Learning Technologies (pp. 319-323),
Santander, Spain: IEEE.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P., & Prasad, C. (2006). An Australasian study of reading
and comprehension skills in novice programmers, using the Bloom and SOLO Taxonomies. Proceedings of the
Eighth Australasian Computing Education Conference (ACE2006) (pp. 243-252). Retrieved 20 May 2010, from
http:/ /crpit.com/confpapers/CRPITV52Whalley.pdf.

Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small programs written in the procedural
and object-oriented styles. International Journal of Human-Computer Studies, 51, 71-87.

Wiedenbeck, S., Fix, V., & Scholtz, ]. (1993). Characteristics of the mental representations of novice and expert
programmers: An empirical study. International Journal of Man-Machine Studies, 39, 793-812.

Winslow, L.E. (1996). Programming pedagogy - A psychological overview. ACM SIGCSE Bulletin, 28(3), 17-22.

To cite this article: Jimoyiannis, A. (2011). Using SOLO taxonomy to explore students’ mental models of the programming
variable and the assignment statement. Themes in Science and Technology Education, 4(2), 53-74.

URL: http://earthlab.uoi.gr/theste




