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Abstract: In this paper, we discuss a scalable approach for integrating learning analytics into an
online K—12 science curriculum. A description of the curriculum and the underlying pedagogical
framework is followed by a discussion of the challenges to be tackled as part of this integration.
We include examples of data visualization based on teacher usage data along with a
methodology for examining an inquiry-based science program. With more than one million
students and fifty thousand teachers using the curriculum, a massive and rich dataset is
continuously updated. This repository depicts teacher and student usage, and offers exciting
opportunities to leverage data to improve both teaching and learning. In this paper, we use data
from a medium-sized school district, comprising 53 schools, 1,026 teachers, and nearly one-third
of a million curriculum visits during the 2012—2013 school year. This growing dataset also poses
technical challenges such as data storage, complex aggregation, and analyses with broader
implications for pedagogy, big data, and learning.
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1. INTRODUCTION

Computers, tablets, and mobile devices offer new tools to support learning, both inside and outside the
classroom. This development, in turn, has created new opportunities to understand and assess their
impact on educators and learners through the collection and analysis of user interaction data. Indeed, a
major advantage of online curricula over traditional textbook-based curricula is the ability to capture
these user interaction or learning analytics data. Learning analytics is a relatively new, but rapidly
growing area of research (First International Conference on Learning Analytics and Knowledge, 2011),
whose goal, according to the Society of Learning Analytics, is “understanding and optimizing learning
and the environments in which it occurs.” Most learning analytics (LA) methods use data generated by
the interactions between learners and the Learning Management Systems (LMSs) they use (Pahl, 2004).

Ongoing research in educational data mining and LA suggests that harnessing analytics data can advance
new research methodologies in education, help educators better assess their pedagogical practices, and
devise innovative educational methods, all with the goal of improving education (Elias, 2011; Campbell
& Oblinger, 2007; Pardo & Delgado, 2011; Siemens, 2012). LA can leverage improvement through
improved educational decision-making (Arnold, 2010; Norris, Baer, Leonard, Pugliese, & Lefrere, 2008;
Vatrapu, Tplovs, Fujita, & Bull, 2011), clearer institutional and individual goal setting (Hendricks, Plantz,
& Pritchard, 2008), more timely and frequent feedback for students and teachers (Ha, Bae, & Park,
2000; Hamalainen, Suhonen, Sutinen, & Toivonen, 2004; Merceron & Yacef, 2005; Suthers, Ravi,
Medina, Joseph, & Dwyer, 2008), the individualization of teaching and learning (Beck & Mostow, 2008;
Farzan, 2004; Heraud, France, & Mille, 2004; Lu, 2004; Talavera & Gaudioso, 2004), and the generation

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 94



JOURNAL OF LEARNINGANABYFICSII s i SULAR

(2014). A Strategy for Incorporating Learning Analytics into the Design and Evaluation of a K-12 Science Curriculum. Journal of Learning
Analytics, 1(2), 94-125.

of a richer set of data on student behaviour and learning (Baker & Yacef, 2009; Mazza & Dimitrova,
2004, Pavlik, Cen, & Koedinger, 2009).

With the rapidly growing interest in and technical ability to leverage these data in educational settings,
there also is a growing sense that many recent educational technology and big data initiatives are
detached from what we know about teaching and learning, particularly in the K-12 sector (Junco, 2012;
Romero & Ventura, 2010). While the use of LA has been particularly fruitful in higher education and in
online courses where many to all learning activities and interactions take place online, in conventional
brick and mortar schools, it remains crucial to incorporate information derived from the other activities
that go on in a classroom in order to capture fully the variety of learning experiences taking place. This is
particularly important in science education where most experts agree that students need to be “doing”
science: conducting experiments, making observations, and building models (Crawford, 2000; Haury,
1993; Keys & Bryan, 2001). Without data on hands-on activities and classroom discussions, it can be
hard to make sense of the LA data gathered by an LMS. It is, therefore, imperative to ensure that the use
of LA in the K-12 sector is grounded in relevant pedagogies and serves as a complement to data on face-
to-face interactive learning experiences not captured by digital artifacts such as student inquiry,
classroom discussions, and hands-on activities. This comprehensive, mixed methods approach ensures
that data analyses in LA are not reduced to the mere analysis of clicks and page visits.

Furthermore, LA must be leveraged in ways that both recognize and draw on existing K-12 education
research. While LA has an established presence in the business sector and even in higher education, its
foray into K-12 education is particularly new and is being driven in large part by the start-up community
and venture capital, and less by educators or educational researchers (Culatta, 2012; DeSantis, 2012).
Although there is nothing wrong with these drivers, educators are unlikely to buy into new technology
and big data initiatives if they are not immediately accessible and relevant to their daily work (Means,
Padilla, & Gallagher, 2010; Watters, 2012; Wayman, Cho, & Richards, 2010).

This paper expands our ongoing research (Monroy, Snodgrass Rangel, & Whitaker, 2013) and addresses
this gap in the literature by outlining and discussing one strategy for incorporating LA into a broader
investigation of how a K—12 online science curriculum is implemented in classrooms. The purpose of our
implementation study is to increase teacher and student use of the curriculum through improved
design. The strategy is meant to answer the following three key questions about the curriculum:

1. How can we incorporate the LA data into a broader effort to understand how a digital
curriculum is used?

2. How can we leverage the LA data to support teachers and administrators?

3. How can we integrate the LA data into the evaluation of the curriculum’s impact?

We have developed a three-pronged strategy to address these guiding questions: a technical prong
related to the architecture supporting the collection and management of LA data, a quantitative prong
related to how the LA data can be utilized to understand the curriculum’s use and improve its design,
and a final qualitative prong where we collect and analyze qualitative data on teacher (and in the future,
student) use of the curriculum.

We begin our discussion by briefly describing the curriculum examined here and its underlying
pedagogical model. The technical architecture is explained in section three. In section four, we describe
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several specific techniques we have developed to use the LA data to measure use of the curriculum and
provide examples using real data from a school district in Texas. Here, we also discuss several
considerations related to the normalization of data. In section five, we describe ways to use data-
visualization techniques to support teachers and administrators. Then, in section six, we situate our use
of LA data within our broader data strategy for measuring the implementation of the curriculum. In
order to demonstrate how this might be accomplished, we provide examples from real data collected in
the fall of 2012 from a second district in Texas. Finally, we end with a discussion about the future of data
analytics in K-12 education, focusing in particular on the challenges we need to overcome and the
potential for educational improvement.

2. BACKGROUND: STEMSCOPES AND THE 5E+I/A PEDAGOGICAL
FRAMEWORK

STEMscopes is a comprehensive online K—12 science curriculum aligned to Texas state standards and
grounded in the 5E science inquiry model. The curriculum offers a range of hands-on inquiry activities,
online activities, and additional supporting resources for teachers for each of the learning standards at
each grade level. STEMscopes currently serves about 2,400 schools, more than 50,000 teachers, and
over one million students in Texas. These figures represent approximately 40 percent of the state’s
school districts, making it the most used science curriculum in the state. During the 2012-2013 school
year, we gathered more than one hundred million data points generated by districts, schools, and users,
both teachers and students. We were able to identify the science standard covered, the grade level,
specific steps in the 5E+I/A step, materials accessed, and the weekly assessment results.

The 5E pedagogical model is an inquiry-based learning approach that aims to harness learners’ prior
knowledge while eliciting interest in new phenomena (Bybee et al., 2006). This instructional model was
created and refined by the Biological Science Curriculum Study (BSCS). The 5E acronym stands for the
following five steps that comprise a full lesson cycle: engage, explore, explain, elaborate, and evaluate.
In the Engage phase, students draw on prior knowledge to raise their interest in and activate their prior
knowledge of the new content. During the Explore phase, students take part in activities and
experiments that allow them to experience and learn new concepts and skills through active
investigations. The Explain phase requires students to explain those new concepts and skills in their own
words. New experiences in the Elaborate phase deepen student understanding of the new concepts.
Finally, learner understanding is assessed in the Evaluate phase. Teachers are meant to implement
lessons following this cycle in order to optimize learning.

The STEMscopes curriculum adds two steps to the basic 5E model: one for intervention and one for
acceleration. Intervention activities are designed to support those students still struggling to master the
standards, while the acceleration activities are designed for those students who have mastered the
concepts and are ready to extend and apply their learning (Whitaker, 2012; Zuiker & Whitaker, 2013).
With these two additional steps, the model becomes the 5E+I/A model.
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_ Figure 1: Screen shot of a science unit titled, “Changes from Heat.” The column on
the left presents elements grouped by each 5E phase (Engage, Explore, Explain,
Elaborate, and Evaluate).
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In addition to the online activities and materials, the curriculum also offers accompanying kits that
contain the science materials necessary to do every hands-on activity in the curriculum. The kits allow
students to conduct science experiments, build models, create simulations, and make observations,
thereby offering them a deeper learning experience meant to re-create the work of scientists (Haury,
1993; Minner, Levy, & Century, 2010). In the Texas version of the curriculum’, there are nearly four
hundred standards or “scopes” in total across all grade levels. Figure 1 provides an example of what the
5E+I/A model looks like in the curriculum. Specifically, it depicts the 4™ grade standard, “Changes from
Heat.” Components or activities for each of the seven (5E+I/A) steps are presented in the column on the
left. They include materials for teachers such as background information on the learning standard,
interactive games, and assessments.

Interactive Vocabulary Game

GOMPONENT AND DESGRIPTION ) 0

Science Rock

Students listen to and “dance” (using a computer keyboard or
USB attached dance mat) to a song called “Changes and
Properties.”

Demonstration Presentation
Students will observe how water condenses on the outside of a
can.

Engage

Pre-Assessment
Students answer five multiple choice questions drawing on
general prior knowledge.

Starters )
Introductory activities designed to engage students to think ﬁ_il 7

about changes from heat. &@ ST-U-D ENT J D U-R N A L

Name

4.58: Changes from He:
Matter and ener

Explore P ——————— Part 2. Drave your bog of e and
Students learn about insulation and condensation.

water and ice. insulator.

Explore

Question Prompts
Question ideas specifically related to the Explore activity.

Vocabulary Predictions

1. What will happen to the ice when you place it in the Sun?
Picture Vocabulary with matching Student Vocabulary Cards
and an Interactive Vocabulary Game to learn and review key
vocabulary for changes from heat.

Explain

2. How much water was present after the bag was in the sun? Record your
observations in the boxes below.

Progress-Monitoring Assessment Amount of water i the bag WITHOUT | Amount of water n the bag WITH
A five-question multiple choice assessment designed to assess jan insubstor i insuistor i
the student's mid-unit concept attainment. The insulator was:

Figure 2. Various elements for one science standard: 1) a partial summary of the content of
one unit, 2) an interactive game, and 3) a student journal.

Figure 2 shows three elements within a scope: 1) an overview of a unit’s content in the context of the
5E+I/A model, which provides a snapshot of all the components a teacher can find for that scope and is
intended for class planning purposes; 2) an interactive game in the Explain phase that offers an engaging

! There also is a national version created to help teachers implement the Next Generation Science Standards
(NGSS), but the NGSS version does not follow the 5E+I/A model.
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opportunity for students to practice new content vocabulary; and 3) a student journal sheet that can be
used by students when completing hands-on activities as part of the Explore step.

3. AN ARCHITECTURE FOR SUPPORTING LEARNING ANALYTICS

As an online curriculum, STEMscopes creates an environment where data is constantly generated and
stored as teachers and students use the curriculum on a daily basis. For this reason, the architecture
enables the curation, storage, and processing of that large amount of data. As an example, during the
2012-2013 school year, nearly a quarter of a million interactions with the curriculum were captured
each day. This volume of data demands techniques from the areas of databases, data warehouses, and
big data. We have designed a distributed data warehouse environment that allows us to scale the
storage and processing of user-generated data.

To serve our storage and computing needs, we employ four separate high-end computer servers from a
cloud-computing provider. Figure 3 depicts the architecture and interaction among the main servers.
Each one of these servers handles specific types of data and requests. The Production Server (PS) is an
Nginx web-server, which processes web-client requests via a Ruby on Rails application. Account
information such as user names, passwords, and account expiration dates, as well as curriculum
taxonomy and state science standards are stored in the Production Database Server (PDBS).
Anonymized events data generated by users interacting with the curriculum are stored in the Analytics
Storage Server. These events are objects created by the Rails application on the Production Server (PS)
and transmitted as encrypted packages via an HTTPS (Hyper Text Transfer Protocol Secure) session. At
the end of the day, an automatic process harvests all events generated the previous day (stored in the
Analytics Storage Server) and loads them into the Analytics Processing Server (APS). Once the data are
loaded, a series of scripts are triggered, which calculate our analytics variables and aggregate results by
user, school, and district levels. These results include information about visits by science standard,
5E+I/A step, and curriculum element used. Similarly, the analytics variables are calculated at the end of
each week, month, and year. Upon completion, the calculated data are transferred to the Dashboard
Data Server (DDS).

Although the current infrastructure is robust enough for our immediate needs, as we introduce more
sophisticated analyses, such as machine learning, data mining algorithms, simulations, and
computational linguistics, we envision the use of new methodologies in the realm of big data (Jagadish,
2012; Pavlo, Paulson, & Rasin, 2009). We recently began experimenting with Hadoop (Venner, 2009) and
the Map Reduce paradigm, an open source framework that enables distributed high-intensive
computing for processing extremely large amounts of data. For instance, a process employing optimized
gueries and accessing pre-processed aggregated data for calculating twenty-five analytics variables for
all teachers during the 2012-2013 school year takes approximately eight days to complete. Thus, we
need to plan a scalable infrastructure as we begin calculating content- and user-based models derived
from data spanning several years, across multiple schools, districts, and states along with recent user-
generated data. Among the practical benefits of this big data approach to our K—12 curriculum are to
allow the use of large clustering and machine learning algorithms for supporting personalized learning in
the future.
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Figure 3. Curriculum architecture and processes for storing, processing, and transferring data
4. LEARNING ANALYTICS TECHNIQUES FOR MEASURING CURRICULUM USE

The first research question that we posed is how researchers can utilize LA data to understand how and
how much teachers and students use the curriculum. This information is useful both to the curriculum
developers as well as to researchers investigating the curriculum’s effectiveness. In this section, we
focus on the first. The 5E+I/A inquiry model described above guides the analysis of all data collected
because without this pedagogical grounding, the data patterns at best have no meaning, and at worst
can be attributed the wrong meaning (Atkinson & Wiley, 2011; Long & Siemens, 2011). The model’s
underlying theory of learning, constructivism, is also used to answer important questions about
curriculum implementation and how students learn best (Bybee et al., 2006). For example,
constructivism and the 5E model assume that students learn best by exploring concepts before they are
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presented with formal explanations of the content. An important task, then, is to examine whether
teachers and students appear to use the steps and corresponding activities in this intended order.

STEMscopes, however, also was created with the understanding that teachers want flexibility in how
they teach. In practice, this means that a teacher can access and use any part of the lesson cycle when
they deem most appropriate for their students, and most teachers do adapt the lesson cycle and the
activities contained within them to their classroom needs (e.g., using components in a different order,
changing them, or skipping some of them; Cho & Wayman, 2014; Hew & Brush, 2007; Keengwe,
Onchwari, & Wachira, 2008; Koehler & Mishra, 2005; Lawless & Pellegrino, 2007; Leonardi, 2009;
Orlikowski, 2000). This recognition creates a fundamental challenge for the curriculum designers who
also believe that the structure of the 5E+I/A lesson cycle is the best learning path.

This paradox creates a need to understand precisely what teachers and students are doing in their
classrooms, and what these patterns of use mean for curriculum development and improvement. We
have developed a strategy to complement a more traditional approach to measuring use or
implementation with LA data (primarily analyzing teacher use). In the rest of the section, we describe
two LA measures that examine the frequency and the ways in which teachers access the curriculum, and
three ways we normalize the data to compare across teachers, schools, etc., and to conduct other
analyses.

All data were generated at the teacher level and come from a medium-sized school district in Texas
during the 2012-2013 school year.? We selected this district because of an ongoing evaluation
agreement and because it is one of the top districts in terms of curriculum usage. No identifiable
information about district, school, or teacher was used. The original sample included 1,026 users and 53
schools. We discarded 18 users since seven were categorized as administrators and 11 did not have any
visits to the actual content. We also removed 6 schools (5 high schools and one alternative education)
because they were only piloting the curriculum. The final sample included 36 elementary and 11 middle
schools with a total of 898 and 88 teachers, respectively.

4.1 A Pedagogy-Focused Approach to Measuring Use

It is not enough to know how often the curriculum was visited. Because the curriculum was designed
using a specific pedagogical model, the 5E+I/A lesson model, our analyses must try to uncover to what
extent teacher use of the curriculum follows the model. Though there are multiple ways to measure
how teachers use the curriculum with LA data, here we discuss two: the proportion of visits to each of
the 5E+I/A steps and the proportion of visits that are “inquiry-focused.”

First, for each teacher the total number of visits to individual steps in the 5E+I/A framework was
calculated. Teachers were then grouped according to their most visited step. The chart on the left in
Figure 4 shows the percentage of teachers for whom each step was the most used. For instance, Explore
was the most visited step for 360 (40%) elementary teachers and 13 (14%) middle school teachers;
Engage was the most visited step for 242 (26%) elementary teachers, etc. Conversely, Acceleration was

2 We have found that student use of the curriculum is relatively low, which we assume is due to the limited
number of activities that students can complete online, as well as limited school access to computers and other
digital devices.
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the most visited for only 3 percent of elementary teachers and about 1 percent of middle school
teachers. The chart on the right depicts the percentage of visits for each step. Explore was the most
visited step for elementary schools teachers with 25 percent of the visits, followed by Engage with 22
percent. For middle schools, the most visited step was Explain (21%) followed by Explore and Elaborate
(18% each). What these charts mean is that, overall, most visits by elementary teachers are to the
hands-on activities of the curriculum. In middle school, the same is true — the most visited step is
Explore. Interestingly, middle school teachers access the intervention activities substantially more than
do elementary teachers.

Teachers' Most Visited Step 5E + I/A Percentages of
in Percentages Total Visits
Intervention Intervention
Acceleration | Acceleration | e
® M.S. Teachers — EM.S. visits
N=88 N=17,527
——
Evaluate = R Evaluate M E.S. visits
g N =199,583
N =898
Elaborate Elaborate
Explain Explain
Explore Explore
Engage [ Engage
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 0% 5% 10% 15% 20% 25% 30%

Figure 4: Percentage of teachers for each one of the most used steps (left).
Percentage of visits to each 5E+I/A step (right)

Examining teacher use of the curriculum is quite complex and has continually required us to refine what
we want to know, usually leading to more nuanced questions. Even the most basic question about
frequency of use has many possible answers that require different approaches for calculating variables.
For instance, we can capture overall use for each teacher who has an account, but this tells us nothing
about how frequently they use specific components; it might simply be that they sign in and out.
Therefore, we also calculated how frequently teachers use individual units (there is one unit for each
state standard), different steps of the model, and other components within the curriculum (e.g., teacher
background material). We also have drilled down further by weighting these statistics by the number of
grades a teacher teaches or the number of science topics covered. In this way, we have begun to deal
with questions of data normalization, which we will discuss more below.

Questions of time introduce additional complexity. The analytics can tell us how long a teacher is logged
in, when the first and last logins were, how long a teacher spends on each page, and on how many
different days a teacher actually accesses the website. These can help normalize data as well as give us
additional information about how teachers use the curriculum. For example, teacher activity for a
sample of teachers in the district in our study throughout the 2012—-2013 school year showed a great
deal of variation in actual use. These data are summarized in Table 1 below. For elementary schools (36
schools and 898 teachers), on average, teachers visited the curriculum 329 times, with a minimum of 2
and maximum of 4,784 visits; the number of days on which teachers actually log in to access curriculum
content averages 30 (minimum=1 and maximum=175 days).
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We also found variation in the time span during which teachers actively use their curriculum accounts
(from first login to last login) for the period of interest. The range was from one day to 277 days, with an
average of 181 days. We calculated the percent of the total time (in days) that teachers were actively
logged into the website; this statistic ranged from 0% to 100% of the time with an average of 22%. We
also adjusted this figure to take into account the number of grade levels the teachers teach; some teach
only one grade, while others teach science to multiple grades. Finally, on average teachers visited a
science standard 18 times, while the average of visits by grade level was 199 times. Results for middle
schools are shown in the bottom part of Table 1.

Table 1. Teacher data on visits to STEMscopes

Total time span

Number of weighted by ~ Number of

different  Time span Number of  Avg. visits  Avg. visits

Total e v number of science .
s " et g OO b by gete
logged in teacher logged in  taught
(%)

Elementary School
Teachers N = 898
Mean 329 30 181 0.22 15 2 18 199
Median 191 21 212 0.14 13 1 15 128
Minimum 2 1 1 0.01 1 1 2 2
Maximum 4,784 175 277 1.00 161 9 102 1,672
Middle School Teachers
N =88
Mean 302 22 161 0.26 16 2 15 166
Median 122 11 194 0.13 13 2 11 53
Minimum 3 1 1 0.01 1 1 2 2
Maximum 3,897 159 277 1.00 90 9 169 3,897

The user analytics variables ranged substantially across schools. Among the main reasons for variation in
the number of visits, we identified four: number of standards taught, number of grades taught, longevity
of the accounts, and number of different days visited. Longevity represents the number of days elapsed
since the user account was created. Therefore, older accounts would tend to have more visits, while
newer accounts fewer visits. In the following sections we discuss the effect of these variables on the
number of visits to the curriculum.

> (En+Ex+ Ep)

>V

Formula 1
There are many ways to measure use from a pedagogical perspective, and we have developed various
indices that allow us to conduct richer analyses of teacher use of the curriculum. A comprehensive
description and use of these indices, however, is beyond the scope of this paper. The Inquiry Instruction
Contribution Index (lIC Index, depicted in Formula 1 below) is one way to measure use. To illustrate our
approach, here we describe the application of the IIC to the total number of visits to the curriculum:

1HC =
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Specifically, the IIC measures the proportional contribution of the three most “inquiry-based” 5E steps
of the lesson cycle (Engage, Explore, and Explain) to the overall curriculum usage (V) for each science
standard. This index is important for pedagogical reasons: constructivism and the 5E model favour
learning through hands-on, student-centred exploration, and we therefore have an interest in knowing
what the proportion of teacher visits are to the more inquiry-based steps and activities. The index
provides a summary statistic describing the level of inquiry in the classroom: a figure closer to 0 would
suggest relatively little inquiry, whereas a figure closer to 1 would suggest more inquiry focus in a
classroom.

Curriculum Use and Inquiry Instruction Contribution
(N=47 schools, 986 teachers)

Elementary Middle School

Total Visits (log_10)

« & 0

Inquiry Instruction Contribution (lIC) Index

Figure 5: Boxplots depicting teacher visits to the curriculum (Y axis in log 10 scale) and Inquiry
Instruction Contribution Index (X axis).

Although it is difficult to determine a “perfect” use dosage, our curriculum design team suggests that
between two-thirds and three-quarters of the total curriculum visits should be dedicated to the Engage,
Explore, and Explain steps. In Figure 5, we compare curriculum visits (Y-axis) with the IIC index (X-axis)
for each teacher across elementary (N=36 schools, 898 teachers) and middle schools (N=11 schools, 88
teachers). The comparison indicates that the level of the inquiry focus varies according to school level.

Table 2 shows the distribution of total visits and IIC for teachers in both elementary and middle schools.
Elementary schools in this district have the highest level of total use with an average of 329 and
maximum of 4,784, and most of that use clusters in the higher range of the IIC index, which suggests
both that the elementary teachers visit the Engage, Explore, and Explain steps a fair amount, and that
there might be a relationship between higher use of the curriculum and a more inquiry-focused
classroom. In contrast, the middle school teachers have lower use with an average of 302 and maximum
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of 3,897, and their IICs are more evenly distributed, that is, the frequency of teacher visits does not
appear to be related to the inquiry focus of a teacher’s classroom.

Table 2. Distribution of total visits and IIC

Elementary School Middle School

Teachers Teachers

Total Total

visits lIC Visits lc
Minimum 2 0.00 3 0.00
1st quartile 73 0.58 41 0.42
Median 191 0.71 122 0.60
Mean 329 0.69 302 0.58
3rd quartile 416 0.83 319 0.70
Maximum 4784 1.00 3897 1.00

Broken down this way, the IIC data start to paint a picture of how teachers use the curriculum. These
data might then be used to revise the middle and high school portions of the curriculum to see where
improvements might be made to the more inquiry-based steps and activities. On the other hand, these
data might be used to identify needs for professional development and coaching that can be embedded
into the curriculum (e.g., middle and high school teachers may need support in figuring out how to
integrate more hands-on activities into their lessons).

4.2 Number of science standards taught

In addition to creating LA-based measures of curriculum use, we must also ensure that the data are
comparable across different units and levels of analysis. One important consideration is the number of
science standards taught. Within their accounts, teachers can access all state standards throughout the
school year. Because different districts and even schools may have their own curriculum scope and
sequence, it is necessary to examine overall teacher use while taking into consideration the number of
standards that have been taught. Without this form of normalization, a teacher in a district with one
scope and sequence may appear to use the curriculum more than a teacher working under a different
scope and sequence.

Figure 6 illustrates this relationship. The total number of teacher visits is on the Y-axis (in log 10 scale)
and the total number of science standards taught is on the X-axis. Each point in the graph corresponds
to a teacher and the dotted line is the mean number of visits. The graph points to a weak but positive
relationship: as the number of science standards accessed increases, so does the number of the overall
visits. Without taking this relationship into consideration, we might have a biased understanding of
curriculum use.

4.3 Grade levels accessed
A second variable that influences the total number of teacher visits to the curriculum is the number of

grade levels that a teacher accesses. We have found in our research that teachers access standards from
more than one grade level for different reasons: some teach science to more than one grade level, while
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others pull activities from previous grade levels as a review, and still other teachers share accounts.
Unfortunately, it is only possible to know why teachers access different grade levels if you ask them
directly through a survey, interview, or focus group. It is possible, however, to control for the number of
grade levels accessed as another way to normalize overall use: without this control, a teacher account
that accesses numerous grade levels might have more visits to the curriculum, even though the teacher
may not teach more science. Figure 7 depicts the weak but positive relationship between total visits (Y-
axis, in log 10 scale) and number of grades taught (X-axis). Each point represents one teacher.

Curriculum Visits and Number of Science Topics Taught
Disaggregated by School Level
(N=47 schools, 986 teachers)

Elementary Middle School
. . E
9 T
.2 Sy AR |
s Nt
> 0t
g o
.,
%
Science topics taught
Figure 6. Total number of visits to the curriculum and number of science standards taught.
Curriculum Visits and Number of
Grade Levels Taught
(N=47 schools, 986 teachers)
Elementary Middle School
EI o L -:..' L G *.
> s . . o
3 S o) N [

Grade levels taught

Figure 7. Total number of visits to the curriculum and number of grade levels taught.
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4.4 Longevity of accounts

A third consideration for data normalization is the longevity of teacher accounts. Longevity refers to the
number of days elapsed between the creation of an account and a second given date (e.g., the end of
the school year, the last day of use, etc.). Teachers do not always activate their online accounts at the
same time, which we hypothesized would affect the total number of visits to the curriculum: teachers
with “older” accounts should have a higher number of overall visits, but this might not mean that they
teach more science. Figure 8 shows number of visits on the Y-axis in log 10 scale and longevity of the
account in days on the X-axis as of the first day of the school year, disaggregated by school level. Values
closer to the left are newer accounts (negative values indicate days elapsed since the beginning of the
school year and the date when the account was created), whereas values to the right correspond to
older accounts (positive values indicate the number of days that accounts have been active). Most of the
schools show two clusters of account longevity, one around 0 days and the other between 550 and 600
days. These clusters represent the creation of new accounts at the beginning of each school year. The
plots do not show defined trend lines and therefore do not suggest a correlation between use and

longevity. However, elementary schools created more new accounts once the school year had started
than middle schools did.

Curriculum Visits and Account Longevity
(N=47 schools, 986 teachers)

Elementary Middle School

Fretels by 0

Total Visits (log_10)

Account longevity

Figure 8. Total visits to the curriculum and account longevity.

4.5 Proportion of days visited

Finally, another way to think about teacher use of the curriculum is to measure the time during which
they have accessed it actively. To do this, we created a variable that represents the number of unique
days a teacher has accessed the curriculum divided by the teacher’s total log-in time span in days
(calculated as the difference, in days, between the first and last day a teacher logged in). Values closer
to 1.0 indicate a teacher who has logged in virtually every day; a value of 0.5 indicates a teacher who has
logged in nearly half of the time they had an active account; and values closer to 0.0 indicate a teacher
who seldom logged in. For example, a teacher who uses the curriculum on a daily basis will have more
unique days than one who accesses it once a week. It is important to note that this measure does not
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take into account the amount of content accessed within a single visit. In other words, it is possible that
one teacher with more unique visits than another has accessed less content during each visit such that
the two teachers have accessed the same amount of content, or such that the teacher with fewer
unique visits actually has accessed more content.

Figure 9 depicts the relationship between the total visits and the proportion of days visited. Total visits
on the Y-axis are in log 10 scale, and the proportion of days visited on the X-axis ranges from 0.0 to 1.0.
The elementary school graph shows two clusters, the first of which depicts a growing trend in total visits
as the proportion of days visited increases (between 0 and 0.5). The second cluster shows a small
number of teachers with 100% proportion but very low total visits (approximately less than 75 visits for
the entire school year). Middle schools show a similar pattern, with the exception that the proportion of
visits ranged approximately between 0.0 and 0.35.

Total Visits Compared to Proportion of Days Visited
(N=47 schools, 986 teachers)

Elementary Middle School

Total Visits (log_10)

0 R o o
-
-

Proportion of days visited

Figure 9: Total visits to the curriculum and proportion of days visited

This kind of data helps curriculum designers understand if and how often the curriculum is being used;
what content is most and least used; and the dosage of 5E+I/A steps they accessed. In future, we will
also be able to relate these data to student learning outcomes, both those measured by assessments
embedded in the curriculum (which students can take online) and by district and state standardized
assessments. For school and district administrators, this information can shed light on understanding
teaching practices and design professional development to identify best teaching practices and address
deficiencies in instruction.

5. LEARNING ANALYTICS AND DATA VISUALIZATION TO SUPPORT TEACHERS
AND ADMINISTRATORS

In addition to using the LA data to help curriculum developers, we also process the LA data in ways to
support the end users of the curriculum — teachers and administrators, primarily. In our research on
curriculum use, we have learned that use varies depending on the role of the end user. For example,
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teachers were more interested in their own use and their students’ progress, while campus-level leaders
were interested in trends across classes, and district-level administrators wanted to know about use and
progress across campuses (Snodgrass Rangel, Monroy, Bell, & Whitaker, 2013). Research also tells us,
however, that educators often struggle to turn data into actionable information (Heer & Shneiderman,
2012; Ingram, Seashore Louis, & Schroeder, 2004; Kerr, Marsh, lkemoto, Darilek, & Barney, 2006; Lachat
& Smith, 2005; Wayman, 2005; Wayman et al., 2010).

Data visualization is an important tool that, in concert with strong theories, can help make sense of data
(Duval, 2011). It is key, however, that the design of these visual interfaces be driven by teacher and
administrator feedback. For example, several teachers with whom we have worked indicated that
knowing what parts of the curriculum they had not yet used would help them know what they still
needed to teach. In response, we created a heat map where colour intensity depicts the most and least
used sections, with the goal of driving teacher attention to those sections. We have developed other
data visualization technique, but covering all of them is beyond the scope of this paper. Here we
describe three of them: timelines, heat maps, and a mastery tracker.

5.1 Timelines

Time-based visualizations can show when materials are accessed and for how long, as well as shifts in
what science standards teachers access during a particular period of time. In this vein, timelines can be
used to identify what teachers are teaching, when, and for how long. For example, one could see
whether the life science standards are accessed before the physical science standards. The timelines can
also shed light on the period of time, or duration, during which a teacher accesses a particular standard
regularly. Pacing suggests the time elapsed between the completion of one standard and the beginning
of a new one, which can help to identify standards that teachers may be overlapping or teaching at the
same time (i.e., reviewing a set of standards while also introducing new standards). In the following
paragraphs, we discuss two examples of the use of timelines.

The duration of instruction for the science topic entitled “3.5AB- Classifying Matter” for a sample of
teachers in one school is depicted in Figure 10. Each horizontal bar corresponds to one teacher and bars
are sorted by the first day they were used. The position on the X-axis represents the first time a teacher
accessed that science topic, the length of the bar indicates the duration in days. The graph shows that
“Classifying Matter” was introduced early in the school year and most of the teachers accessed it for
about three to four weeks. There are also a few long horizontal bars (spanning almost to the end of the
school year), this could be an indication of teachers reviewing certain materials after those science
topics had been originally covered.

Another way to examine timelines is to explore how a teacher covered science topics throughout a given
period of time. Figure 11 shows all science topics taught by one teacher. The Y-axis corresponds to
science topics and the X-axis to time in days. This teacher covered a total of 23 science topics, of which
21 belong to 3" grade and two to 2" grade, respectively. This proportion most likely suggests a 3" grade
teacher accessing content from a lower grade for reinforcement purposes. Bar lengths can be clustered
in three groups. The longest bars (five science topics), show duration of nearly the whole school year. A
second cluster (three bars), shows duration between three and four months. A third cluster (five bars),
shows duration between three and six weeks. The final cluster (nine bars) shows durations of
approximately one week or less.
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Duration of Science Topic Instruction
by Teachers (in days)
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Figure 10. Timeline depicting duration of instruction for all teachers teaching the science topic entitled
“3.5AB- Classifying Matter”

Instruction Time (in days) for a Teacher
Throughout the School Year
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Figure 11: Timeline depicting duration of instruction of all science standards for one teacher.

5.2 Heat maps
Heat maps allow administrators and teachers to visualize how frequently different parts of the

curriculum, including standards, steps, and activities, are accessed. Heat maps use colour or gray scale
intensity to depict degrees of relationship between variables without focusing on exact values. In this
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paper we discuss two cases of heat map use for our analysis. The first example (currently available to
teachers on the STEMscopes dashboard) helps to understand curriculum usage at the science topic level
across the SE+I/A steps. In the second example, heat maps are intended for school or district
administrators and offer overviews of instruction dosage for the 5E+I/A steps for individual teachers at
the school level. Figure 12 depicts a partial view of curriculum use for 3" and 4™ grades in one school
district (grade level is indicated by the numeric prefix in the TEKS column). Each row corresponds to one
science topic. Blank cells indicate resources not available in STEMscopes. This graph shows high use for
most topics in 3" grade and from topics 4.5A to 4.6A, while low use can be seen from topics 3.8D to
4.4A. The most used steps are Engage and Explore, while Acceleration is the least used. The most
frequently used standards are “3.8CD- Space” and “4.6A- Forms of Energy.” Conversely, “4.3C- Models”
is the least accessed. This type of visualization offers a quick overview of what has been taught and to
what degree.
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Figure 12: Heat map depicting a partial list of STEMscopes content use for one district. Science
topics included are for 3" and 4" grades (indicated by the numeric prefix on the TEKS column).

We then investigated whether teacher visits were evenly distributed across steps or concentrated on a
specific step. Figure 13 depicts six gray-scaled heat maps for elementary schools. Each row represents
one teacher and columns from left to right show total visits, percentage of visits for the most used step,
and seven grayed-scaled columns indicating the proportion of visits for each of the 5E+I/A steps for that
teacher. The heat map scale ranges from 0% (lighter gray) to 100% (black). Rows are sorted by total
visits by teacher; hence, higher users are at the top, while lower users are at the bottom.

Approximately three-quarters of teachers in “School E1” have the Explore step as the most visited one,
between 27% and 49%. As the total of number of visits decreases, the most visited step varies between
Elaborates and Engages. With the exceptions of teachers U_365 and U_933, access to the Acceleration
and Intervention steps is extremely low. Usage in “School E2” also depicts high activity in the Explore
category; however, high activity is also seen in the Elaborate step, ranging from 31% to 70% for most of
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the higher users. Usage in “School E3” indicates a more balanced proportion for the Engages and
Explores sections for approximately the top nine high users; it also suggests some degree of use for the
Evaluates section. In contrast to the other two schools, “School E3” shows some degree of activity for
the Intervention step.

Heat map scale, % ofvisits for each 5E + /A step
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Figure 13. Heat maps depicting percentage of visits to each 5E+I/A step for teachers in three
elementary schools.

Heat maps with a high concentration of cells in one or two columns would be an indication of highly
skewed distributions. Therefore, the majority of heat maps show that most teachers tend to access
different steps of the curriculum in a balanced way. Especially encouraging is to observe that overall the
Engage, Explore, and Explain steps are evenly accessed for the highest users in the three schools.
Conversely, teachers with a high concentration on one step are those located at the bottom of the
graphs. Although, this is not the intended use of the curriculum, these teachers have an overall low
number of visits. The low use for the Acceleration and Intervention steps can be attributed to teachers’
lack of training with differentiating instruction among their students or no timely actionable information
in the current dashboard, which makes it more difficult for them to identify diverse intervention levels
for students.

The dosage of curriculum use for middle-school teachers shows sparser distribution and fewer teachers

(see Figure 14). For instance, the highest user in “School M1,” uses Evaluates the most, with 30% of
usage. Darker colours on the last column indicate teachers using Intervention elements (almost half of
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teachers). Similar distribution can be seen in “School M2.” Use patterns for “School M3” depict a
concentration on Engage and Explore content for the top four highest users and a shift to Explain,
Elaborate, and Evaluate content for the following two teachers. One exception is teacher U_789, who
accessed Acceleration elements all the time.

Heat map scale, " ol visits for each 5E = 1/A step
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Figure 14. Heat maps depicting percentage of visits to each 5E+I/A step for teachers in three middle
schools.

5.3 Mastery trackers

Finally, we have created a way for stakeholders to visualize student progress towards mastery of
learning standards. This information is crucial for several reasons, not least of which is that in the U.S.,
public school students (and teachers and schools) are held accountable for their learning at the end of
every school year in various subjects on mandatory state tests. The mastery tracker shown in Figure 16
below depicts whether individual students are making progress toward mastery on the required
standards.?

The focus of the visualization is on progress because the mastery approach to student learning assumes
that students should have more than one opportunity (or in many cases, as many opportunities as they
need) to master a concept. Figure 16 shows a prototype of a dashboard with information for a class of
4" grade students. The columns show standards grouped by area (e.g., Organism and Environments),
and the upward green arrows represent an improvement in performance from the previous assessment,
while the downward red arrows indicate a decline in performance from one assessment to the next.
Students are clustered by degree of intervention or acceleration they require, represented by the
coloured cells. Students in the intervention group (yellow-coloured cells) are the ones who, although
they are making progress, need a moderate amount of support from the teacher. Those in the intensive
intervention group (the pink-coloured cells) require more help because they are not making sufficient
progress towards mastery. Conversely, students in the acceleration group (green-coloured cells) can be
challenged with more advanced activities from the acceleration step. This dashboard can help teachers
better understand individual student needs, making it easier for teachers to differentiate and even
personalize their instruction.

* The definition of mastery can be set by teachers, but usually the benchmark is 80% or higher on the final
standards-based assessment.
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Figure 16: Dashboard prototype depicting a partial list of 4™-grade student progress for
all scopes grouped by topic. Red arrows indicate grade drop from previous assessment,
while green arrows show grade increase from previous assessment.

6. HARNESSING LEARNING ANALYTICS TO MEASURE FIDELITY OF
IMPLEMENTATION

Research question 3 asks how LA data can be integrated into the evaluation of a curriculum. In this
section, we discuss how we are integrating LA data into our curriculum evaluation work by using LA data
as one measure of fidelity of implementation. In this section, we also detail the third prong of our LA
data strategy; that is, how we pair the LA data with more traditional and qualitative data collection and
analysis to create a holistic understanding of curriculum use and impact.

In order to understand the impact of the curriculum on student learning, we relate the level and kind of

curriculum use to different student outcomes (Duriak & Dupre, 2008; Song & Herman, 2010). It is
essential to understand how stakeholders are using the curriculum in order to contextualize the impact.
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For example, if there is little use of the curriculum, then it is not possible to attribute any change in
student learning to use of the curriculum; the reverse also is true. The LA data are key here because they
provide a detailed and multifaceted account of curriculum use, as we described above. We utilize the LA
data as a complement to more traditional forms of measuring use, which we also describe below. And
while it can be difficult to scale a high-quality qualitative data collection strategy, it is difficult, if not
impossible, to really understand how an online curriculum, such as STEMscopes, is being used without
spending time observing its use in classrooms and talking to teachers and students about their use.

Typically, program evaluators collect data relating to the fidelity of implementation (or use) of an
intervention in order to gauge the relative impact of the intervention on student learning. Dusenbury,
Brannigan, Falco, and Hansen (2003) suggest that fidelity of implementation (FOI) should be measured
in five ways: 1) adherence to the program; 2) dose or exposure to the program; 3) quality of program
delivery; 4) participant responsiveness to the program; and 5) program differentiation (differentiation of
components within the program). Other researchers have proposed different ways to conceptualize and
measure FOI, but we focus on the previous five. In the rest of this section, we briefly describe how we
incorporate LA specifically into evaluations, and then we discuss three other ways we collect data to
measure impact.

We use LA data to measure fidelity of implementation in four of the five ways described in the previous
section. First, LA data provide a measure of adherence; that is, whether a teacher or student is utilizing
the curriculum in the intended way. LA data allow us to track precisely how a teacher has interacted
with the program, including the proportion of inquiry instruction, as discussed in section four. Second,
LA data can measure dosage, or how frequently and for how long a teacher engages with the
curriculum. Third, LA data can be utilized to measure how engaged a teacher is with the curriculum by
looking at, for example, time spent on a component or how quickly a teacher moves through
components. Fourth, LA data can be used to measure program differentiation, or the impact of different
components of the curriculum on student learning. This can be done by examining how a teacher
interacts with various components, and weighing these data with other dosage data to estimate their
impact on student learning outcomes, such as interim assessment scores as well as end-of-year test
scores.

6.1 Using teacher surveys to measure fidelity of implementation

A common way to gauge teacher use of a curriculum (or other intervention) is to ask them to self-report
in a survey. As part of our ongoing effort to evaluate the use and impact of the STEMscopes curriculum,
in the fall of 2012 we created and administered a survey to 755 elementary school teachers in a large
urban school district where some schools use the curriculum. The survey, containing 80 items, was
created based on existing surveys about technology and data use. While some of the items are specific
to the STEMscopes curriculum and its particular offerings, others are generalizable to other technology
or curricula. The survey asks teachers about the following concepts: teacher notions of data and data
use, how teachers use STEMscopes, attitudes toward STEMscopes, challenges to using STEMscopes, as
well as district and school support for using STEMscopes. The survey was piloted and validated in the fall
of 2012 (See Snodgrass Rangel, et al. 2013 for more information on the survey and for more detailed
findings), 210 teachers responded to the survey, a response rate of 28%.
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As part of this study, and as an example of how to combine these two kinds of data, we related teacher
survey responses to their LA data to see how closely they were related. Specifically, we used correlation
analysis on the associations between these three variables and several user analytics variables. We also

created and used four variables from the LA data we had access to at that time:

1. The number of visits to pages containing instructional content for any of the seven steps, weighted
by the number of grade levels accessed by the teacher’s account (continuous variable)

2. The number of visits to pages containing instructional content for any of the seven steps, weighted
by the number of objectives the teacher had taught to that point (continuous variable)

3. A categorical variable (created using quartiles) measuring the un-weighted number of visits to pages
containing instructional content for any of the seven steps (1=low use, 2=medium low use,
3=medium high use, 4=high use)

4. A categorical variable (created using quartiles) measuring the number of visits to pages containing
instructional content for any of the seven steps, weighted by the number of grade levels accessed by
the teacher’s account (1=low use, 2=medium low use, 3=medium high use, 4=high use).

First, we correlated teacher responses to the survey question asking how often they utilized the 5E+I/A
steps in the suggested order and an analytics variable that measured how frequently teachers actually
used all seven steps in the suggested order. Second, we correlated teacher responses to how often they
utilized the 5E+I/A steps in the suggested order and the frequency with which teachers used the 5E
(without the I/A) steps in the suggested order. We found that while teachers reported using the
curriculum for some to most of the standards they taught, the LA data told a different story (see Table

3).

Table 3. Descriptive Statistics for Reported and Actual Use of STEMscopes

Mean SD Range
Reported Use
Average use of teacher components 2.70 0.76 1.00 - 4.00
Average use of 5E+|/A steps 2.48 0.64 1.00 - 4.00
Average use of 5E+|/A steps and components in 2.62 0.60 1.00 - 4.00
order
Actual Use
Number of 5E visits weighted by number of grades 103.42 125.84 1.00- 1084.00
tausht
Number of 5E visits weighted by number of 20.09 13.36 2.00 - 75.00
objectives taught
Average number of visits to S5E+I/A steps 2.49 1.13 1.00 - 4.00
(categorical)
Average visits to SE+I/A steps, weighted by number 2.24 0.83 1.00 - 4.00

of grades taught (categorical)
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In the correlation analyses, we found that while almost all of the correlations were positive, very few
were statistically significant relationships. The two that were significantly (but weakly) related were
between the categorical variable measuring the average number of visits to a page containing
instructional content from any of the seven steps (1=low use, 4=high use) and the reported average use
of teacher components (r(114)=0.195, p<0.05), and the reported combined average use of the teacher
components, the 5E+I/A steps, and the frequency with which a teacher uses the steps in the appropriate
sequence (r(114)=0.219, p<0.05). The results of the correlation analysis can be found in Table 4 below.

Table 4. Results of correlation analysis for reported and actual use

Average use of

Reported Reported
epuoseeof :::E:iﬁ avera 2puoseif SE+Y/A steps and
User analytics ¥ components in
components SE+I/A steps
order
Number of 5E visits weighted by  Pearson Correlation 0.160 0.030 0.140
number of grades taught (N=114) Sig. (2-tailed) 0.090 0.780 0.130
Number of 5E visits weighted by  Pearson Correlation 0.090 -0.050 0.060
number of objectives taught (N=114) Sig. (2-tailed) 0.330 0.570 0.560
Average number of visits to 5E+I/A  Pearson Correlation 0.195 * 0.140 0.219 *
steps (categorical) (N=114) Sig. (2-tailed) 0.040 0.140 0.020
Average visits to S5E+I/A steps, weighted  Pearson Correlation 0.060 -0.040 0.030
by number of grades taught Sig. (2-tailed) 0.550 0.710 0.730

(categorical) (N=113)

* Correlation is significant at the 0.05 level (2-tailed)

We also correlated teacher survey responses about how frequently they use the 5E+I/A steps in the
suggested order with the frequency with which they actually used all of the 5E+I/A steps in the
suggested order (based on the data analytics). The results showed no significant association between a
teacher’s reported use and actual use of the 5E+I/A steps in the suggested order (r(111) = -0.02, p =
0.84). Second, we conducted a correlation between teacher survey responses about how frequently
they use the 5E+I/A steps in the suggested order with the frequency that they actually used just the
steps in the suggested order. The results showed no significant association between a teacher’s
reported use and actual use of the 5E steps in the suggested order (r(111) = 0.02, p = 0.83). In other
words, there appeared to be no relationship between perceived and actual use regarding the SE+I/A
steps in the order intended by the curriculum designers.

The question that these two analyses raise, of course, is which measure of teacher use is correct? The
answer we have settled on is that neither is “wrong” or “right,” and that therefore they must be used
jointly to piece together a balanced picture of teacher use. In other words, data from different sources
must be triangulated. In the next two sections, we describe two more ways to collect data for the
purpose of creating a more nuanced picture of curriculum use.
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5.4 Using teacher focus groups and interviews to measure fidelity of
implementation

The research team also conducted teacher focus groups to understand how teachers use the curriculum.
The benefit of conducting focus groups is that we are able to engage directly with teachers and ask them
about their use of the curriculum. We can follow up on their answers and probe more deeply for
explanations of certain behaviours. In this way, we can look at data based on access to the curriculum
next to data on what the teachers do once they have accessed the curriculum and are in their
classrooms teaching students.

The focus groups we conducted were separate from the external evaluation discussed in previous
sections. Instead, they have been part of internal research efforts. For example, in the fall of 2012, the
research team asked the principals at two schools that use STEMscopes to put together a group of 3-5
teachers to meet with us. A total of 11 teachers participated (see Table 5). Of these teachers, all but two
were self-contained teachers who taught science in addition to other subject areas. Of the 11 teachers,
three were novices (first year), one had medium experience (2-5 years), four were advanced (6—20
years), and four were veterans (21+ years).

Table 5. Description of focus group participants

Grades Grades Novice Medium Advanced Veteran
Total teachers Scienceonly  K-2 3-5 teacher  experienced teacher teacher
1 2 9 2 3 1 4 4

The team created an interview protocol to guide the focus group. The interviews were semi-structured,
which allowed the conversation to develop organically. The protocol asked teachers how they felt about
teaching science, using technology, using STEMscopes, and what challenges they faced when using
STEMscopes to teach science. Here, we only share a few findings as they relate to use of the curriculum
with the intent of demonstrating the type of findings that can be extracted from direct conversations
with the curriculum’s stakeholders.

5.4.1 Uses of STEMscopes by teachers in grades K—2

The majority of participating teachers were K-2, self-contained teachers. Though all of the teachers
were very positive about science and reported enjoying teaching science, it was clear that they had very
little time to teach science, and so their use of STEMscopes and other science resources was quite
limited. According to the teachers, they were only able to teach science two to three times a week, and
this relatively short time was split between hands-on experience, such as an experiment, and science
vocabulary. In fact, we specifically asked the teachers how often they were able to do science; they
reported that they were working on a hands-on experience with their students almost every week.

Vocabulary, however, was the most frequently mentioned use of the curriculum; the kindergartners
draw pictures of science concepts and the second graders make vocabulary cards with pictures, labels,
and definitions.” STEMscopes’ vocabulary materials were particularly helpful for the bilingual teachers,

* Most frequently mentioned does not necessarily mean the most frequently used. The analytics data suggest that
K—2 teachers access the Explore step the most, indicating they do hands-on activities with their students.
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most of whom teach science as an English as a Second Language (ESL) class where the focus is as much
on learning English as it is on learning content. Also included in the discussion was the use of science to
teach literacy. The teachers described spending most of their time on math and literacy to prepare
students for the 3" grade state tests, and so science often became another way to work on literacy. A
teacher from one school told us how her students read science stories, saying, “this week... there is a
story about plants, so then you know they are identifying roots, petals, and stems, all that stuff.” Other
teachers described how the students kept science journals where they pasted in passages and diagrams
to practice new vocabulary.

5.4.2 Uses of STEMscopes by teachers in grades 3—5

Teachers in the upper-elementary grades (particularly 5 grade) had more time for science instruction,
often more than an hour a day, which allowed them to utilize more parts of the curriculum. However,
the teachers still expressed the need for more time to cover all of the material and review material from
previous grades, where students often receive little science instruction. One of the teachers described
how she strives to use all of the options contained within the curriculum, saying, “l wouldn’t say [l use it]
to its maximum but | would say as close as | can possibly get within the given timeframe that | am
allotted.”

These two teachers indicated that they try to follow the curriculum closely by doing one “E” step on
each day and using as many of the assessments as they have time for. One teacher confided that, “I
don’t use every experiment that you guys [have]...I| use most of them though, but | try to make sure that
I, we do an experiment [from STEMscopes] every Tuesday and then | try to do one on Wednesdays also,
| try two days of complete experiments.” In this way, the teacher generally is able to meet the student
needs for hands-on learning and intervention at the end of the week for those students who did not
demonstrate mastery on the post-assessment. Both of the teachers also told us that, for the most part,
they complete each of the 5E steps in order, though one of the teachers told us that she begins each
new unit with direct instruction and note-taking. Our observations of both classrooms confirmed that
both teachers begin units with direct instruction and note-taking.

Finally, the teachers rely primarily on STEMscopes for their actual lessons while following the district’s
scope and sequence, which directs them to teach the standards in a certain order. One of the teachers
told us how she reconciles using a curriculum not officially adopted by the district: “I just read the
teacher background and | just make sure that | am teaching in the sequence that [the district] is giving
me to teach... | use the teacher background and all the activities from STEMscopes.”

5.5 Using classroom observations to measure fidelity of implementation

Through classroom observations, we have seen how teachers and students interact — and do not
interact — with the online curriculum. Observations, though time-consuming, are important because
they allow for comparing and classifying interactions. Teachers often unwittingly over-report how often
they use the curriculum, and observations can cut through the problems of self-reporting and
perception.

In that same internal evaluation, we observed two teachers at different schools as they taught science.
Each of the teachers we observed taught science only and was a very experienced teacher. One of them
taught science to grades 3-5, while the other only taught 5™ grade science. The teacher who taught 3—
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5™ grade science had 18 years of experience as a teacher and instructional coach (though not in
science), and this was his/her first year teaching science only. Furthermore, his/her previous teaching
experience was in 1* grade. This teacher also helps to translate curriculum for STEMscopes into Spanish,
making him/her very familiar with the curriculum. The other teacher had taught for 22 years, nine of
them as a science teacher exclusively. This teacher also had previous experience teaching middle-school
math. During the classroom observations, we took extensive field notes, which we later coded using an
observation protocol created for science classrooms. Based on these notes, we created long and
detailed “inquiry profiles” that described how teachers used the curriculum and level of inquiry in each
teacher’s classroom. Here, we report only general findings.

We learned a great deal about the context and quality of implementation from the observations. For
instance, we noted that in these classrooms, there were no more than two computers available to
students, and the teachers either printed materials from the website, or projected the website onto a
whiteboard. This finding can help explain variation in teacher use — some teachers may have more
technology available to them than these teachers did. Similarly, we observed that while some teachers
followed the curriculum very carefully, others used fewer of the activities and instead incorporated
other available resources, and others still utilized the steps and activities out of the intended order. In
short, the observations reveal “the face” behind the “clicks” that LA data show us.

6. CONCLUSIONS AND FUTURE WORK

LA has the potential to bring important changes to K-12 education research and development if
implemented with a pedagogically sound, mixed methods strategy, such as the one described in this
paper. Incorporating the LA data into our ongoing research on curriculum has enabled us to dig deeply
into patterns of use and to ask nuanced questions that relate to the pedagogy underpinning the
curriculum and its effectiveness. We have also learned that on their own, LA data paints an incomplete
picture of what teachers do in their classrooms with the curriculum. By bringing in more traditional
measures of use, such as surveys, interviews, and classroom observation, we were able to contextualize
some of the findings gleaned from the LA data.

As we have improved our technical capacity to work with the LA data, we have also created new ways to
make the data accessible to the curriculum’s key stakeholders, namely teachers and administrators.
Data visualization has been the most powerful tool we have put into practice so far to translate data
into information, and future work will examine the utility of these tools as well as develop new tools
based on feedback.

There also are several hurdles that must be overcome to ensure that these new data collection and
analysis tools do, in fact, fulfill their promise. First, schools and districts must address the gap in access
to technology. While some schools have achieved one-to-one computing, most schools are not even
close to this goal, and this has profound implications for our ability to collect reliable analytics data. Our
conversations with and observations of teachers revealed that teachers and students often share
accounts, and that students are limited in the activities they can complete online. This, in turn, means
that the analytics data we collect may not be reliable: for some teachers the usage analytics may
accurately portray their use, while for others, they may not.
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A second and equally important challenge is time. Teachers often do not have time to incorporate
technology and online activities into their regular instruction. It is time-consuming to plan for this
incorporation, especially because it often requires the teacher to learn new software or strategies, and
because it requires the teacher to create new classroom and management routines. The result of this
hurdle is that the computer systems that should be collecting analytics data are not fully implemented
— or are not implemented at all, which degrades the quality of data we can collect.

In our future work, we will include curriculum elements in each of the 5E+I/A steps and investigate the
effects of the characteristics and properties of those elements in curriculum use. Similarly, we will
disaggregate use by science standard, skills, and concepts covered on each curriculum step. These new
scenarios will offer a deeper and richer picture of science teaching and learning in the K-12 realm. We
will conduct studies to investigate sequences of visits, pacing, and patterns of use at different points in
time. This in turn will help us to answer questions related to curriculum use changes throughout the
school year and consistency of use across science standards, schools, and districts, with implications for
targeted professional development for teachers and curriculum design. We will also examine specific
use patterns and relate them to student learning outcomes. These, no doubt, will present the team with
fresh challenges as some components of the curriculum may turn out to be more effective than others,
and these results may confound the relationships we hypothesize to exist.

Though not a panacea for the challenges facing K-12, a strong LA data strategy can help researchers and
educators alike make sense of the large amounts of data generated by the increased use of mobile
devices, computers, and other technology in classrooms. With an improved understanding of data,
students can learn from their own mistakes. Teachers can improve their lessons, work with students
who need extra help, and provide extensions for those ready to move on. Analysts can improve the
curriculum and the resources available to teachers and students. The strategy described in this paper
was developed to analyze detailed usage patterns of the online science curriculum, STEMscopes. This
approach enables analysis of large amounts of data and opens the possibilities to complex undertakings
such as the creation of personalized learning environments.
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