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In large scale multiple-choice (MC) tests alternate forms of a test may be 
developed to prevent cheating by changing the order of items or by changing 
the position of the response options. The assumption is that since the content 
of the test forms are the same the order of items or the positions of the 
response options do not have any effect on item difficulty and other 
psychometric characteristics of the test. The purpose of the present 
investigation is to model the difficulty of the options’ positions (a, b, c, and 
d) in a high-stakes MC test using the linear logistic test model (Fischer, 
1973). Findings revealed that options’ positions have very slight differences 
in difficulty and as the position of the correct option moves toward the end 
of the set of response options it becomes slightly more difficult. 

    
 
Multiple-choice (MC) test format is the most commonly used test 

format in large scale educational testing. The ease of administration and 
scoring and high reliability of MC items are amongst the reasons why MC 
items are so popular (Baghaei & Amrahi, 2011). However, MC format has 
also been criticized for being sensitive to several construct-irrelevant factors 
including testwiseness, number of response options, susceptibility to 
cheating and guessing, and pattern guessing (Baghaei & Amrahi, 2011).  

Researchers have previously addressed some of these issues 
extensively but some other issues are under-researched. For example the 
issue of the optimal number of response option in MC items has been 
extensively addressed (see Haladyna, 2004 for a complete review). The 
final conclusion of most of these studies is that the number of options (3, 4, 
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or 5) has little impact on item difficulty and other characteristics such as 
reliability and item discrimination with the 3-option items being slightly 
superior in terms of item discrimination. 

The other commonly addressed issue, which is not necessarily 
specific to MC items but most commonly arise in large scale testing, is the 
issue of item order. Research in educational and psychological testing 
shows that items may be influenced by their location in the test. Wainer and 
Kiely (1987) refer to this as ‘context effect’ and define it as “any influence 
or interpretation that an item may acquire purely as a result of its 
relationship to the other items making up a specific test” (p.187). Previous 
research on the impact of item order, although not being in complete 
agreement, indicates none or only small effects of item position on the 
psychometric properties of test items and examinees’ performance (e.g. 
Hohensinn, Kubinger, Reif, Schleicher, & Khorramdel, 2011).  
Nevertheless, some researchers have also argued for the development of 
psychometric models which incorporate context effect in order to 
parameterize it (Brennan, 1992; Davey & Lee, 2011).  

Likewise, in large scale assessments where MC items are employed 
alternate forms of a test may be prepared by changing the position of 
response options to prevent answer copying. The common assumption is 
that when preparing MC items the position of response options seems to be 
completely irrelevant to test design as long as answers are randomly 
assigned to positions or are equally distributed among them (Attali & Bar-
Hillel, 2003).  In their revised taxonomy of MC item writing guidelines 
Haladyna, Downing, and Rodriguez (2002) list five major categories of 
concern in MC item writing: content concerns, formatting concerns, style 
concerns, writing the stem, and writing the choices. Each category has a 
number of subcategories in the form of guidelines or tips where ‘writing the 
choices’ category has the highest number of guidelines (14 tips). Two of 
these guidelines refer to the option positions: vary the location of the right 
answer according to the number of choices and place choices in logical or 
numerical order (p.312). However, there is no specific guideline on the 
exact location of the correct response.    

When alternate test forms, which are only different in the order of 
items or the location of the response options, are used the assumption is that 
a common metric is maintained across forms and there is no need for 
equating; equating is only needed when partially or entirely different sets of 
items are presented in different test forms. The problem, however, is that 
even when identical items are presented in all forms it is difficult to 
maintain a common metric to compare examinees who take different forms 
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of a test since the difficulty parameters of the items may change across 
forms due to context effect.  

The issue of item position and option order has been broached from 
another perspective by other researchers. Bachman (1990) considers item 
sequence an aspect of test method which could contaminate the 
measurement of the construct. Addressing test method is essential for 
investigating validity. To ensure validity the test method should not affect 
examinee performance or interfere with the measurement of the construct. 
By implication, if response position alters item difficulty it can be a 
component of test method that affects the measurement of the construct and 
should be taken into consideration.   

Although the effect of item order or item position effect has been 
investigated to a relatively large extent (Hahne, 2008; Hohensinn, et al., 
2011), research on option position effects in MC tests is scarce. Cizek 
(1994) investigated such effects in a 20-item test from a certification 
examination for medical students. The structure of the test in Cizek’s study 
was not canonical MC. In his test, examinees were required to find answers 
to 20 questions from a list of 30 options. Examinees (n=759) were randomly 
assigned to two response booklets which differed only in the order of the 30 
options.  Results showed that classical item difficulty and discrimination 
values change across the two forms for some items, although they remain 
highly correlated (r=.99). Furthermore, no relationship was found between 
the position of the correct response and item difficulty.  

Attali and Bar-Hillel (2003) introduce the concept of ‘edge aversion’ 
and ‘middle bias’ and state that test constructors tend to ‘hide’ the correct 
response in the middle position and examinees tend to seek it in exactly the 
same position. They argue that guessing examinees are more likely to select 
options in the middle positions and, therefore, items with middle correct 
answers are easier and less discriminating compared to items whose 
answers are placed in the edges. With data from real large scale exams they 
show that middle position items are significantly easier than edge position 
items. Since guessing is more prevalent in harder items they demonstrate 
that percentage correct due to the middle bias increases as difficulty 
increases. They also demonstrate that classical item discrimination (point-
biserial correlations) indices decrease for items when correct options are in 
the middle position. The effect is more pronounced for harder items. They 
also study the effect of option position on IRT item parameters. They 
demonstrate that middle-keyed items are significantly easier, less 
discriminating, and more susceptible to guessing compared to extreme-
keyed items.  
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Since the effect of response option positions in MC items has not been 
investigated thoroughly the purpose of the preset investigation is to model 
such effects with the linear logistic test model (Fischer, 1973). More 
specifically, the aim of the present study was to examine whether the 
position of the solutions in MC items contribute to the difficulty of the 
items. In other words, we studied whether the difficulty of items is only due 
to the content of the task – that is the item stem – or rather the position of 
the correct answer has also an effect on the difficulty parameter of the item. 

METHOD 
Data source and material 
The test analysed in this study is the Iranian National University 

Entrance Test, a four-option multiple-choice high-stakes test held annually 
to admit candidates to master’s programmes in English studies. The test is 
composed of four sections of grammar (10 items), vocabulary (20 items), 
cloze (10 items), and reading comprehension (20 items). The candidates are 
supposed to answer the test in 60 minutes. Responses of 21642 candidates 
(73% male) who took the test in 2013 were analysed. The test is prepared in 
four booklets which are only different in the position of the response 
options and are randomly assigned to test takers. 

 
Linear logistic test model 
Linear logistic test model (LLTM; Fischer, 1973) was employed to 

analyse the data. LLTM is an extension of the Rasch model (Rasch, 
1960/1980) which imposes some linear constraints on item parameters. That 
is, item difficulty parameter is hypothesized to be a linear combination of 
the difficulty of several basic parameters. LLTM assumes that item 
difficulty parameter𝛽!  is a weighted sum of the basic parameters ηj. The 
item response function for the standard dichotomous Rasch model (Rasch, 
1960/1980) is expressed as follows:  

P (𝑋!"=1| 𝜃! , 𝛽!)= !"# !!!!!
!!!"# !!!!!

   (1) 

with 𝜃!being the the person parameter of person v. 
LLTM imposes the following linear constraint on the difficulty 

parameter𝛽!:  

𝛽!= 𝑞!"
!
! 𝜂!+c      (2) 
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where qij is the given weight of the basic parameter j on item i, ηj is the 
estimated basic parameter j reflecting the difficulty of the basic parameter, 
and c is a normalization constant. 

The basic parameters are the cognitive operations or steps involved in 
solving the items which contribute to item difficulty. The model allows 
parameterizing these steps. By adding up the difficulty of the steps which 
are involved in solving an item the overall difficulty of the item, estimated 
by standard Rasch model, should be approximated. The closer  the Rasch 
model based item parameters and the LLTM reconstructed item parameters 
(cf. Equation 2) are, the better the fit of the LLTM and hence stronger 
support for the substantive theory which guides item decomposition 
(Baghaei & Ravand, 2015; Baghaei, & Kubinger, 2015).  

For instance, for correctly answering an elementary math item 
like !!! ∗!

!
, we hypothesize that, examinees have to master three basic 

operations, namely, addition, multiplication, and division. LLTM assumes 
that the difficulty of this item is the sum of the difficulty of these three basic 
operations. LLTM estimates the difficulty of these three operations, referred 
to as basic parameters η, and then computes the difficulty of the item by 
adding up the difficulty of these three operations. The difficulty of this item 
is also independently estimated with the standard Rasch model. If our 
theory, which postulates that the difficulty of this item is the sum of the 
difficulty of the three basic operations of addition, multiplication, and 
division, is correct then the LLTM reconstructed item difficulty should be 
close to the difficulty estimated by the standard Rasch model. The difficulty 
of the basic operations show to what extent each operation contributes to 
the overall item difficulty.    

 
Study design 
LLTM can also be used to model construct irrelevant factors such as 

item format effects and item position effects (Kubinger, 2009). By forming 
virtual items and entering positions as basic operations which contribute to 
item difficulty they can be parameterized and their impact on difficulty be 
estimated. In this study, items with the same stem but different correct 
response positions or item locations were considered different items, i.e., 
“virtual items”. The following example illustrates how LLTM can be used 
to model response position effects.   

Table 1 represents a hypothetical data matrix containing 12 students’ 
responses to a test with two items in four different booklets. Each booklet is 
taken by three students. The booklets contain the same items but only differ 
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in the position of the correct option. Here 1s and 0s indicate whether the 
examinee has got the item right or wrong. The first three examinees have 
taken Booklet 1; the second three have taken Booklet 2, and so on. The 
shaded areas are missing responses. Note that this is just a hypothetical 
example and in a real study some items must have the same correct 
response positions in different test forms so that the data matrix is linked to 
avoid estimation problems. 

 
 

Table 1. Hypothetical data matrix with two items and four booklets. 
The items in different booklets differ only in the position of the correct 
answer. 

 1.1 2.1 1.2 2.2 1.3 2.3 1.4 2.4 
1 1 1       
2 0 1       
3 0 0       
4   1 0     
5   0 1     
6   1 0     
7     1 0   
8     1 0   
9     0 0   
10       1 0 
11       0 0 
12       0 1 

 
 
 
To develop a design matrix Q, each response position is considered a 

basic operation. Therefore, when there are four positions for the correct 
option in an MC item there are four basic parameters plus the number of 
items. Items 1 and 2 measure real substantive operations 1 and 2 (CO1 and 
CO2 in the Table 2) with their corresponding item stems. These two items 1 
and 2 are in four different booklets and in each booklet the position of the 
correct response changes. In Table 2, 1.1 indicates item1 in Booklet 1, and 
1.2 indicates item 1 in Booklet 2. That is, for the LLTM each item with 
each response position is considered a new item (“virtual item”). P1 to P4 
refer to the correct options positions a, b, c, and d in a typical four-option 
MC item. The first row shows that item 1 in Booklet 1 measures cognitive 



Multiple-Choice Tests 99 

operation 1 and the correct response is in position 1. The same item in 
Booklet 2 measures the same operation but the correct response has moved 
to position 2, and so on.  With this scheme the difficulty parameters of the 
response positions can be estimated and their contribution to item difficulty 
be assessed.   

 
 

Table 2. Example of a design matrix Q for analyzing response position 
effects. The rows display the virtual items and the columns show the 
basic parameters (there are two item stems and four response 
positions). 
 

Virtual 
item 

CO1 CO2 P1 P2 P3 P4 

1.1 1  1    
1.2 1   1   
1.3 1    1  
1.4 1     1 
2.1  1 1    
2.2  1  1   
2.2  1   1  
2.2  1    1 

 
 

ANALYSES AND RESULTS 
The main part of the sample, i.e., 97 % of the candidates responded to 

each of the 60 items. Two percent of the students had one missing response 
and the maximum number of missing responses was 19 missing items in 
one observation.  

In the first step of data exploration, one observation had to be 
excluded because no demographic variables were available for this person. 
Therefore the sample size of the LLTM reduced to 21641. In one of the 
booklets, for two items there were only missing responses. This was strange 
as none of the 5400 respondents who had taken this booklet had tried this 
item.  This was considered a problem in the data input. To be on the safe 
side, these two items were excluded and the remaining 58 items were 
analyzed. The missing responses were left as missing data because the 
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extremely low percentage of missings should not have a noticeable effect on 
the results of the data analysis. 

For analyzing the data with LLTM and the Rasch model eRm package 
(Mair, Hatzinger, & Maier, 2014) in R software package, version 3.11 (R 
Core Development Team, 2015) was used. As described in the materials 
part, the test consists of four different subsections. To ensure the 
unidimensionality, the Rasch model was estimated for the 60 items as a first 
step. Item fit measures – the mean-squared infit and mean-squared outfit 
(Bond & Fox, 2007) were calculated to assess the model fit of the items. 
Taking the often mentioned values 0.7 and 1.3 as cut-off values, only three 
of 60 items exceeded the cut-off 1.3 for the outfit MSQ only slightly (with 
values: 1.46, 1.51, 1.38). The Rasch model fit was assessed furthermore: 
Next, the items with correct answers in different positions in different 
booklets were expanded in the data set by creating ‘virtual items’. That is, 
for example, if for item 1 the correct answer was in the first position  in 
booklet 1 and in the third position in the other booklets, this item was 
treated as if it was two separate items – item 1.1 and item 1.3 (virtual item 
for item 1). The whole data set was expanded in this way. The 58 items 
were split into a total of 116 items. Because six items had the solution on 
the same position in each of the four booklets, these items served as linking 
items making it possible to estimate a Rasch model for the whole expanded 
data set. 

As a first step, the Rasch model for the expanded data set including 
the virtual items was estimated. The fit of the Rasch model was assessed 
using item fit statistics (infit MSQ and outfit MSQ). For the Infit mean-
square and the Outfit mean-square, the often mentioned cut-off values 0.7 
and 1.3 were chosen. Additionally, with a graphical model check the fit of 
individual items were inspected visually. For the graphical model check 
(Kubinger, 2005), the sample was split according to the mean of the total 
score (i.e. into high and low achievers). For each subsample, item 
parameters were estimated and cross plotted graphically. Due to the feature 
of sample independence of the Rasch model item parameter estimates must 
be the same (except for the error).  

Because of the very large sample size we decided not to apply 
inference statistics such as the Andersen Likelihood Ratio test (Anderson, 
1973) for testing the Rasch model and a Likelihood Ratio test for 
comparing Rasch model and LLTM. Obviously, the tests would have been 
significant only because of the large sample size. Instead, infit and outfit 
indices, graphical model checks, comparing the reconstruction of the Rasch 
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model based item parameters by the LLTM, and information criteria  AIC 
and BIC were used to assess model fit. 

The infit MSQ values showed no aberrant response behavior for the 
items (see Table 3); the outfit MSQ values indicated seven of the 116 
expanded items had aberrant responses. These seven items were also 
misfitting in the graphical model check, too (see Figure 1). For example, 
items 51 (with correct response in position 4) and item 22 were among 
them. 

 
Figure 1. Graphical model check of the expanded data set with 116 
items. The item parameter estimates of the two subsamples (divided by 
the median of the raw score) are cross plotted here. The label indicates 
the item number and the position of the solution (e.g. 51_4 means item 
number 51 with the correct answer in position 4). 
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These seven items consisted of only four different items stems, three 
of them were the same items that were misfitting in the first Rasch model 
analyses of the 60 items. As a consequence, for the LLTM analysis these 
seven virtual items were excluded and the Rasch model was reestimated 
without these items. In this reduced item set, the outfit MSQ for one item 
exceeded the cut-off value, but because of the very small deviation (the 
outfit was 1.32), this item was left in the item pool. The reduced item pool 
with 109 virtual items was used for further analyses. 

 
 

Table 3. Summary statistics for Outfit and Infit MSQ. The two upper 
rows contain the statistics for the whole item set. The two lower rows 
display the results after eliminating seven non-fitting items. 

 
 
 

Next, two LLTMs were estimated to see if a position effect occurs in 
this data set.  For the first LLTM (Lp) the design matrix was established in 
such a way that the content of the items – the item stems – were modeled as 
well as each answer position. For each position one basic parameter was 
assumed – consequently, this model formulation includes the assumption 
that the effect of a position is homogeneous for each item. Finally, the 
formulation of Lp resulted in a total of 55 plus 4 basic parameters to 
estimate. Thus in this model the item difficulty is assumed to result from the 
difficulty of the item stem and the difficulty of the position. Avoiding 
overparameterization of the model, the design matrix had to be reduced to a 
109 by 57 matrix. One item stem basic parameter and one position basic 
parameter had to be set to zero. A second LLTM (Lw) was estimated that 
included only the 55 item stem basic parameters without modeling an effect 
for the positions.  

That is, the design matrix of Lw only differed from the design matrix 
of Lp by eliminating the position basic parameters. With Lw, it is assumed 
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that the difficulty of the item depends only on the difficulty of the item 
stem. Again, one of the 55 basic parameters was set to zero resulting in 54 
estimated parameters. 

To summarize, three hierarchically nested models were estimated: the 
most general of the three is the Rasch model for the expanded data set – that 
is, each virtual item was modeled as a separate item. The LLTM Lp 
modeled each item stem and the position of the correct answer and the 
LLTM Lw modeled only the item stems. 

 
 

Table 4. Number of estimated parameters, deviance, and information 
criteria AIC and BIC for the estimated models. 

 
  
 
Table 4 presents the deviances, information criteria, AIC and BIC and 

the number of estimated parameters for the three estimated models. From 
the number of estimated parameters it can be seen that the two LLTM 
models are considerably more parsimonious than the Rasch model; the 
differences in the number of estimated parameters between the Rasch model 
and these two models are 54 and 51, respectively. 

The results of the AIC and BIC are in agreement: they reveal that the 
LLTM that includes position effects has the best fit. But the difference to 
the LLTM without the position effects is low (only 6 points in the BIC, 30 
points in the AIC). 

The item difficulty parameters estimated by the Rasch model were 
reconstructed by the LLTM basic parameters according to Equation 2. 
These reconstructed item parameters are graphically plotted against the 
Rasch model based item parameters in Figure 2.  The plot contains the item 
parameters reconstructed by the model Lp as well as Lw. It can be seen that 
Lp offers only slightly better item parameter recovery. This confirms the 
small differences in the information criteria, AIC and BIC reported earlier. 
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Table 5. Estimates of the position basic parameters from model Lp: the 
estimated parameter value, the SE of parameter estimation and the 
95% confidence interval are presented. 
 

Position Estimate SE 95 % CI 

Lower      Upper 

2 .011 .008 -.005          .027 

3 .057 .013 .033         .082 

4 .067 .012 .043         .091 

 
 
Note that the first position basic parameter had to be set to zero due to 

over-parameterization. That is, the value of the other basic parameters 
modeling answer position can be interpreted in comparison to the fixed 
parameter, i.e., the first position parameter can be seen as “reference”. The 
estimated position basic parameters are very small (see Table 5), with only 
the parameters for position 3 and 4 showing an estimate distinct from 0. Of 
course, as pointed out earlier, because of the very large sample, any 
inferential statistical interpretation of the confidence interval must be done 
with caution. However, in summary, the influences of the positions seem 
very small with a tendency that the item gets more difficult if the correct 
answer is located toward the end of the set of options.  

For each item that was presented with at least two different correct 
response positions, the difference of the parameter estimates were 
calculated. For example item 2 was administrated in different booklets with 
correct answer position in positions 1, 2 and 3 (thus item 2 was split into 
three virtual items 2.1, 2.2. and 2.3 in the expanded data matrix). For each 
of these virtual items, the item difficulty parameter was estimated with the 
Rasch model. Then, the differences between these parameter estimates were 
calculated. For example, for item 2 the difference of (β 2.1)-(β2.2), (β2.2)-
(β2.3) and (β2.1)-(β2.3) were calculated. All the differences calculated in this 
way are displayed in Figure 3. 
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Figure 2. Reconstruction of item parameters estimated by the Rasch 
model by means of the basic parameters of the two LLTM models Lp 
and Lw. 

 
 
The abscissa displays between which positions the differences were 

calculated. Each point in the graphic displays one difference. The boxplots 
show that all medians of differences lie a little bit under the point 0. This 
means that there is a slight tendency towards higher difficulty for the item 
as the solution position moves toward the end of the set of response options. 
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Figure 3. Graphical display of differences between positions’ estimates. 

 
 

DISCUSSION AND CONCLUSION 
It is commonly believed that the position of the correct response in 

multiple choice items has no effect on item difficulty as long as the correct 
options are randomly or evenly assigned to different positions. However, 
empirical research on the effect of the response positions in MC items is 
scarce. If the correct response position affects item difficulty a common 
metric cannot be maintained across alternate forms of the test which are 
only different in the location of the response options.    

In this study an attempt was made to estimate the contribution of the 
position of the response options to item difficulty in MC items. LLTM 
(Fischer, 1973) was employed to model and parameterize response 
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positions in a four-option high-stakes MC test of English as a foreign 
language.  

Three models were estimated: a standard Rasch model for the 
expanded data set with 109 virtual items, an LLTM with 55 item stems plus 
four option positions, and an LLTM with the 55 item stems without the 
option positions. According to the BIC the Rasch model with 109 virtual 
items had the worst fit. The model which included the option positions had 
a slightly better fit than the model without modeling the option positions. 
However, the very small parameter estimates for different response 
positions suggested that the location of the correct response contributes 
little to the overall item difficulty. 

A close examination of the changes in the difficulty estimates of the 
items which are presented in different booklets with correct replies in 
different positions (Figure 3) showed that as the correct option moves 
toward the end of the set of options the item gets slightly more difficult. 
This effect is not very noticeable, though.   

     The findings of this study suggest that the position of the correct 
option has very little effect on MC item difficulty and the common practice 
of distributing correct options randomly is valid. Nevertheless, in this study, 
the four-option MC format was examined. The effect is small, but it seems 
that as the correct option moves to the end of the set of options the greater 
the effect on the item difficulty. Thus, further research on MC format with 
more response options seems important to find out whether this trend 
significantly affects response options located further toward the edge. Using 
an MC format with only up to four response options, item developers need 
not be very much concerned about the position of the correct options as 
long as pattern guessing is prevented by randomizing the answer key. 
However, note that Attala and Bar-Hillel (2002) state that knowledge of the 
fact that the answer key is balanced, i.e., correct responses are equally 
assigned to the positions, can be exploited by testwise candidates. They 
argue that when examinees are aware that the answer key is balanced they 
can add between 10 and 16 points to their final SAT score, on average, 
depending on their knowledge level and, therefore, recommend randomized 
answer keys instead of balanced.    
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