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Abstract 
Solving problem is not only a goal of mathematical learning. Students acquire ways of thinking, habits of 
persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there 
were students who had difficulty in solving problems. The students were naive problem solvers. This research 
aimed to describe the thinking process of naive problem solvers based on heuristic of Polya. The researcher gave 
two problems to students at grade XI from one of high schools in Palangka Raya, Indonesia. The research 
subjects were two students with problem solving scores of 0 or 1 for both problems (naive problem solvers). The 
score was determined by using a holistic rubric with maximum score of 4. Each subject was interviewed by the 
researcher separately based on the subject’s solution. The results showed that the naive problem solvers read the 
problems for several times in order to understand them. The naive problem solvers could determine the known 
and the unknown if they were written in the problems. However, they faced difficulties when the information in 
the problems should be processed in their minds to construct a mental image. The naive problem solvers were 
also failed to make an appropriate plan because they did not have a problem solving schema. The schema was 
constructed by the understanding of the problems, conceptual and procedural knowledge of the relevant concepts, 
knowledge of problem solving strategies, and previous experiences in solving isomorphic problems. 
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1. Introduction 
Problem solving is the goal of students in learning mathematics (National Council of Teachers of Mathematics 
[NCTM], 2000). Students learn mathematical knowledge (facts, concepts, procedures, or principles) in order to 
solve mathematical problems. Problem itself is an unfamiliar situation, challenging but is still required to solve 
which a means of solution is not immediately visible to the students (Shumway, 1980; Sakshaug, M. Olson, & J. 
Olson, 2002; Krulik, Rudnick, & Milou, 2003). Solving problems provides students to use mathematical 
concepts meaningfully (Marzano, Pickering, & McTighe, 1993). When the students learn the concepts but do not 
use them meaningfully, it makes the concepts unrelated to the prior knowledge existing in their minds. On the 
contrary, the meaningful concepts retain longer in the students’ minds (Skemp, 1982).  

Problem solving also encourages students to have high order thinking skills (NCTM, 2000; King, Goodson, & 
Rohani, 2016). In general, Krulik et al. (2003) divide the thinking skills into low and high order thinking skills. 
Low order thinking skills are recall and basic thinking. Meanwhile, high order thinking skills are critical and 
creative thinking. Critical thinking is the ability to collect, organize, remember, and analyze information used to 
solve mathematical problems (Siswono, 2008; King et al., 2016). Creative thinking involves synthesis and 
development of ideas to solve problems, and come up with some answers or new means of solutions. Therefore, 
students with higher order thinking skills should have an ability to solve mathematical problems, and achieve the 
goal of learning mathematics. 

Furthermore, NCTM (2000) states that students acquire ways of thinking, and positive attitudes by learning to 
solve mathematical problems. The attitudes are habits of persistence, and confidences in unfamiliar situations. 
Mathematical problems itself can be defined as unfamiliar situations. The attitudes are factors affecting students' 
ability to solve the problems (Lerch, 2004; Pimta, Tayruakham, & Nuangchalerm, 2009). Students who have the 
attitudes to solve mathematical problems are also expected to have the attitudes to solve everyday life problems.  
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Students’ abilities to solve mathematical problems can be classified as naive, routine and good/sophisticated 
problem solvers (Muir, Beswick, & Williamson, 2008). The abilities are determined by using a problem solving 
rubric. The rubric score is 0 to 4 (Charles, Lester, & O’Daffer, 1997; Bush & Greer, 1999). The score can be 
connected to the classification of abilities to solve problems. The students with score of 0 or 1 can be classified 
as naive problem solvers. The students with score of 2 or 3 are routine problem solvers. Finally, the students with 
score 4 are good problem solvers.  

Teachers expect their students to be good problem solvers. In fact, most of students were naive or routine 
problem solvers. The researcher gave two mathematical problems to 124 students from one high school in 
Palangka Raya, Central Kalimantan, Indonesia in November 2015. The result showed that 43% of the students 
got score of 0 or 1 (naive problem solvers), 51% of the students got score of 2 or 3 (routine problem solvers), 
and 6% of the students got score of 4 (good problem solvers). Thus, 94% of the students were not good problem 
solvers. 

This condition is required to solve. The teacher should improve students’ abilities to solve problems especially 
for who are classified as naive problem solvers. The first step of the solution is to understand the students’ 
thinking process to solve problems. The process can be described in problem solving phases. What do the 
students think when they understand the problem, devise plan, carry out the plan, and look back? The second 
step is the teacher develops learning plans aimed to improve the abilities of the naive and routine problem 
solvers. 

Problem solving itself is defined as thinking aimed to obtain the answers of problems (Shumway, 1980; Polya, 
1981; Solso, 1995; Krulik et al., 2003). The first term requiring to be explained from the definition is “thinking”. 
Thinking is an internal process occurring in the students’ minds involving some manipulation of knowledge in 
cognitive systems (Solso, 1995). Although the process occurs in minds, it can be inferred from external 
representations generated by the students. The representations can be in the forms of written, verbal language 
(words/phrases), or gestures. 

Based on the previous definition, problem solving is thinking. Since thinking itself is a process, so problem 
solving also can be defined as a process. Therefore, students’ thinking process to solve problems is more 
important than the answers. A learning implication is teachers should pay more attention to how the students’ 
thinking process works to solve the problems than the answers. Accordingly, the teachers should not only ask the 
students’ answers but also confirm their thinking process to get the answers.  

The second term is “answer”. It is something obtained at the end of problem solving process. A process to arrive 
at the answer from the beginning is called “solution”. Thus, the answer and solution of problem are two different 
terms. 

One of theories explaining phases to solve mathematical problems is heuristic of Polya. The heuristic is 
understanding problems, devising plans, carrying out the plans, and looking back (Polya, 1973, 1981; Schoenfeld, 
1985; Krulik et al., 2003). Understanding problems involves two stages. First, the students pay attention to 
relevant information by ignoring irrelevant information. Second, the students determine how to represent the 
problems in concrete objects. The effective ways can be in the forms of providing symbols, tables, matrices, 
hierarchical tree diagrams, graphs, or pictures (Matlin, 1994). 

Students can devise plans if they understand the problems, and have an appropriate problem solving schema. The 
schema is constructed by an understanding of the problems, relevant mathematical knowledge, previous 
experiences to solve problems, and knowledge of problem solving approaches and strategies. Mathematical 
Olympiad medallists (good problem solvers) formulate some plans by using isomorphic problems had solved 
previously as a means of solutions as well as relevant mathematical concepts (Mairing, Budayasa, & Juniati, 
2011, 2012). Two problems are called isomorphic if they have the same structure, but different contents 
(Sternberg, 2009). 

Carrying out the plan is easier than devise it, what is needed are carefulness and patience (Polya, 1973). The 
Olympiad medallists are able to carry out the plans successfully because they have positive attitudes, and 
develop clear, step by step, and detailed plans. Moreover, the answers are calculated and obtained in their minds 
as they devise the plans (Mairing et al., 2011, 2012). 

Students need to look back the solutions to make them have strong reasons as an assurance that the solutions are 
correct (Polya, 1973). The look back can be done in concurrent, or after carrying out the plan. A concurrent look 
back is conducted by checking the row of solutions as it is just written. The checking is conducted by comparing 
a row of solutions with the understanding of problems, existing knowledge in students’ minds, or previous 
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Table 1. A Holistic Rubric of Problem Solving (Charles et al., 1997; Bush & Greer, 1999) 

Score Description 

0 
a.  The student does not write anything. 

b.  The student writes the known, and the unknown/target, but does not seem understanding the problem. 

1 

a. The student writes the known, and the unknown/target correctly. There are steps of problem solution, but the means is used 

incorrectly. 

b. The student tries to achieve sub-target, but does not succeed it. 

c. The student answers correctly, but there is not the means. 

2 
a. The student uses inappropriate means, and the answer is wrong, but the solution shows some understanding of the problem. 

b. The correct answer is obtained, but the means cannot be understood or wrong. 

3 

a. The student applies correct means, but does not understand the part of the problem, or ignore certain condition of the problem.

b. Appropriate means is applied, but the student answers the problem incorrectly without explanation, or does not write the 

answer. 

c. The correct answer is given by the student, and there are some evidences to suggest that the student chooses appropriate means 

of solution, but the implemented means is not entirely true. 

4 
a. Appropriate means is chosen by the student, and implement it correctly. The student writes the correct answer. 

b. The means is appropriate, the answer is correct, but there is little miscalculation. 

 

After the subjects had chosen, the researcher collected data by conducting in depth interviews to each subject 
separately. The interviews are based on the students’ solutions and problem solving heuristic of Polya. The 
interviews were semi-structured and recorded by using audio-recorder. There were questions have been designed 
by the researcher previously, and the other ones emerged during the interviews. 

Furthermore, the audio recorded data was transcribed by the researcher. The transcript was encoded using six 
digits. The first and second digits were letters stating the research subjects (L0 or L1). Code L0 and L1 
respectively stated the subjects with scores of 0 and 1 for both problems. The third digit was a number stating the 
problem 1 or 2. The fourth digit was letter U, P, C, or L stating Understanding the problem, making Plan, 
Carrying out the plan, or Looking back respectively. Fifth and sixth digits stated code order for each problem 
solving phase. For example, L02U03 stated the sentence with the code come from the subject L0 on problem 2. 
The sentence showed that the subject L0 did activity to understand the problem (U). This code was third activity 
in understanding the problem. 

There were two advantages of coding. First, the researcher could determine the subject, the used problem, and 
the performed activity in problem solving phases from the subject in a sentence with a certain code. The second 
advantage, a conclusion obtained from two different codes with the first, second, and fourth digits were the same, 
but the third digit was different. Then, this was based on the same subject, and the same activity in problem 
solving phases, but the problems were different. Thus, the conclusion employed time triangulation. For example, 
conclusion A came from code of L01U02 and L02U10. Thus, the conclusion had been triangulated based on two 
different problems. The subject still showed the same thinking process in different problems and different times.  

The steps of making conclusion are described as follows. First, the data was presented based on the order of 
digits 5 and 6 on each code U, P, C, and L. Furthermore, the researcher gave meanings and explanations on the 
data presentation to obtain the conclusion. It was carried out by analyzing words/phrases/sentences. The 
analyzing steps are presented as follows. First, the researcher read the interview transcript, and focused on the 
words/phrases/sentences that are significantly attractive. Second, the researcher listed possible meanings of the 
words/phrases/sentences coming to mind. Third, the researcher read the transcript again to determine an 
appropriate meaning (Strauss & Corbin, 1998). Finally, the researcher drew a conclusion by looking for 
similarities of problem solving activities reflecting the students’ thinking process. 

Research credibility was satisfied by triangulations, member checking, and peer debriefing. Triangulations used 
in this research were methods and times. The method triangulation was conducted by comparing the students’ 
written solutions with the data from interviews. The time triangulation was carried out by comparing the 
similarities of the students’ responses during the interviews at two different times. Each subject was interviewed 
two times for each problem. If they gave some unclear responses, answers or conclusions, then the researcher 
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meaning of ଵܷ, ܷଶ,  .and the infinite sum ݎ and the formulas of ,ݎ

Based on the initial plan, L1 tried to find the values of ܽ and ݎ by using the known ܷଶ െ ଵܷ ൌ െ4/9. 
However, L1 was unable to obtain the values because of the confusion of negative fraction in the equation. She 
thought to solve ܽሺݎ െ 1ሻ ൌ െ4/9 by finding a formula. L1 did not occupy her previous knowledge to find the 
values of ܽ and ݎ. It was the concept of linear equations system of two variables. She should search another 
equation, and use the concept to find the values. Therefore, L1 did not elaborate the previous knowledge, and the 
known to create an appropriate plan for the problem. 

L1 read the problem for several times because the initial plan did not succeed in solving the problem. Therefore, 
L1 occupied an alternative plan to find the values of ܽ and ݎ by using the known ܵஶ ൌ 1, and tried some 
numbers of ଵܷ and ܷଶ. She did not think to use the known ܷଶ െ ଵܷ ൌ െ4/9, and ܵஶ ൌ 1 simultaneously so 
she failed to find the values. Thus, L1 did not elaborate the relevant concepts, and did not have knowledge of 
problem solving strategies especially intellegent trial and error. The plans were not able to bridge the gap 
between the known and the unknown yet. 

In the second problem, L1 chose MNOP as ଵܷ based on the previous examples learned in the class. L1 planned 
to determine ݎ by looking for the value of ܷଶ as the larger square than MNOP, i.e. ܷଶ were area of IJKL. L1 
determined the area of IJKL (ܷଶ) as twice bigger than the area of MNOP ( ଵܷ) without performing some 
calculations. L1 determined it based on the previous examples. L1 also knew that ܽ ൌ ଵܷ, and formula of ܵஶ. 
Furthermore, the values of ܽ and ݎ were substituted into ܵஶ formula to get the answer. 

3.2.3 Carrying Out the Plan Phase 

In the first problem, L1 carried out the initial plan by finding the values of ܽ and ݎ by using the known ܷଶ െ ଵܷ ൌ െ4/9 (Figure 4a). In the alternative plan, L1 used the known ܵஶ to find the values (Figure 4b). 

 

a. The Initial Plan 

 

b. The Alternative Plan 

Figure 4. L1’s solution of the first problem 

 

In the second problem, L1 substituted ܽ ൌ 16 and ݎ ൌ 	2 to ܵஶ formula based on her understanding of the 
problem (Figure 5). Value ݎ ൌ 2 was obtained from ܷଶ ൌ 2 ൈ ଵܷ. L1 determined the value based on the 
previous examples learned in the classroom. It was on the contrary because the examples showed that geometric 
series converges if െ1 ൏ 	ݎ ൏ 1. The knowledge changing was caused by L1’s understanding in geometric 
series on the formula only (procedural knowledge) without its meaning (conceptual knowledge). L1 got the 
answer of ܵஶ ൌ െ16 after substituting the values. 
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appropriate plan, and make calculation mistakes. The research showed that student of MBA-justification 
behaviour more capable in solving mathematical problem than the other behaviours. Furthermore, student with 
MBA-justification can be classified as good problem solver (Mairing et al., 2011).  

The thinking proccess of naive problem solvers were different from good problem solvers on all phases of 
heuristic of Polya. In understanding problem phase, the naive problem solvers could not form the mental images. 
Whereas, the good problem solvers can effectively make mental images in their mind, or represent the known in 
some pictures as they constructed the meaning. They can also identify some relevant concepts in the problems 
(Carlson & Bloom, 2005; Mairing et al., 2011, 2012). In this case, understanding problem is a very important 
factor to solve. Students cannot solve mathematical problem if they did not understand it (Polya, 1973).  

In the phase of devising plan, the naive problem solvers could not make an appropriate plan due to their limited 
understanding of the problem, and their limited mathematical knowledge. On the contrary, the good problem 
solvers can devise some appropriate plans based on the mental images, an indepth knowledge of mathematical 
concepts, and some solution means of previous solved problems. Moreover, they can think some possible 
solution means and how it worked while considering to use some tools or strategies (Carlson & Bloom, 2005; 
Mairing et al., 2011, 2012). 

In the phase of carrying out the plan, the naive problem solvers could not move toward the answer, and the 
solution depended only on substituting some values to remembered formula, or they only tried some values. 
Whereas, the good problem solvers can move toward the answer because they have thought how the plans 
worked in their mind. They also show metacognitive thinking skills during carrying out the plan. They logically 
write rows of solution, and can give the reason for each row (Mairing et al., 2011, 2012). They use factual and 
conceptual knowledges, implemented strategies and procedurals, and make some calculations (Carlson & Bloom, 
2005). 

In the phase of looking back, the naive problem solvers did not look back to the solution, they only checked the 
formulas or some calculations. Whereas, the good problem solvers look back to the solution as implementing the 
plan by checking the solution row as it was just written. If the solution row meet the agreement with the previous 
rows, the internal representation of the problem, or the matematical knowldege, the good problem solvers move 
to next row or step. In addition, they also look back to the solution after the answer obtained by checking each 
row of the solution, or substituting the answer to the formula that represents condition of the problem (Carlson & 
Bloom, 2005; Mairing et al., 2011, 2012). 

5. Conclusions 
In this research, the two subjects, L0 and L1, were classified as naive problem solvers. L0 was student who got a 
score of 0 in first and second problems. Meanwhile, L1 got a score of 1 in both problems. The problems were 
related to the concept of infinite geometric series. In the phase of understanding problem, the naive problem 
solvers ignored words that were not understood, or translated directly the words of the problems into 
mathematical symbols without processing the information to form an appropriate mental image. Furthermore, the 
naive problem solver had limited understanding of relevant concepts. It indicated that the naive problem solvers 
did not understand the concepts involved, they only knew the concept but it was limited to finding some values, 
e.g. determining infinite sum of geometric series if the value of ܽ and ݎ were given, or they did not elaborate 
the understood concept with other concepts. The naive problems solvers’ limited understanding made them could 
not identify important information in the problems, and they did not use relevant concepts in making the plans. 

The naive problem solvers devised some limited plans. The plans were used to substitute the known numbers 
into certain formula. The naive problem solvers tried to use previous learning experiences to achieve the target. 
However, the unmeaningful experiences made them unrealized the mistakes, and they were difficult to move 
toward the target. Moreover, the plan which was not elaborated other knowledges caused the naive problem 
solvers could not see the solution means. The alternative plan was to substitute some values	 to a remembered 
formula or known equations of the problem without the understanding of intelligent trial and error strategy. 

The naive problem solvers made some mistakes in carrying out the plan because the plan was limited. They read 
the problem repeatedly, and tried to make a new plan. However, the new plan also failed to move toward the 
target. As a result, the custom of reading repeatedly became habit, and it was actually not intended to understand 
the problem. One strategy which was attempted was trial and error. However, this strategy also failed because of 
lack of understanding of problem solving strategies. In addition, the calculation error occurred in the 
implementation of the plan caused the naive problem solvers could not get the answer. 

The naive problem solvers did not look back to the solution. They just check the formulas or the calculations. It 
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was because of their inability to understand the problem, to make a plan and to implement it, or they found some 
doubts on the soluliton means. In general, the solutions made by them were not meaningful, and it was done just 
to finish the tasks. 

Students’ abilities to solve problems can be classified as naive, routine and good problem solvers. The 
characteristics of each problem solver had described by Muir et al. (2008). Some researches have described good 
problem solver in the process of finding solution (Carlson & Bloom, 2005; Mairing et al., 2011, 2012). This 
research described the thinking process of naive problem solvers. The future research needs to conduct to 
complement theories of students’ thinking process in solving mathematical problems. It is a research that is 
aimed to describe the thinking process of routine problem solvers.  

Moreover, the result of this research can be used by other researchers to develop teaching plans, or as a learning 
resource that can improve students’ problem solving ability. Some research has indicated that students’ ability to 
solve the problems was affected by learning experiences given by teacher in the class (Ho & Hedberg, 2005; 
Pimta et al., 2009). In addition, Krulik et al. (2003) have given keys of teaching priciples to improve students’ 
ability to solve mathematical problems. In fact, there were students as naive problem solvers nowadays, so future 
research is needed to improve the students’ ability with various conditions.  
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