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R E S E A R C H R E P O R T

Investigating Robustness of Item Response Theory
Proficiency Estimators to Atypical Response Behaviors Under
Two-Stage Multistage Testing

Sooyeon Kim1 & Tim Moses1,2
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The purpose of this study is to evaluate the extent to which item response theory (IRT) proficiency estimation methods are robust to
the presence of aberrant responses under the GRE® General Test multistage adaptive testing (MST) design. To that end, a wide range
of atypical response behaviors affecting as much as 10% of the test items were simulated using a generic GRE 2-stage MST and the
2-parameter logistic (2PL) IRT model. As expected, some differences were found among the 5 estimators in terms of the recovery of
the true theta ability; for example, Bayesian estimators had lower error variance and their estimates were regressed to the mean. Once
the IRT theta estimates were scaled onto a comparable reporting score scale, however, it was found that all the estimation methods
investigated, including the one currently used to score GRE MSTs, were equally robust under the simulated conditions.
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In a multiple-choice test, examinees’ responses could be classified into the following three types: (a) responses reflecting
examinees’ true ability; (b) correct responses made through lucky guesses or preknowledge (i.e., item exposure); and (c)
incorrect responses derived from anxiety, carelessness, or distraction (Y. Yen, Ho, Laio, Chen, & Kuo, 2012). The latter
two types of atypical responses might cause error in proficiency estimation because they would not reflect the examinees’
actual knowledge and assumed item response patterns given their true knowledge levels. Meijer (1996) described various
factors that can cause an examinee’s score on a test to be spuriously high or spuriously low. Those factors are cheating (e.g.,
copying from another examinee), careless responses, guessing, creative responses, and random responses. Guessing and
cheating are well-known atypical behaviors that may artificially inflate proficiency estimates. Some atypical behaviors
(e.g., alignment error on a separate answer sheet or copying a neighbor’s answers) are obsolete in the present com-
puter mode environment, whereas some other factors (e.g., preknowledge from the Internet) emerge due to technological
advancements.

By design, the atypical responses may lead to larger estimation error in adaptive testing than in traditional linear testing
(Y. Yen et al., 2012). Various topics related to the examinees’ aberrant responses (e.g., person-fit statistics, item selection
strategy) have been investigated under the computerized adaptive test (CAT) context (see Ho & Li, 2013; Karabatsos,
2003; Meijer, 1994, 2005; Sijtsma & Meijer, 2001). Chang and Ying (2009) found that when responses to earlier test items
were misfit, it would cause the CAT item selection procedure to select items that were not appropriate for the examinee.
Misfit responses were more detrimental for high-level examinees than for low-level examinees in terms of total number
of dichotomous items required to recover their actual ability levels under CAT (Guyer & Weiss, 2009; Rulison & Loken,
2009). According to their simulation studies, CAT with the conventional 3-parameter logistic item response theory (3PL-
IRT) model was unable to recover the (high-level) examinees’ true abilities from misfit-as-incorrect responses (perhaps
due to their careless behaviors or unfamiliarity to the computer testing environment) within a test length of 45–50 items.
This means that the high-ability examinees who respond incorrectly to the first two items in the CAT would not obtain
an unbiased ability estimate even after 50 items were administered. Early aberrant responses cannot be discounted with
a retrospective evaluation of the entire response vector, as the early answers provide the only information with which to
continue the CAT and select future items. Given a sufficient test length (e.g., more than 30 items), however, CAT recovered
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the (low-level) examinees’ true proficiency levels from misfit-as-correct-responses. This result indicates that successful
guessing early in the CAT may not result in biased ability estimates unless test length is insufficient.

It is generally assumed that adaptive testing may be more vulnerable to the atypical responses than is traditional linear
testing. This statement may not be always true, however, because adaptive testing exists in various formats and performs
differently depending upon its design structure. Like CAT, multistage testing (MST) is also adaptive. But its designs vary
substantially as a function of numbers of stages, numbers of modules, or numbers of items in modules. Because MST differs
substantially from CAT in terms of its adaptive algorithm and design structures, it is difficult to generalize the findings
derived from CAT directly to the MST context. The impact of the examinees’ atypical responses on their proficiency
estimates would differ depending upon the design structure of adaptive testing. It is expected that MST would be more
robust than CAT to atypical responses but more vulnerable than fixed-format (linear) tests. Any conclusion for the impact
of atypical responses under the MST context cannot be made, however, because research related to this topic is lacking in
the literature.

Multistage Testing

CAT and MST use different adaptive algorithms. Under the CAT design, adapting to an examinee’s ability occurs at the
item level to improve precision and efficiency of measurement, whereas under the MST design, adapting to an examinee’s
ability occurs between item sets (modules) based on cumulative performance on previous item sets. An MST design
consists of a small number of separate modules, and each module can be assembled to meet a set of specifications such as
item content and item difficulty. Examinees receive preassembled item sets determined by their performances at previous
stages. MST includes only a small number of decision points—in some cases, only one. In particular, the two-stage MST
is actually a sequence of two conventional linear tests, with the first test scored before administration of the second test
and used to assign each examinee to the appropriate difficulty level of the second test.

The choice of MST design configurations and psychometric characteristics of MST assembly is influenced by various
factors, such as test score use (certification or admission), item security, item pool capacity, and administration environ-
ments. Adding stages and modules within stages can produce tremendous practical complexity without adding psycho-
metric benefits for the final forms (Jodoin, Zenisky, & Hambleton, 2006; Luecht & Nungester, 1998; Luecht, Nungester,
& Hadidi, 1996; Wang, Fluegge, & Luecht, 2012). A recent study (Wang et al., 2012) showed that complex and simple
MST designs performed equally well when the item bank consisted of high-quality items targeting key ability regions.
The authors of that study recommended the use of simple MST configurations, because those designs can be used with a
modestly sized item bank.

The determination of how to allocate items to the Stage 1 routing section and to subsequent sections also depends
on the test’s purpose and the item pool’s quality. H. Kim and Plake (1993) found that the statistical characteristics of the
first-stage (routing) module had a major influence on the complete test’s measurement precision compared to the later
stages’ modules. However, more recent studies using a two-stage MST (S. Kim & Moses, 2014; S. Kim, Moses, & Yoo,
2015a, 2015b) showed that the numbers of items at Stage 1 and at Stage 2 were about equally important. When a sufficient
number of items is administered at the subsequent stage, the number of items at Stage 1 would not be more important
than the number of items at subsequent stage. S. Kim et al. (2015b) assembled eight two-stage MST forms as a function
of not only the second-stage module differences in difficulty (overlap vs. distinct) but also module length at Stage 1 and
Stage 2 (e.g., 25 items in Stage 1 and 15 items in Stage 2 [called 25–15], 20–20, 15–25, and 10–30). In their simulation,
the use of distinct second-stage modules offered a benefit by reducing estimation error at the extreme regions of the
proficiency scale. The difference among the four module-length conditions was almost negligible in terms of the accuracy
of proficiency estimates. For example, although the 10–30 panel led to substantial misclassification at Stage 1 due to a lack
of items available for routing (only 10 items), its final proficiency estimates were as accurate as those in other panel types.

MST provides a compromise between fully adaptive testing (e.g., CAT) and conventional linear form testing. This
feature has led to interest in its operational use in practice (see Educational Testing Service [ETS], 2011). Since the launch
in August 2011, the GRE® revised General Test (rGRE) has followed a two-stage MST design that includes one module
at Stage 1 and three modules at Stage 2, with 20 items in each module. Each examinee receives a total of 40 items across
the two stages, which are separately timed at 30 minutes per stage. The GRE program uses a 2PL-IRT model to calibrate
item parameters using the data from the domestic examinees and uses number-correct scoring (often called inverse test
characteristic curve [TCC]) to produce examinees’ reported scores.
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The MST’s unique feature also led to various studies (see Luecht & Sireci, 2011, for a summary). Even so, many studies
related to MST focused on design issues such as adequate numbers of stages, numbers of modules, or panel assembly (see
Jodoin et al., 2006; Luecht & Nungester, 1998; Luecht et al., 1996; Wang et al., 2012). Very little guidance appears in the
literature about the effects of the choice of an estimator in practical applications, and the impact of atypical responses on
the estimation process. Although a recent study compared the performance of IRT estimation methods under the MST
framework (S. Kim et al., 2015a, 2015b), research on the impact of atypical responses under MST is clearly lacking in the
literature. This topic is important because the choice of scoring method has a direct influence on the examinees’ reported
scores or proficiency levels, and the examinees’ atypical responses are unavoidable in practice.

Proficiency Estimation Methods

Given that some level of aberrance is unavoidable in actual test data, the question is how to reduce the potential impact
of atypical behaviors on examinees’ proficiency estimates and ultimately reported scores. The choice of proficiency esti-
mators (i.e., scoring method) represents one approach to answering that question. An examinee’s proficiency level can be
estimated in a variety of ways when using an IRT model, and an MST panel (i.e., form) can be scored in several ways.
Generally well-known IRT proficiency estimation methods are as follows:

1. Test characteristic function with number-correct scoring1 (TCF)
2. Maximum likelihood estimation with item-pattern scoring (MLE)
3. Expected a posteriori with number-correct scoring (SEAP)
4. Expected a posteriori with item-pattern scoring (EAP)
5. Maximum (mode) a posteriori with item-pattern scoring (MAP)

MLE has been used commonly in practice. MLE finds the examinee’s proficiency level that maximizes the likelihood of
obtaining the examinee’s observed test data, given the item parameters and model. In other words, MLEs are the parame-
ter values that maximize the likelihood that the observed data would have been generated. Thus MLE values correspond
to the mode of the likelihood function.2 Desirable properties of the MLE are that it is asymptotically unbiased and that its
standard error is related to the information function (Baker, 1992). Drawbacks of MLE, however, include infinite estimates
for examinees whose response patterns are either only incorrect (extremely low proficiency) or only correct (extremely
high proficiency). To overcome this, the range of values for the estimated proficiency level can be restricted. This remedy is
equivalent to estimating the proficiency level using a Bayesian estimator with a uniform prior distribution in the selected
range. Bayesian methods such as EAP and MAP do not share this limitation. Under the Bayesian paradigm, the posterior
distribution of the proficiency levels (i.e., 𝜃) is defined as the product of the likelihood function and the prior ability distri-
bution. Bayesian methods incorporate information about the prior distribution to approximate the posterior distribution
of latent proficiency (Bock & Mislevy, 1982). The mean of the posterior distribution is the proficiency estimate under EAP,
whereas the mode of the posterior distribution is the proficiency estimate under MAP (W. M. Yen & Fitzpatrick, 2006).
The choice of a reasonable prior distribution for the proficiency level is key to Bayesian estimators. The most common
prior distribution is the standard normal distribution, N(0, 1), and the estimated proficiency levels are shrunk toward
the prior mean value. Bayesian estimators generally lead to biased estimates, but their overall errors tend to be relatively
small due to shrinking to the mean (EAP) or mode (MAP). The shrinkage is expected to be more pronounced under
number-correct scoring, owing to its lower precision, than under item-pattern scoring (Kolen & Tong, 2010). This trend
did not emerge, however, when the conditional variances of the item-pattern and number-correct scoring methods were
compared (see S. Kim at al., 2015a, 2015b).

Kolen and Tong (2010) described psychometric properties (e.g., reliability, conditional standard errors of measurement
[CSEM], and score distributions) of IRT proficiency estimators. Using real data examples, they demonstrated that the
choice of estimators can have a significant influence on practical applications of IRT, such as score distribution or the
assignment of examinees to proficiency levels. They commented that very little guidance appears in the literature about
the effects of choice of estimator in practical applications, although psychometricians are aware of the theory underlying
those estimators. A few researchers compared the performance of IRT proficiency estimators and their impact using
either real or simulated datasets (Magis, Béland, & Râıche, 2011; Tong & Kolen, 2007; Tong & Kolen, 2010). Recently, S.
Kim et al. (2015a, 2015b) compared the performance of seven IRT proficiency methods under the two-stage MST design
using simulated datasets. They showed that Bayesian estimators performed better than non-Bayesian ones mainly at the
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two extreme score regions of the theta scale. Although the difference between item-pattern scoring and number-correct
scoring was almost negligible in the portion of the score range where most examinees’ scores were located, number-correct
scoring produced more stable ability estimates than item-pattern scoring for high-performing examinees. Even so, because
the estimation results derived from different proficiency estimators were comparable across the theta region where most
examinees would be located, the authors recommended the use of a simpler method (e.g., non-Bayesian number-correct
scoring) as a practical choice particularly in the operational setting of the two-stage MST.

Examinees with the same number-correct score but different item response patterns are likely to obtain different profi-
ciency estimates under item-pattern scoring but the same estimates under number-correct (i.e., summed) scoring. There
have been some debates regarding the practical benefits of number-correct scoring versus the psychometric benefits of
item-pattern scoring. Number-correct scoring is easier for test users to understand than is item-pattern scoring. Certain
testing programs prefer item-pattern scoring to number-correct scoring, however, because item-pattern scoring offers
more precise estimations than number-correct scoring does. According to Yen and Fitzpatrick (2006), however, when
tests include 30 or more items, the inverse of the TCC (a number-correct score) “provides a very accurate MLE of ability
for the 3PL model” (p. 137). Based upon the theoretical models underlying the scoring methods, however, it is expected
that number-correct scoring may be less sensitive to atypical response behaviors than item-pattern scoring. Also, use of
prior distribution information may enhance the accuracy of proficiency estimates under this atypical circumstance.

Purpose

With IRT, the operational scoring process that results in an examinee’s reportable score includes essentially two steps: (a)
the estimation of examinees’ proficiency (on the IRT theta scale) and then (b) converting the proficiency estimate onto
the reporting score scale.

The purpose of this study is to investigate the extent to which the alternate proficiency estimators available lead to
reported scores that are robust to the presence of atypical responses under two-stage MST with 20 items at each stage. To
accomplish this objective, we created a typical GRE two-stage MST panel (i.e., test form) with each item parameterized
according to the 2PL-IRT model and simulated examinees’ true ability across a wide range of ability levels and their
responses. When simulating the examinees’ responses on the MST items, we manipulated a particular atypical response
type in order to determine which proficiency estimators produce the most accurate results for each type of response
deviations.

The first part of our evaluation was to compare the proficiency estimates of each estimator with the examinees’ true
proficiency levels at the theta scale for each atypical type. Given the conditions in which various atypical responses existed
under MST, we compared psychometric effectiveness of number-correct scoring versus item-pattern scoring and exam-
ined the potential of prior information to enhance the overall precision of proficiency estimates.

The second part of our evaluation was to compare the estimation results at a hypothetical reporting score level in order
to assess direct impact on the examinees’ final scores. In this study, however, we focused only on the precision in the final
estimation, not on the intermediate estimation at Stage 1, because the previous studies based on both the empirical dataset
and simulated dataset showed that the impact of misrouting was minimal for the two-stage MST, which is the same as the
one used in the present study (see S. Kim & Moses, 2014; S. Kim et al., 2015b; S. Kim, Robin, & Liu, 2012).

Method

Multistage Test Panel Assembly

Figure 1 illustrates a two-stage MST panel design that was used in this study. At Stage 1 (often called routing), there is
only one module; all examinees taking that panel are tested with the same set of items. At Stage 2, there are three modules:
low, medium, and high difficulty. Each module at Stage 2 concentrates on a particular level of difficulty to differentiate
examinees’ abilities within a certain range of proficiency after routing. The items an examinee receives at Stage 2 are
determined by the examinee’s performance on Stage 1. The term path can be used to mean a combination of modules
that could possibly be presented to an examinee. There are three paths in the two-stage MST panel, and each path
consists of the first-stage module and one of the second-stage modules. The total number of items that each examinee
received was 40.
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Figure 1 Schematic of a two-stage multistage test (MST).

Figure 2 Box-and-whisker plots for each module of the multistage test (MST) panel used in this study.

We assembled the MST panel (i.e., test form) with a 2PL-IRT model based solely on statistical specification (e.g., item
difficulty, item discrimination, and number of items). We chose the 2PL-IRT model because large-scale testing programs
(e.g., the rGRE and the TOEFL® test) use the 2PL model operationally, and the benefit from use of a 3PL rather than a 2PL
model appeared to be small in a simple score test of the normal 2PL model (Haberman, 2006). To make the simulated panel
realistic, we examined more than 1,000 MST panels’ statistical properties that had been administered in actual operational
settings. The average of item difficulty parameters was set to be 0.00 for routing, −0.75 for low, 0.00 for middle, and +0.75
for high. The averaged item discrimination parameters were set at 0.80 in all modules. Item parameters for each of four
modules were generated using the Microsoft Excel random number generator function.

Figure 2 graphically presents the distributions of item difficulty as well as item discrimination for each of the four mod-
ules using box-and-whisker plots. In each module, items were ordered by difficulty level. Thus the easiest item appeared
first and the hardest item appeared in the end of the test. We used the TCC and the test information function (TIF) to
assess the extent to which each module and each path were reasonable.

Figure 3 displays four plots that present the TIFs and TCCs for the MST panel used in this study. Two plots in the first
column indicate the TIF and TCC for each module, and two plots in the second column indicate the TIF and TCC for each
path. Perhaps the TIF is more useful under item-pattern scoring, whereas the TCC is more useful under number-correct
scoring in an actual assembly setting. Because we used both scoring methods in this simulation, we considered both the
TIF and the TCC in assessing the reasonableness of the simulated MST panel.
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Figure 3 Test information functions (TIF) and test characteristic curves (TCC) for each module of the multistage test (MST) panel
used in this study.

Table 1 Characteristics of the Item Response Theory (IRT) Proficiency Estimation Methods

Scoring

Prior distribution Number correct Item pattern

No (non-Bayesian) TCF MLE
Yes (Bayesian) SEAP EAP, MAP

Notes. TCF= test characteristic function; MLE=maximum likelihood estimation; SEAP= expected a posteriori with number-correct
scoring; EAP= expected a posteriori; MAP=maximum (mode) a posteriori.

Proficiency Estimators

Table 1 summarizes five IRT proficiency estimation methods that were investigated in this study. Those methods can
be classified as a function of scoring method and use of prior information. TCF and SEAP use number-correct scoring,
whereas MLE, EAP, and MAP use item-pattern scoring. TCF and MLE are non-Bayesian estimators, whereas SEAP, EAP,
and MAP are Bayesian estimators. In this study, we used the standard normal distribution as a prior for the three Bayesian
estimation methods. The specific formulas for each estimation method are as follows.

In the 2PL-IRT model, the probability of correct response is modeled as a function of a latent proficiency level (𝜃) and
item parameters:

Ph (𝜃) = P
(

Xh = 1|𝜃, ah, bh
)
= 1

1 + exp
[
−1.702ah

(
𝜃 − bh

)] , (1)
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where ah is the item discrimination (or slope) parameter, and bh is the item difficulty (or threshold) parameter.
Estimates of the examinees’ proficiency levels (

⌢
𝜃 ) were obtained by treating the item difficulties (b) and discrimina-

tions (a) as known parameters in the H items’ 2PL IRT models in Equation 1 and using each of the five proficiency
estimators.

Using TCF, examinees’ proficiency estimates were defined as those that produced summed scores for the 2PL-IRT
model (i.e., true scores under the IRT model) that closely approximated examinees’ summed total test scores, such that∑

h
uh ≈

∑
h

Ph
(

ah, bh, 𝜃
)

or X ≈ 𝜏 (𝜃) , (2)

where uh indicates the sum of correct responses to the H items, X indicates the summed score, and 𝜏 indicates true summed
score (Kolen & Tong, 2010). Using MLE, examinees’ proficiency estimates were defined as the 𝜃 values that maximized the
likelihood of examinees’ observed patterns of responses to the H items (U = (u1, u2, … , uH)t), as shown in Equation 3:

L (U, 𝜃) =
∏

h

{
Ph

(
ah, bh, 𝜃

)uh
[
1 − Ph

(
ah, bh, 𝜃

)](1−uh)
}

. (3)

The maximization was accomplished using the Newton–Raphson algorithm (Baker & Kim, 2004).3

In Bayesian estimation, multiplying the likelihood function by a prior distribution yields the posterior distribution.
Using SEAP, examinees’ proficiency estimates were defined as average proficiency values based on the likelihood of their
summed total test scores (X =

∑
huh) and an assumed standard normal proficiency distribution:

SEAP = E (𝜃|X) = ∫𝜃

𝜃L (X, 𝜃) g (𝜃) d𝜃

∫𝜃

L (X, 𝜃) g (𝜃) d𝜃
, (4)

where L(X, 𝜃) was computed using the recursion algorithm and the assumed g(𝜃) distribution was approximated with
a discrete distribution containing 41 𝜃 values and quadrature points. Using EAP, examinees’ proficiency estimates were
defined as average values based on the likelihood of their response patterns and an assumed standard normal proficiency
distribution:

EAP = E (𝜃|U) =
∫𝜃

𝜃L (U, 𝜃) g (𝜃) d𝜃

∫𝜃

L (U, 𝜃) g (𝜃) d𝜃
. (5)

As in operational practice, the standard normal distribution for 𝜃 and the integration of this distribution were accom-
plished by approximating the continuous proficiency distribution, g(𝜃), using a discrete distribution with 41 𝜃 values
and quadrature points (Baker & Kim, 2004). EAP and MAP follow essentially the same equation. Using MAP, how-
ever, examinees’ proficiency estimates were defined as those that maximized the likelihood of examinees’ response pat-
terns for an assumed standard normal proficiency distribution. Finding the maximum value was accomplished using the
Newton–Raphson algorithm (Baker & Kim, 2004).

Atypical Response Types

Atypical responses can occur for numerous reasons, although different forms of atypical behaviors may result in the same
kind of item response pattern. Seven atypical responses were used to introduce response patterns that can appear in
practice. Table 2 summarizes the description of each atypical response, the direction of estimation bias due to aberrance,
and the method used to generate each atypical response. We imposed an atypical response type on the examinees’ item
responses generated from the IRT model at each examinee’s proficiency level. Although we adopted the method used
by Karabatsos (2003) in order to generate atypical examinees, the choice of b parameter values associated with lucky
guessing, careless responding, or creative responding was rather arbitrary. As for the item exposure, speededness, and
peculiar subgroup conditions, we utilized some indirect information obtained from the actual data to make the degree of
aberrance more realistic.
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Table 2 Seven Atypical Response Types Considered in This Study

Atypical type Description
Proficiency estimates

artificially How to generate atypical examinees

Random responding Examinees randomly choose an
option of some
multiple-choice items on the
test.

Increased/decreased Impute random responses (i.e., no
functional relationship with
examinees’ proficiency level) to four
items (i.e., 10% of the test) over the
theta region of [−3.0, +3.0] to
represent examinees who blindly
respond.

Guessing (lucky guessing) Examinees guess the correct
answers to some items for
which they do not know the
correct answers.

Increased Assign a .20 probability of a correct
response to difficult items (items with
b ≥ .5) for the examinees located in
the theta range of [−3.0, +0.0].

Preknowledge due to item
exposure (cheating)

Examinees unfairly obtain the
correct answers on test items
that they are unable to answer
correctly. Those items no
longer discriminate effectively.

Increased Impute correct responses to some items
for the examinees located within the
theta range of [−3.0, +3.0]. About
10% of the test; four items randomly
selected from the 40 items (e.g., two
items are from each stage)

Careless responding Examinees answer certain items
incorrectly for which they are
able to answer correctly.

Decreased Assign a .5 probability of an incorrect
response to easy item (b<= −0.5)
for the examinees located in the theta
region of [+0.5, +3.0].

Creative responding Examinees answer certain easy
items incorrectly because they
interpret easy items in a
unique and creative manner.

Decreased Impute incorrect responses to easy
items (items with b<= −1.2) for the
examinees located in the theta region
of [+1.5, +3.0].

No responding to the final
items

Examinees cannot reach the final
items because the test is
speeded.

Decreased At stage 1, about 5–15% of the items are
speeded as a function of the theta
level (e.g., 15% [−3.0 to −1.0]; 10%
[−1.0 to +1.0]; 5% [+1.0 to +3.0]). At
stage 2, 10% of the items are speeded
in each module.

Peculiar subgroup (more able
in ability in this study)

Subgroup’s item responses differ
from the typical response
pattern.

Increased/Decreased Generate item responses of peculiar
subgroup using fake item parameters
(e.g., 15% of the examinees at each
theta point; subtract 0.3 from the true
b parameters to make all items less
difficult; subtract 0.1 from the true a
parameters to make all items less
discriminating)

Procedure

We compared the five estimation methods in terms of their proficiency estimation accuracy using simulated response data
derived from a two-stage MST panel in a situation where each of the seven atypical responses was present. We simulated
1,000 examinees at each of 41 quadrature points on a theta scale ranging from −3.0 (minimum) to +3.0 (maximum),
with an interval of 0.15 (N = 41,000). The simulation procedure for each response under each of the seven atypical types
consisted of the following steps:

1. Generate the simulated examinee’s response to each item in the Stage 1 module.
2. Compute the examinee’s proficiency (i.e., theta) on Stage 1 using each of the five proficiency estimators, and assign

the examinee to the Stage 2 module given the provisional proficiency.
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3. Generate the examinee’s response to each item in the Stage 2 module.
4. Compute the examinee’s proficiency on Stage 1 and Stage 2 combined, using each of the five proficiency estimators,

to determine the examinee’s estimated proficiency theta.
5. Compute the examinee’s reported score, using each of the five theta estimates and their corresponding scoring

conversions.

Based upon the defined population intervals method (Luecht, Brumfield, & Breithaupt, 2006),4 we selected two cut
scores for routing simulated examinees to a second-stage module in a manner that would result in approximately 30%,
40%, and 30% of the examinees taking high, middle, and low paths, respectively, as the distribution of the simulated exam-
inees’ proficiency estimates. Therefore, the two cut scores associated with the 30th and 70th percentiles of the cumulative
distribution of theta may have differed slightly depending upon the estimators.

Given that all simulated examinees’ true proficiency levels (i.e., thetas) are known, their estimated thetas can be com-
pared to their true thetas as a method of evaluating the effectiveness of the five estimators. Based on the difference between
estimated and true values, three deviance measures—bias, error, and root mean square error (RMSE)—were calculated
at each of the 41 quadrature points using the following formulas.

Biasjk =
∑

i

(
𝜃ijk − 𝜃k

)
, (6)

Errorjk = SD
(
𝜃ijk

)
, (7)

RMSEjk =
√

Bias2
jk + Error2

jk, (8)

for a fixed proficiency group 𝜃k, where i indicates an examinee, j indicates a proficiency estimator, 𝜃ijk indicates a profi-
ciency estimate of a particular estimator under a particular atypical condition at a theta point k, and 𝜃k indicates a true
proficiency value at a theta point k. As overall summary measures, root mean squared bias, error, and RMSE were each
averaged across all quadrature points, weighting the values at each theta level according to its relative percentage (f k)
under the standard normal distribution.5 For each proficiency estimator, the resulting statistics were the weighted root
mean squared bias,

√∑
k

fkBias2
jk; the weighted standard error of estimation,

√∑
k

fkError2
jk; and the weighted RMSE,√∑

k
fkRMSE2

jk. We used a root mean square averaging procedure to prevent negative bias at one score level from can-

celing out positive bias at another.
When IRT methods are used, theta estimation is considered an intermediate step to producing the final score on a

predetermined reporting scale that maximizes scores’ usage and interpretation (Robin, 2014). Score scales other than the
IRT-𝜃 scale are often found to be more useful for score reporting. In actual test settings, testing programs report scaled
scores to the examinees after applying a particular transformation procedure to the thetas to facilitate score interpretation.
The IRT proficiency estimators’ differences occurring on the reporting scale will be of practical significance because they
have direct impact on the examinees’ final scores. In reality, the choice of a scaling procedure will depend on the test’s
purpose (e.g., certification, admission), the population, test length, and psychometric properties, and so on. To make
meaningful comparisons among the five proficiency estimators, we chose a hypothetical score scale that may well reflect
an existing large-scale high-stakes testing program. The hypothetical scaled scores are approximately normally distributed
with mean of 150 and standard deviation of 8, and ranged from 130 to 170, with an increment of 1, after the truncation
of the score scale.

The score conversions associated with their respective proficiency estimate were obtained by specifying the target scal-
ing population distribution (here, set to a normal distribution with a mean equal to 150 and a standard deviation equal
to 8.0) and using the nonlinear score transformation procedures described in the book of Kolen and Brennan (2004,
pp. 338–340). The procedure for finding the true and each one of the estimation method’s scaling conversions consisted
of the following steps:

1. Find the population theta probabilities (i.e., weights) at each population theta value.6
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2. Compute the cumulative probabilities and percentile ranks from Step 1 at each population theta value and at each
estimation methods’ estimated theta values.

3. Take the percentile rank and solve for the score on the standard normal distribution having the same cumulative
distribution function value (i.e., the inverse of the standard normal density function).

4. Obtain the mean and standard deviation for the values obtained in Step 3.
5. Apply the mean and sigma scaling by subtracting the mean from Step 4, multiplying by 8 (standard deviation from

Step 4), and adding 150 to get the desired mean and standard deviation.

Consequently, the distribution of the scaled true ability and the distributions of the scaled estimates for each method
can be expected to have nearly the same mean, variance, and shape under the no aberrance condition. Thus, the scaled
scores obtained with each of the five proficiency estimators were compared to the true scaled score at each true theta value
(the conditional results). These results were then aggregated accounting for the population weights, into overall deviance
measures, in the same way it was done with theta proficiency estimates.

Results

Theta Scale

For each of the five proficiency estimators, we compared examinees’ estimated proficiency levels (i.e., theta values) to their
true proficiency levels under each of the seven atypical response conditions and the condition of no atypical responses (i.e.,
no aberrance). Figures 4–6 represent bias, error, and RMSE conditioned on each of the 41 quadrature points across the
theta scale, respectively. In the figures, each plot represents each of the following conditions, respectively: no aberrance,
random responses, guessing, preknowledge, careless responses, creative responses, missing responses due to speededness,
and a peculiar subgroup’s responses. The bias plots display the theta differences (e.g., estimated minus true) associated
with each proficiency estimator under each of the atypical conditions. Negative bias indicates underestimation, whereas
positive bias indicates overestimation in the estimated proficiency levels. The error plots display conditional standard
deviations of the differences, which can be interpreted as empirical estimates of the CSEM, under the atypical response
conditions. The RMSE plots display the conditional total error, which is a combination of bias and error. Table 3 presents
the summary of the weighted root mean squared bias, error, and RMSE that were averaged across the entire theta scale
from −3.0 to +3.0, derived under the eight response conditions.

As shown in Figure 4, the five estimators’ biases under the random, preknowledge, and peculiar subgroup conditions
were nearly identical to the bias associated with no aberrance in terms of magnitudes and patterns. Consequently, as
presented in Table 3, the average weighted root mean squared biases under those atypical conditions were almost indis-
tinguishable from the no aberrance condition, and their biases were consistently smaller compared to the other conditions’
biases. Under the no aberrance, random, preknowledge, and peculiar subgroup conditions, the five estimators’ biases dif-
fered noticeably at the top and bottom regions of the theta scale. MLE produced the least bias, TCF produced the second
least bias, and the Bayesian methods produced the largest bias. Bayesian methods yielded large positive bias (i.e., overes-
timation) at the lower theta region and large negative bias (i.e., underestimation) at the upper theta region. By design, all
five estimators produced similar patterns of negative bias across the theta region above 0.5 (under the careless condition)
or 1.5 (under the creative condition). The careless condition produced larger biases than did the creative condition, which
produced slightly larger biases than did the no aberrance condition. The abrupt changes occurring at either at 0.5 or 1.5 of
the theta scale were caused by the aberrant manipulation imposed on those conditions. Under the speededness condition,
all methods produced negative bias across the theta region above−2.0. The number of not reached items at Stage 1 differed
as a function of the examinees’ theta level. For example, at Stage 1, the low-performing examinees missed the last three
items out of the 20 items, whereas high-performing examinees missed the last item only, which is the most difficult item
in the routing module. At Stage 2, however, it was designed that all examines could not reach the last two items. Although
the effect of speededness spread out rather widely across the theta scale, its impact was more salient at the upper region
of the theta scale because the not-reached items were difficult ones. As presented in Table 3, the magnitude of the average
bias was larger under the careless and speededness conditions than other conditions. Under the guessing condition, all
five methods performed very similarly to the no aberrance condition across the upper theta region. However, both TCF
and MLE produced large positive bias, as did other Bayesian methods, across the theta region lower than −1.0. Thus the
guessing condition produced slightly larger biases than did the no aberrance condition.
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Table 3 Summary of Three Deviance Measures for Each Estimation Method Under Various Atypical Response Conditions: Theta Scale

Deviance Method No atypical Random Guessing Preknowledge Careless Creative Speededness
Peculiar

subgroup

Bias TCF 0.07 0.06 0.15 0.06 0.32 0.19 0.37 0.03
MLE 0.04 0.05 0.17 0.04 0.33 0.19 0.33 0.05
SEAP 0.14 0.14 0.24 0.14 0.36 0.24 0.35 0.14
EAP 0.10 0.10 0.23 0.10 0.36 0.23 0.30 0.12
MAP 0.11 0.11 0.24 0.11 0.37 0.24 0.30 0.13

Error TCF 0.35 0.36 0.36 0.36 0.36 0.35 0.36 0.37
MLE 0.34 0.34 0.36 0.34 0.34 0.33 0.35 0.36
SEAP 0.29 0.29 0.31 0.29 0.30 0.29 0.29 0.31
EAP 0.28 0.28 0.31 0.28 0.29 0.27 0.29 0.30
MAP 0.27 0.27 0.31 0.27 0.28 0.27 0.28 0.29

RMSE TCF 0.36 0.36 0.39 0.36 0.48 0.40 0.52 0.37
MLE 0.35 0.35 0.39 0.34 0.47 0.38 0.49 0.36
SEAP 0.32 0.32 0.39 0.32 0.47 0.38 0.46 0.34
EAP 0.30 0.30 0.39 0.30 0.46 0.36 0.42 0.32
MAP 0.30 0.30 0.39 0.30 0.46 0.36 0.41 0.32

Notes. TCF= test characteristic function; MLE=maximum likelihood estimation; SEAP= expected a posteriori with number-correct
scoring; EAP= expected a posteriori; MAP=maximum (mode) a posteriori; RMSE= root mean square error.

Regarding the magnitude of the conditional error, all methods performed similarly across the theta region from −1.0
to +1.0 under the no aberrance, random, guessing, preknowledge, and peculiar subgroup conditions. Under those condi-
tions, three Bayesian methods produced much less error than did non-Bayesian methods (e.g., TCF, MLE). MLE yielded
the largest error in the extremes of the theta scale, whereas TCF yielded smaller error than did MLE at the upper region.
Under the careless, creative, and speededness conditions, all methods performed similarly across the theta region above
−1.0. However, all three Bayesian methods produced much smaller error than did their non-Bayesian counterparts at
the theta region below −1.0. Under the guessing condition, TCF and MLE produced much smaller error at the lower
theta region than under the other conditions. As presented in Table 3, the average weighted errors were fairly comparable
across the atypical conditions. In general, the Bayesian methods produced smaller errors than did their non-Bayesian
counterparts.

As a consequence of the reduction in standard error, both EAP and MAP yielded smaller RMSE than did MLE, mainly
at the top and bottom theta regions, under the no aberrance, random, preknowledge, and peculiar subgroup conditions.
Under the careless, creative, and speededness conditions, three Bayesian methods produced smaller RMSEs than did their
non-Bayesian counterparts across only the lower region of the theta scale. There was no difference among the five methods
under the guessing condition. For all atypical conditions, SEAP produced the largest RMSEs at the upper region of the
theta scale, but SEAP performed slightly better than did TCF in the remaining region. TCF performed very similarly to
MLE under the no aberrance, random, guessing, preknowledge, and subgroup conditions. TCF was more sensitive to the
speededness aberrance than was MLE, however, leading to larger RMSEs in the upper theta region. MLE produced the
smallest RMSEs at the top of the theta region under the speededness condition. The difference between non-Bayesian
methods and their Bayesian counterparts was small under the guessing and careless conditions. As presented in Table 3,
the overall RMSEs of the Bayesian methods were slightly smaller than those of their non-Bayesian counterparts. Among
the three Bayesian methods, SEAP produced slightly larger RMSEs than did EAP or MAP. All five methods produced the
largest RMSEs under the careless and speededness conditions.

Reporting Score Scale

After nonlinear scaling, all three deviance measures were recalculated to compare the performance among the five profi-
ciency estimators at the scaled score level. For each of the five proficiency estimators, we compared examinees’ estimated
scaled scores in a hypothetical score scale to their true scores under each of the seven atypical response conditions and
the condition of no atypical responses. Figures 7–9 represent conditional bias, error, and RMSE, respectively, across the
reporting score scale ranged from 130 to 170. In the figures, each plot represents each of the eight atypical conditions as
in the previous figures. The bias plots display the scaled score differences (e.g., estimated minus true) associated with each
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Table 4 Summary of Three Deviance Measures for Each Estimation Method Under Various Atypical Response Conditions: Reporting
Score Scale

Deviance
measure Method No atypical Random Guessing Preknowledge Careless Creative Speededness

Peculiar
subgroup

Bias TCF 0.54 0.54 0.76 0.54 1.34 1.12 0.60 0.59
MLE 0.47 0.47 0.71 0.47 1.42 1.28 0.56 0.52
SEAP 0.54 0.54 0.76 0.54 1.34 1.12 0.60 0.59
EAP 0.47 0.47 0.71 0.47 1.42 1.27 0.56 0.52
MAP 0.47 0.47 0.71 0.47 1.42 1.28 0.56 0.52

Error TCF 2.60 2.61 3.07 2.61 3.26 2.87 2.69 2.74
MLE 2.43 2.41 2.98 2.43 3.18 2.71 2.52 2.57
SEAP 2.60 2.61 3.07 2.61 3.26 2.87 2.69 2.74
EAP 2.43 2.41 2.98 2.43 3.17 2.71 2.52 2.57
MAP 2.43 2.41 2.98 2.43 3.17 2.71 2.52 2.57

RMSE TCF 2.65 2.66 3.16 2.67 3.53 3.09 2.75 2.80
MLE 2.47 2.46 3.06 2.47 3.48 3.00 2.58 2.63
SEAP 2.66 2.66 3.16 2.67 3.53 3.09 2.75 2.80
EAP 2.47 2.46 3.06 2.47 3.47 3.00 2.58 2.63
MAP 2.47 2.46 3.06 2.47 3.48 3.00 2.58 2.62

Notes. TCF= test characteristic function; MLE=maximum likelihood estimation; SEAP= expected a posteriori with number-correct
scoring; EAP= expected a posteriori; MAP=maximum (mode) a posteriori; RMSE= root mean square error.

proficiency estimator under each of the atypical conditions. Table 4 summarizes the weighted root mean squared bias,
error, and RMSE, respectively, averaged across the entire score scale from 130 to 170, derived under the eight conditions.

In Figure 7, each plot has five lines that represent the conditional bias of each of the five estimators. Only two
lines are prominent in each plot, however, because the difference between Bayesian and non-Bayesian was indistin-
guishable in terms of conditional bias. One line indicates number-correct scoring and another indicates item-pattern
scoring.7 The difference between item-pattern scoring and number-correct scoring occurred at the two extremes of
the reporting score scale, but the difference was minor. In general, all methods tended to produce positive bias in
the bottom region of the scale and negative bias in the upper region of the scale across all the atypical conditions
mainly due to score truncation. Both careless and creative conditions produced substantial amounts of bias, by design,
in the upper score region, and as a result their averaged biases were much larger than those of the no aberrance
condition. As presented in Table 4, item-pattern scoring produced slightly smaller biases than did number-correct
scoring for all atypical conditions, but their differences were almost negligible. Across all the eight atypical conditions,
the largest difference among the five estimators in the overall bias was 0.16 (=1.28 minus 1.12 under the creative
condition).

As shown in Figures 7–9, only two patterns were clearly prominent in all plots, because the difference between Bayesian
and non-Bayesian methods was indistinguishable in terms of the pattern and magnitude of conditional errors. Item-
pattern scoring produced slightly smaller error than did number-correct scoring across the entire score scale for all atypical
response conditions. The error patterns of the random, preknowledge, speededness, and peculiar subgroup conditions
were very similar to the error pattern of the no aberrance condition. The other conditions, such as guessing, careless,
and creative, produced rather different patterns compared to the no aberrance condition. Compared to the no aberrance
condition, guessing produced the slightly larger error at the lower region of the scale, but both the careless and the creative
conditions produced the substantially larger error at the upper region of the scale. As summarized in Table 4, item-pattern
scoring produced smaller errors than did number-correct scoring, but as in the bias case, their differences were small. The
overall errors were generally comparable across the eight atypical conditions. The difference between minimum (= 2.41)
and maximum (= 3.26) errors was approximately one point.

As in the conditional error plots, only two patterns were clearly prominent in all plots of the conditional RMSEs for
the same reason. Item-pattern scoring produced slightly smaller total error than did number-correct scoring across the
entire score scale for all atypical response conditions, but the differences were minimal. The RMSE patterns of the random,
preknowledge, speededness, and peculiar subgroup conditions were very similar to the RMSE pattern of the no aberrance
condition. As in the error plots, guessing produced the larger RMSE at the lower region of the scale, but both careless
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and creative responses produced the larger RMSE at the upper region of the scale. The overall RMSEs were generally
comparable across the eight response conditions. The difference between minimum (= 2.46; item-pattern scoring in the
random condition) and maximum (= 3.53; number-correct scoring in the careless condition) RMSEs was slightly larger
than one point.8

Discussion

Using real datasets (from linear tests), Kolen and Tong (2010) showed that the choice of Bayesian (prior) versus non-
Bayesian (no prior) estimators was of more practical significance than the choice of number-correct (i.e., summed) versus
item-pattern scoring. A recent simulation study confirmed this finding (S. Kim, Moses, & Yoo, 2015a, 2015b). In the
present simulation study, the results before scaling (i.e., comparisons at the theta scale) also confirmed this trend. As
shown in the no aberrance condition, the magnitude of bias and error varied depending upon the choice of IRT proficiency
estimators, mainly in the top and bottom regions of the theta scale. By nature, Bayesian estimators using prior information
yielded greater bias but smaller standard errors than did their non-Bayesian counterparts. For the extreme proficiency
levels (𝜃 <−1.5 or 1.5<𝜃), the decrease in standard error can compensate for the bias characteristic of Bayesian estimates.
As a result, the total errors of the Bayesian methods were generally smaller than those of their non-Bayesian counterparts,
but the magnitude of differences was relatively small.

IRT proficiency estimators performed differently mainly at the extremes of the theta scale as a function of atypical
response types. Most estimators were robust under certain atypical conditions, where the degree of aberrance was minor
either at the item level (e.g., random, preknowledge) or examinee level (e.g., peculiar subgroup). By design, about four
items (i.e., two items per stage; 10% of the test) produced atypical responses under the random and preknowledge condi-
tions, and 15% of examinees produced atypical responses under the peculiar subgroup condition. The estimation results
from those atypical conditions were comparable to the result from the no aberrance condition. Again, Bayesian estimators
produced smaller overall error than did non-Bayesian estimators. Both EAP and MAP performed slightly better than did
SEAP. Based upon the findings, we concluded that the impact of aberrance on the IRT proficiency estimators would be
minimal as long as a sufficient number of high-quality items are available with which to estimate the examinees’ profi-
ciency levels. Even so, this trend will no longer be true unless the degree of aberrance is moderate, as implemented in this
simulation.

Some atypical types, such as guessing, careless, creative, and speededness, resulted in larger bias (and thus larger
RMSEs), compared to the no aberrance condition. Under those atypical conditions, the benefit of using prior informa-
tion was almost negligible, because non-Bayesian methods performed similarly to the Bayesian methods across the theta
region from −1.0 to +3.0. All estimation methods performed very similarly under each of the atypical conditions. On
average, the RMSEs were the largest under the careless condition where most high-performing examinees answered easy
items incorrectly due to their careless behaviors. Because many items’ difficulties were lower than −0.5 in the routing
module at Stage 1 (nine items out of 20) and even in the high module at Stage 2 (three items out of 20), the largest RMSEs
occurring in the careless condition were not surprising. This result is compatible with the finding that the conventional
3PL-IRT model was unable to recover the (high-level) examinees’ true abilities from misfit-as-incorrect responses within
a test length of 45–50 items under CAT. By design (as explained in Table 2), the degree of aberrance in the creative con-
dition was not as severe as in the careless condition, because only a few items had item difficulties lower than −1.2 at both
Stage 1 and Stage 2 (either middle or high). Although the impact of both careless and creative aberrances was nontrivial
to the high-performing examinees in the present study, those cases would be rare in reality. Any potential impact due to
speededness must be a real concern, however, because testing programs are not completely free from this matter unless
they allow unlimited time. Although we imposed a rather severe degree of speededness on the simulation, its impact was
not substantially large compared to the no aberrance condition. Because difficult items appeared at the end of the test
in each stage, not-reached items were more problematic to the high-performing examinees than to the low-performing
examinees. By design, the examinees who were assigned to the high module at Stage 2 were not able to reach three (diffi-
cult) items out of the 40 items (one item at Stage 1 and two items at Stage 2). MLE outperformed compared to its Bayesian
counterparts in the conditions where perfect scores were impossible by design (e.g., speededness, creative). MLE out-
performed at the speededness (missed difficult items) condition compared to the creative (missed easy items) condition
particularly for the high-performing examinees.
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We used the 2PL-IRT model to estimate examinees’ proficiency using known item parameters. Substantial error, caused
by guessing responses, may indicate a potential concern associated with the use of the 2PL rather than the 3PL model.
In this simulation, we assigned a certain correct probability to difficult items particularly for the low- and middle-level
examinees. Therefore, the overall error was large across the lower region of the theta scale, and all methods performed
similarly at this region. Even so, its average RMSEs were not greatly larger than the ones in the no aberrance condition.
For operational purposes, at least two high-stakes international tests use the 2PL-IRT model, and the redesigned rGRE is
one of them. In practice, the 2PL-IRT model will be effective when the examinees are unable to guess the correct answer
without a particular ability being measured by the test. Compared to the conventional multiple-choice (MC) items that
are prone to guessing, unconventional item types (e.g., text completion, sentence equivalence, or numeric entry) have
been designed to prevent the examinees not only from guessing the correct answers but also from memorizing items
(for test security). For example, the redesigned GRE uses various unconventional item types in the test, and often the
examinees need to provide the correct answer instead of choosing an option from the multiple options. It is assumed
that when the item format is cleverly designed, its correct probability caused by guessing will be very low and even
close to zero.

It is expected that the contribution of the aberrant responses to measurement error on the theta scale will be replicated
on the reported score scale as well. Depending on scaling conversions between the theta and reported scores, however,
the relative magnitude of measurement error associated with reported scores may change in various ways across the
scale. Because the reported scores ultimately matter to the test users, we further evaluated the degree of robustness of
each scoring method after scaling. In general, it remained true that Bayesian methods (mainly EAP and MAP) were
more effective than non-Bayesian methods, but the relatively small differences between them in the region where most
examinees would likely be located became very small. After nonlinear score transformation, some differences appeared
between item-pattern scoring and number-correct scoring. Across the eight atypical response conditions, item-pattern
scoring performed slightly better than number-correct scoring, but in general their difference would not lead to different
reported scores to the examinees (except because of rounding). Among the seven atypical types, careless and creative led
to the largest errors at the score region from 155 to 170 of the reporting scale, and their conditional errors were about two
or three points greater than the errors in the no aberrance condition. The sizes of total errors associated with the remaining
atypical types were generally comparable to the CSEMs of the rGRE that we used as a template to create a hypothetical
score scale in this simulation.

Based upon the findings derived from the comparisons at the theta scale as well as the reporting score scale, we could
conclude that the impact of moderate aberrance on IRT proficiency estimates would be small as long as a sufficient number
of high-quality items are available with which to estimate the examinees’ proficiency levels despite some level of aberrance.
If all outcomes are comparable, a simple scoring method (e.g., TCF) will be acceptable for practical. The GRE program cur-
rently uses the TCF scoring method, and this study supports the continuing use of this method in the operational setting.

In this simulation, some atypical response types (e.g., random, preknowledge, speededness, and peculiar subgroup)
were not as serious as other types (e.g., guessing, careless, and creative) in terms of the extent to which the examinees’
scores would change. There was no significant interaction between atypical response types and proficiency estimation
methods. This means that the relative performance of the five estimation methods was generally similar across all the
atypical types. There was no clear winner that is capable of precluding the impact of any aberrance from the scoring
process. We concluded that possible score changes caused by the use of different proficiency estimators in a situation
where certain atypical responses were present would be almost negligible.

It is unrealistic to assume that all the examinees’ responses must be free from any types of aberrance. In an opera-
tional setting, many testing programs routinely carry on statistical checks to discover which operational items function
differently across subgroups (e.g., item DIF) and across different time points (e.g., item drift). Problematic misfit items are
not eligible for use as equaters to ensure the fairness of linking new items and also to maintain score scale stability. For
example, the GRE program uses two deviance measures (the unweighted maximum difference and the weighted root mean
squared error), which were designed to detect any noticeable difference between two item characteristic curves (ICCs) in
terms of magnitude and pattern, to screen out misfit items from the equater set in the item calibration and linking stage.
However, relatively less attention has been placed on identifying examinee characteristics that may lead to inaccurate item
calibration results and furthermore score estimation results (i.e., person misfit). Many testing programs remove extremely
unmotivated examinees from all the operational analyses based on a certain criterion (e.g., no response for most items).
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The criterion can be further expanded to capture various types of atypical examinees as well. Screening out not only misfit
items but also misfit examinees from item calibration and linking may enhance the quality and integrity of the item bank.

The focus of this study was to compare the relative performance among the five estimators under each of the eight atyp-
ical conditions. To make the present simulation manageable, we limited the study design on the basis of some information
from a particular testing program and did not incorporate the following topics in the process of simulation. One limita-
tion is related to the manner of manipulation on the examinees’ responses. We manipulated the seven atypical responses
that may likely occur in real testing setting. By design, certain atypical responses were rather unrealistic in severity, while
others looked more realistic. Although it appeared that certain response types looked more problematic than others in
terms of the estimation error, the trend will vary depending upon the degree of manipulation imposed on each of the
aberrance types. Because we simulated a single level of aberrance for each of the seven atypical types, however, it is uncer-
tain whether the same trend would appear for either higher or lower aberrance than the one imposed on this simulation.
Owing to the limited study design, a definitive conclusion of the more problematic aberrance types cannot be determined
from this simulation. Additional investigation is necessary to assess the impact of the percentage of atypical responses on
the proficiency estimation in a solid manner.

Another limitation is related to the MST panel assembly. We used a single MST panel, which contained well-fitting items
in discrimination, to generate all examinees’ responses in all atypical conditions. Therefore, any investigation between IRT
estimators was straightforward in this application. Even so, the use of numerous parallel MST panels in each simulation
should be close to the real testing environment. It would be worthwhile to manipulate the item discrimination factor
to see if using less discrimination items would confirm the current findings. A further study is needed to achieve solid
conclusions on the interaction effect between MST panel type and atypical response type. Lastly, we used the 2PL-IRT
model to generate item parameters and the examinees’ responses to the items. Because the use of the 3PL model is common
in many testing programs, comparisons between two IRT models would be interesting.

The present study supports and clarifies the findings of our previous studies (S. Kim et al., 2105a, 2015b). The most
interesting feature of this study’s result is that one of the IRT proficiency estimators was not particularly promising in the
presence of atypical responses. The same conclusion was derived from the comparison not only at the theta scale level but
also at a hypothetical reporting scale level. Based upon the findings, we recommend the use of a simpler method (e.g.,
non-Bayesian number-correct scoring) as a practical choice in the operational setting of the simple MST design (e.g.,
two-stage, overlapping modules in difficulty, etc.). In particular, no difference would be expected from the use of different
proficiency estimators as long as the test includes a sufficient number of items selected from the well-maintained item
bank. Despite some limitations, we think that the present findings will contribute to the MST literature. Future research
geared at addressing the limitations listed above may further expand the area of MST literature.

Notes

1 Number-correct scoring is interchangeable with summed scoring.
2 Warm (1989) proposed the weighted likelihood estimator (WLE), whose estimation values are based on the mean of the

likelihood function. Consequently, WLE estimates are generally slightly more central than MLE estimates, but the difference
between MLE and WLE would be small.

3 The range of values for the estimated proficiency level is usually restricted so that the maximum likelihood method provides finite
estimates. We set an upper bound (+5.0) for the only-correct score as well as a lower bound (−5.0) for the only-incorrect score.

4 The defined population intervals method can be used to implement a policy that specifies the relative proportions of examinees in
the population expected to follow each of the available paths through the panel.

5 We simulated the examinees’ theta distribution to be uniform to obtain stable estimates over the entire theta scale. To compute
the summary statistics, however, we applied the normal distribution weights so as to reflect a more realistic distribution of
examinees’ thetas.

6 For simplicity, we used the standard normal distribution as the population distribution.
7 The scaling procedure used in this study was based on a similar form of equipercentile function applied to a single set of

population theta probabilities. As a result, scaling results mainly differed by how many estimated thetas an estimation method
produces. For example, number-correct scoring produces 41 estimated thetas (we used a 40-item test), whereas item-pattern
scoring produces numerous estimated thetas. All three deviance measures mainly reflect whether the scaled estimates are based
on number-correct scoring or item-pattern scoring.
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8 The reporting scale used in this study is hypothetical but its properties are very similar to the rGRE scale’s properties. As
appeared in the GRE Guide to the Use of Scores (2014–2015), the CSEMs at the scaled scores of 140–160 ranged from 2 to 3 for
both verbal and quantitative measures. In light of the CSEM size, the magnitude of the difference can be considered small.
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