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ABSTRACT 

A dynamic game theoretic model of concordance of interests in the process of social partnership in 
the system of continuing professional education is proposed. Non-cooperative, cooperative, and 
hierarchical setups are examined. Analytical solution for a linear state version of the model is 
provided. Nash equilibrium algorithms (for non-cooperative and cooperative setups) are identified. 
H.Stakelberg's1t algorithms of equilibrium solution of the game in hierarchical setup are described (in 
the general case). A method of building the precise discrete analogue of a continuous model is used 
for examining the hierarchical setup. Examples of test calculations for different data sets are 
provided; content interpretation of the results is discussed. 

 
KEYWORDS ARTICLE HISTORY 

Differential Games,  
Continuing Professional Education,  

Social Partnership 

Received 27 May 2016 
Revised 29 October 2016  

Accepted 3 December 2016 

 

Introduction 

Social partnership in continuing education is a specific system of joint activities 

of the education system agents characterized by trust, common objectives and 

values; it provides highly qualified, competitive, and mobile specialists for the 

labor market (Tarasenko, 2009) Many authors studied the social partnership in 

education (Tarasenko, 2009; Keith, 2011; Siegel, 2010), but only a few papers are 

dedicated to modeling of this process (Siegel, 2010; Fandel et al., 2012; Talman 

and Yang, 2011). The first author contributions are presented in the following 

works (Zaharatul et al., 2012; Dyachenko et al., 2014). 

In contrast to (Zaharatul et al., 2012; Dyachenko et al., 2014), in this paper 

the authors consider a differential game model with payoff functionals reflecting 

the concordance of private and public interests in resource allocation. This 

problem setup is initiated by a seminal paper by Yu. B. Germeier and I. A. Vatel 

(Dyachenko et al., 2015) who have shown that under a specific structure of payoff 
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functions the Pareto optimal Nash equilibrium of the static game in normal form 

exists, i.e. the complete concordance of the players' interests is achieved. Close 

setups were also considered in static models of the active systems theory 

(Germeier and Vatel, 1975) and in the information theory of hierarchical systems 

(Burkov and Opoitsev, 1974). Later on the problem of concordance of interests was 

actively developed in network games. In particular, Ch. Papadimitriou has 

introduced a notion of price of anarchy as a quantitative characteristic of the level 

of concordance of private and public interests (Gorelov and Kononenko, 2015). 

This idea was developed by Basar and Zhu in the dynamic case (Basar and Zhu, 

2011). Dynamic counterparts of the models are reviewed in (Basar and Zhu, 2011). 

In some specific cases using theoretical game model in continuous time allows 

to find the analytical solution. In general case, the author's method based on 

building the precise discrete analogue of a continuous model (Long, 2010) is used 

for finding the solution of a differential game.   

The paper is organized as follows. In Section 1 a mathematical setup of the 

problem of concordance of interests in social partnership in the system of 

continuous professional education (CPE) is presented. The model linear state 

version analytical examination (Ugol’nitskii and Usov, 2013) is described in 

Section 2. The method of solution of the general differential game model of 

concordance of interests by digitization is proposed in Section 3. Test examples of 

numerical calculations are analyzed in Section 4. The obtained results are 

discussed in Conclusion. 

1.1. Mathematical setup of the problem 

A social partnership between three control agents: a university teacher (В), 

an employer (Р), and a student (С) is considered. First, it is assumed that the 

agents are independent and make decisions independently and simultaneously. 

All control agents aim for maximizing their payoffs discounted at time period T . 

The differential game model has the following form: 

max,))(()()])(()())(([
0

 

 TxcTsedttxctsturgeJ i

T

T

iiii

t

i



   (1.1) 

;,)(0 Nirtu ii 
       

  (1.2) 

0)0()),(),(),(())(( xxtututuftxhx cPB 
    

  (1.3) 

 In the model of concordance of interests it is assumed that each player i  

from set 
},,{ CPBN 

allocates his budget between two directions: share 
)(tui  

(the player's control) is allotted for the students' professional level improvement, 

whereas the rest 
)(tUr ii   is used for financing his private activities (business 

development, stocks and deposits, or consumption). Respectively, a current payoff 

of a player is formed by private revenues and utility from the level of professional 

training of the students (public good).  
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Thus, in the model (1.1) - (1.3) 
)(zgi  is a concave increasing function of the 

variable z, reflecting private revenues of the players; 
)(tx

 is a level of professional 

training of the students (a state variable); 
)(xc

 is a concave increasing function 

showing a financial expression of the public utility from the level of professional 

training; 
)(tsi is a share of the i-th player in this public good; h is a decreasing 

function, i.e. in the absence of investments the level of professional training 

diminishes; 
f

 is an increasing function of players' investments in the 

professional training of the students. 

1.2. Analytical study of the linear state model 

For analytical tractability let us consider a linear state simplified version 

(Dockner et al., 2000) of the model (1.1)- (1.3) in the following form 

max,)()(])()())(([
0

 

 TcxTsedttcxtsturkeJ i
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  (2.1) 

;,)(0 Nirtu ii 
       

  (2.2) 

0)0(,)()( xxtubtaxx
Ni

ii  



      

  (2.3) 

Hence, in (2.1) - (2.3) in comparison with (1.1) - (1.3) model, a linear function 

)())(( tcxtxc 
, where 0c is a coefficient of transition from a level of 

professional training to the public utility, and a linear function 

0),())((  ataxtxh
, are used. In what follows, a linear function





Ni

iiCPB tubtututuf )())(),(),((

, where 
0ib

 is a share of the i th player 

contribution to the upgrading of the students' professional training level, is used 

for simplicity. Finally, without essential loss of generality a power function of 

private revenues is taken: 

Nipkturkturg ii

p

iiiiii
i  ,10,0,))(())((

. 

For solution of the game (2.1) - (2.3) Pontryagin's maximum principle is 

applicable. The i-th player's Hamiltonian function is as follows:  





Nj

jjii

p

iiiiii tubtaxttxtcsturkttxttuH i )]()()[()()())(()),(),(),(( 

. 

From the condition 
0/  ii uH

 with regard to non-negativity of 
)(tui  the 

following can be determined:  
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A boundary value problem for the conjugate variable is 

)()(),()()( TcsTtcsta
dt

d
iiii

i  


,    

 (2.5) 

its solution 


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T
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  (2.6) 

Due to the properties of the model (2.1) - (2.3) the relations (2.4) with regard 

to (2.6) actually form the Nash equilibrium 
))(),(),(()(  NE

C

NE

P

NE

B

NE uuuu
 in this 

model. It is known (Ugol’nitskii and Usov, 2013) that in the linear state 

differential games open-loop and closed-loop (Markovian) Nash equilibria 

coincide. The respective equilibrium path is  

 dubeextx
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  (2.7) 

The obtained analytical solution allows for some qualitative conclusions 

about the social partnership in the framework of the model (2.1) - (2.3). Hence, the 

condition i

p

iiii brpkt i /)(
1


 characterizes a "pure egoism" of the i th player due 

to which the whole budget is assigned only to his private activities. Note that a 

"pure collectivism"
))(( ii rtu 

, when all investments are allocated for professional 

training and, therefore, for social partnership development in the continuing 

professional training system, is not attained in the equilibrium strategy (2.4) if 

0ik
. 

From the equilibrium path form (2.7) it is clear that high level of professional 

training can hardly be sustained under the linear dynamics of the state because 

the first summand in (2.7) decreases exponentially
)0( a

. 

Now consider a cooperative setup of the social partnership control problem 

when all agents unite and jointly maximize the summary payoff functional 
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(s. t. 

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) in all controls (2.2) s. t. equation of dynamics (2.3). In 

this case we receive a Pareto optimal team solution 
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Optimal cooperative path 
)(txPO

 has the form (2.7) s. t. (2.9) - (2.10). A 

quantitative characteristic of the system losses from a non-cooperative behavior 

is captured by the price of anarchy [12,13]  
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  (2.11) 

Finally, consider a hierarchical setup of the social partnership control 

problem. Suppose that agents from the set 
},,{ CPBN 

 with payoff functional 

(2.1) and constraints (2.2) - (2.3) form a lower control level, and the federal state 

maximizing the summary payoff functional (2.8) forms the upper control level. 

Assume for simplicity that federal state controls are open-loop strategies 

))(),(),(()(  CPB ssss
 satisfying the conditions 

]},0[,1)(,0)(:)({)( TttststsSs
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  (2.12) 

Then there is a hierarchical differential game of type tG1  (Gorelov and 

Kononenko, 2015) with the following information structure. 

1. The leader (federal state) chooses an open-loop strategy (2.12) and reports 

it to other players (followers) from set
},,{ CPBN 

. 

2. Given the chosen strategy (2.12), agents from set 
},,{ CPBN 

 play a 

differential game (2.1) - (2.3), the solution of which is Nash equilibrium
))(( sNE

. 

3. In fact, the leader chooses a strategy (2.12) which maximizes his payoff 

(2.8) on the set of Nash equilibria
))(( sNE

. 
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Let us find a solution of the hierarchical game Ss *  by simulation modeling 

based on the scenarios method. The proposed algorithm has the following form. 

1. Choose a set of scenarios 
)}(),...,({ )()1(  M

M ssS
, where 

MjSs j ,...,1,)()( 
. 

2. Given MSs )(
 calculate 

))(( sNE
 using formulas (2.4) - (2.5) as well as 

respective path (2.7). 

3. Calculate the leader's payoffs 
),),(( ))(())((  sNEsNEST xusJ

 for all MSs )(
. 

4. Find  

),),((max),),(*(:)(* ))(())((
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
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Ss
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M xusJxusJSs
M . 

1.3. Solution of the power model 

Now suppose that the function of public utility depending on the level of 

professional training has a more general form
)())(( tcxtxc p

, 
10  p

. 

In the case of independent agents, a boundary value problem arises for the 

system of non-linear ordinary differential equations of the following form:  
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  (3.3) 

In the numerical methods of non-linear boundary value problems solution 

two approaches are differentiated (Dockner et.al., 2000). 

The first one uses an approximate discrete representation of the boundary 

problem connected with determination of a space grid and approximation of the 

unknown functions. The second one is a multiple shooting method where 

"shooting" grid values are the solutions of a system of non-linear equations 

determined by the solutions of a series of Cauchie initial value problems. The 

second method is used to solve the problem (3.1) - (3.3). 
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In the cooperative case all the agents unite, and the optimal solutions for 

optimal power team problem are found from the following boundary value 

problem: 
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  (3.6) 

The problem (3.4) – (3.6) is once again solved by the multiple shooting method 

(Dockner et al., 2000). 

Finally, let us analyze a hierarchical setup of the problem. The algorithm of 

hierarchical problem study coincides with the one described in the previous 

section; the problem is solved by the scenarios method. The method of transition 

from a differential control model to its precise multistep analogue (Long, 2010) 

based on the following hypothesis is used.  

In any real control system the agents are unable to change their strategies in 

any arbitrary desired moment of time. Their strategies remain constant for a 

certain time period due to objective inertia. Without losing the generality of 

analysis one may suppose that control strategies of all agents are constant at 

equal time periods, i.e.   
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where
MMTttitconstw ii ;/;; 

is a number of intervals of the 

constancy of control variables; 
)(twi  is a control variable of one of the followers 

(B, Р, C) or of the leader. 

 In the case when the leader maximizes a total payoff functional similar to 

(2.8), the problem (3.1) – (3.3) takes the following form: 

- the leader's payoff function  



 
 
 
 
13062  L. V. TARASENKO ET AL. 

      

 





 dttcxeeeurkusJ

T

pttt
M

k Ni

p

ikiki

M

Ni
kik

M

Ni
kik

kki

01

11 )()()(),( 1 

    

./;;max)( MTttktTcxe k

pT 

    
    (3.8) 

- the followers' payoff function  
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- the control constraints for the follower and the leader, respectively 
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 Notice that the multistep-differential model (3.8)— (3.12) is equivalent to 

the differential model (1.1) – (1.3), (2.8) in the following sense. If the set of 
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– (3.12).  In contrast to (1.1) – (1.3), the system (3.8) – (3.12) forms the problem of 
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optimization for functions of many variables (not functionals!) with consideration 

of the hierarchical relations between the control agents.  

Thus, a solution of the problem (1.1) – (1.3) was reduced to the investigation 

of the model (3.8) – (3.12). Notice again that (3.8), (3.9) are objective functions (not 

functionals) depending on 2M variables which are maximized in M variables.  

The following algorithm of solution of the problem (3.8) – (3.12) is proposed. 

1. As a result of parametrical optimization of N functions of 2 M variables 
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  Nis

M

tit 


;
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or numerically by Runge-Kutta method. 
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    Nisuu
M

titit

M

tit 


;)(
1

*

1

*

are substituted in (3.8). The values 
  Nis

M

tit 


;
1

*

 

which provide maximum (3.8) are optimal for the leader. 

3. Let us cal the set 
    M

titit

M

tit sus
1

**

1

* )(,
  an equilibrium in the Stakelberg 

game tG1 . 

Implementation of the mentioned algorithm by simulation modeling is based 

on the method of direct ordered enumeration with a constant step (14) and 

consists of the following. 

1. Type and values of input functions and the model's parameters are 

assigned. 

2.  Current leader's strategy, i.e. the grid function 
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;
1 is assigned. 

3. By direct ordered enumeration of the followers' potential reactions to the 

current leader's strategy with a constant step the best followers' replies (grid 

functions
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 ) are found. These replies provide maximization of objective 

functions (3.9) in the set of enumeration. The differential equation (3.12) is solved 

numerically by a finite differences method or Runge-Kutta method.  

4. If the number of iterations for the leader is not exhausted then a new 

strategy is chosen by a new scenario examination or by perturbation of the current 

strategy. Then go to step 3. 

5. Hence, an approximation to the system equilibrium is determined, i.e. the 

set of values
    Nisus

M

titit

M

tit 


;)(,
1

**

1

*

. 

When choosing a new current leader's or a follower's strategy methods of 

direct ordered enumeration with constant or variable step (Basar T. and Zhu Qu, 

2011) can be used. In this case the interval of uncertainty is equal to 1
2





K

ab

, 

where K is a number of points of the partition of feasible controls domain of the 
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respective agent, 
ba,

 are boundaries of the domain. The error of determination 

of the leader's optimal strategies is 1

0




K

r


. 

Thus, in a finite number of iterations the proposed algorithm of simulation 

modeling permits to build an approximate solution of the model (1.1) — (1.3) or to 

conclude that the equilibrium does not exist.  Credibility and efficiency of the 

algorithm follow from the respective properties of the method of direct ordered 

enumeration with a constant step during the simulation calculations.  

1.4. Model calculations 

Let us describe the results of numerical calculations for the linear 
)1( p

 

and power 
)10(  p
 models for some typical test input data sets with the 

presence of the federal state as a control agent (hierarchical setup) and in its 

absence (independent setup). 

Example 1 (without taking into account the federal state).  Assume 

;5;1.0 yearsT  ;150;250;175  CPB rrr ;10 CPB kkk

;1.0 CPB ppp ;3/1 CPB bbb ;2;420;05.0 0  cxa

2.0;6.0  CPB sss
. The results for the linear 

)1( p
 and the power 

)10(  p
 models are presented in Table 1. In what follows 

BPCiu k

i ,,;)( 
 are 

the optimal strategies of the players in a cooperative case. 

Example 2 (without taking into account the federal state).  For input 

data from the Example 1 and 
05.0;9.0  СPB sss

 the results are given in 

Table 2.  

Example 3 (without taking into account the federal state).  For input 

data from Example 1 and 
9.0;05.0;05.0  СPB sss

 the results are given in 

Table 3. 

Example 4 (hierarchical setup).  For input data from Example 1 (variables 

СPB sss ,,
 are desired leader's controls) the results of calculations for the linear 

)1( p
 and the power 

)10(  p
 models are presented in Table 4. If lower level 

control agents cooperate then the hierarchy does not make sense. 

Example 5 (hierarchical setup). For input data from Example 4 and 

003.0С  the numerical results are given in Table 5.  

Example 6 (hierarchical setup). For input data from Example 4 and 

100 BCP kkk
 the numerical results are given in Table 6.  
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Table 1. Results of calculations for Example 1 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽 𝑃𝐴 

1 1547 1547 4548 7667 0.997 
0.9 806 806 2314 3958 0.992 
0.7 242 242 605 1127 0.966 
0.5 105 107 181 416 0.966 
0.3 75 79 98 253 0.996 
0.1 68 71 75 215 0.996 

Table 2. Results of calculations for Example 2 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽 𝑃𝐴 

1 419 419 6657 7667 0.977 
0.9 237 237 3299 3958 0.953 
0.7 103 104 749 1127 0.848 
0.5 74 78 235 416 0.93 
0.3 67 70 114 253 0.992 
0.1 65 69 80 215 0.95 

Table 3. Results of calculations for Example 3 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽 𝑃𝐴 

1 6657 419 419 7667 0.977 
0.9 2297 237 237 3958 0.70 
0.7 731 104 103 1127 0.832 
0.5 232 78 75 416 0.925 
0.3 113 71 68 253 0.996 
0.1 79 69 66 215 0.995 

Table 4. Results of calculations for Example 4 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽0 

1 2551 2551 2551 7667 
0.9 1315 1315 1315 3958 
0.7 370 370 370 1127 
0.5 160 86 160 406 
0.3 89 73 90 252 
0.1 70 73 71 215 

Table 5. Results of calculations for Example 5 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽0 

1 67 70 67 204 
0.9 66 69 66 201 
0.7 65 68 66 200 
0.5 65 68 65 200 
0.3 65 68 65 199 
0.1 65 68 65 199 

Table 6. Results of calculations for Example 6 

𝑃 𝐽𝐶  𝐽𝑃 𝐽𝐵 𝐽0 

1 2899 2899 2899 8856 
0.9 1697 1697 1697 5221 
0.7 851 875 861 2674 
0.5 707 741 717 2166 
0.3 667 701 677 2045 
0.1 654 688 664 2008 
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The following conclusions can be done based on the conducted calculations: 

In the model setup for a sufficiently representative class of input data the 

interests of agents are well compatible, the price of anarchy is close to one, and 

hierarchical control is not required. 

If lower control level agents cooperate then the leader is not at all required 

due to the input functions of the model.  

If a share in the public good of one player is equal to one then the price of 

anarchy with a growth of power decreases and tends to one when р tends to zero. 

If the shares in public good of all players are approximately equal then the 

price of anarchy is close to one and depending on index of power
p

 varies from 

0.95 to 0.99. 

When the coefficient of transition from a level of professional training to the 

public utility increases, the payoffs of all players also increase. 

When the coefficients increase, it is profitable to the players to extend 

investments in their private activity.  

In contrast, when the coefficient of transition from a level of professional 

training to the public utility increases, it is profitable to make more investments 

in the public good. 

When p increases, the payoffs of all players also increase and obtain the 

maximal value in the case of linear model of transition from a level of professional 

training to the public utility. 

Conclusion 

A differential game theoretic model of the social partnership in the CPE 

system is built. A linear state model and a model with power payoff functions are 

examined. Nash equilibria, team solution, and hierarchical solution for the game 

G1t are found.  

Some preliminary conclusions presented above are made on the basis of 

analytical and numerical calculations results analysis. Notice the main idea: in 

this model setup interests of different agents are well compatible, the price of 

anarchy is close to one, and there is no need in additional control levels. A 

transition from a linear state model to the power one does not change the optimal 

strategies, only payoffs change.  

Certainly, the results of analysis of the test examples are quite conventional 

but allows for a qualitative comparison of different methods of organization of the 

social partnership in the CPE system.  In future, it is planned to try the proposed 

approach using opinion poll findings. 
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