E TS )@ Measuring the Power of Learning."

Research Report
ETS RR-16-10

Taming Log Files From
Game/Simulation-Based Assessments:
Data Models and Data Analysis Tools

Jiangang Hao
Lawrence Smith
Robert Mislevy
Alina von Davier

Malcolm Bauer

March 2016



ETS Research Report Series

EIGNOR EXECUTIVE EDITOR

James Carlson
Principal Psychometrician

ASSOCIATE EDITORS

Beata Beigman Klebanov Donald Powers

Senior Research Scientist - NLP Managing Principal Research Scientist
Heather Buzick Gautam Puhan

Research Scientist Principal Psychometrician

Brent Bridgeman

e L . John Sabatini
Distinguished Presidential Appointee

Managing Principal Research Scientist
Keelan Evanini
Senior Research Scientist - NLP

Marna Golub-Smith
Principal Psychometrician

Matthias von Davier
Senior Research Director

Rebecca Zwick
Distinguished Presidential Appointee

Shelby Haberman
Distinguished Presidential Appointee

PRODUCTION EDITORS

Kim Fryer Ayleen Stellhorn
Manager, Editing Services Senior Editor

Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and
to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research
freely available to the professional community and to the general public. Published accounts of ETS research, including
papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet
established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that
outside organizations may provide as part of their own publication processes. Peer review notwithstanding, the positions
expressed in the ETS Research Report series and other published accounts of ETS research are those of the authors and
not necessarily those of the Officers and Trustees of Educational Testing Service.

The Daniel Eignor Editorship is named in honor of Dr. Daniel R. Eignor, who from 2001 until 2011 served the Research and
Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize
the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.



ETS Research Report Series ISSN 2330-8516

RESEARCH REPORT

Taming Log Files From Game/Simulation-Based Assessments:
Data Models and Data Analysis Tools

Jiangang Hao, Lawrence Smith, Robert Mislevy, Alina von Davier, & Malcolm Bauer

Educational Testing Service, Princeton, NJ

Extracting information efficiently from game/simulation-based assessment (G/SBA) logs requires two things: a well-structured log file
and a set of analysis methods. In this report, we propose a generic data model specified as an extensible markup language (XML)
schema for the log files of G/SBAs. We also propose a set of analysis methods for identifying useful information from the log files and
implement the methods in a package in the Python programming language, glassPy. We demonstrate the data model and glassPy with
logs from a game-based assessment, SimCityEDU.

Keywords data model; log file; process data; game- or simulation-based assessment
doi:10.1002/ets2.12096

Game/simulation-based assessment (G/SBA) has a number of advantages over traditional assessment for some purposes
and is widely considered an important future direction for assessments (Mislevy et al., 2014). Evidence-centered design
(ECD; Mislevy & Haertel, 2006) provides a framework for designing game-based assessment around a validity argument
that connects a player’s activities (evidence) to performance on some predefined construct(s) of interest. However, identi-
tying the evidence from the log files becomes very ineflicient if the information from the G/SBAs is not properly recorded
into the log files. In practice, a log file is generally designed and developed by game/simulation developers whose primary
interest is to debug the software system itself. For psychometrician working with G/SBAs, the goal is to find evidence that
supports the measurements of certain constructs. These are distinct purposes; data and data structures that are optimal
for one purpose may serve the other purpose poorly. Therefore, systematically rethinking how to structure the log files of
G/SBAs is very important. It is worth mentioning that careful rethinking about the structuring of data files is important
not only for G/SBAs but also for more traditional multiple-choice or constructed-response items (Bejar, Mattson, Wagner,
Driscoll, & Hakkinen, 2014).

Here, we report our work on developing a data model for the log files of G/SBAs implemented in extensible markup
language (XML; Hao, Smith, Mislevy, & von Davier, 2014) and a software package (library) in the Python programming
language that provides basic functionalities for analyzing players’ activities. The data model is enforced through an XML
schema to ensure compliance with the data model and also to eliminate any potential erroneous entries in the log files.
For the Python package, we built in some frequently used methods for analyzing the process data from log files, which
facilitates the process of researchers developing their own analysis functionalities as extensions. Such a software package
liberates psychometricians from the nontrivial logistics of handling the log files and querying for needed information
and enables them to focus their work on designing scoring rubrics for the game/simulation events and the underlying
measurement models, leading to more efficient design iterations (e.g., using the ECD framework described by Mislevy,
Behrens, DiCerbo, & Levy, 2012 and von Davier & Mislevy, in press).

The report is organized as follows. In the second section, we review the current status of the log files from existing
games/simulations made for assessments. In the third section, we introduce a data model for game log files and its imple-
mentation in XML. In the fourth section, we introduce analysis methods for game/simulation logs. In the fifth section, we
introduce the specific design of the glassPy package and its implementation in the Python programming language. In the
sixth section, we show some examples of implementing the data model and use the glassPy functionalities with data from
the SimCityEDU' game (Mislevy et al., 2014). In the last section, we summarize the findings of our report and outline
limitations and future development. We include the current XML schema for the data model in the Appendix.

Corresponding author: J. Hao, E-mail: jhao@ets.org

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 1



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

wed May 15 2013 16:48:05 GMT-0400 (Eastern Day1ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 00:13
GL_Action_Building {"action":"viewed","name” :"uUnder Construction","scenarioTime":"00:13"

wed Ma¥ 15 2013 16:49:31 GMT-0400 (Eastern Day]ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 01:39
GL_Cha 1en9e_Heartbeat {"attendance":"0.10", "busstops":"0", "name": "Medusa Al - Bus
Stop.txt","scenarioTime":"01:39"

wed May 15 2013 16:49:42 GMT-0400 (Eastern Day1ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 01:50
GL_Action_Building {"action":"viewed","name" :"Cchan Household","scenarioTime":"01:50"

wed Ma¥ 15 2013 16:51:56 GMT-0400 (Eastern Day]ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 04:03
GL_Cha 1enge_Heartbeat {"attendance":"0.10", "busStops":"0", "name": "Medusa Al - Bus

Stop.txt","scenarioTime":"04:03"}
wed May 15 2013 16:54:19 GMT-0400 (Eastern Day]ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 06:27

GL_Cha 1en9e_Heartbeat {"attendance":"0.10","busstops":"0", "name": "Medusa Al - Bus
Stop.txt","scenarioTime":"06:27"}

wed May 15 2013 16:55:18 GMT-0400 (Eastern Daylight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 07:25
GL_Action_Building {"action":"viewed","name":"uUnder Construction”,"scenarioTime":"07:25"

wed May 15 2013 16:55:39 GMT-0400 (Eastern Daylight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 07:47
GL_Scenario_Accepted {"name":"Medusa Al - Bus Stop.txt","scenarioTime":"07:47"

wed May 15 2013 16:55:42 GMT-0400 (Eastern Day119h Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 07:50
GL_Action_ToolCategory {"action":"closed","tool":"demolish","scenarioTime":"07:50"}

wed May 15 2013 16:56:47 GMT-0400 (Eastern Daylight Time) =~ b5ea89c0-bda0-11e2-af38-51056358e7a0 08:55

GL_Cha 1enge_Heartbeat {"attendance":"0.10", "busstops":"0", "name": "Medusa Al - Bus

Stop.txt","scenarioTime":"08:55"}

wed May 15 2013 16:56:47 GMT-0400 (Eastern Daylight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 08:56
GL_Action_Building {"action":"viewed","name”:"solar Plant","scenarioTime":"08:56"

wed May 15 2013 16:57:17 GMT-0400 (Eastern Day1ight Time) . b5ea89c0-bda0-11e2-af38-51056358e7a0 09:25

GL_Cha 1en9e_Heartbeat {"attendance":"0.10","busStops":"0", "name": "Medusa Al - Bus

Stop.txt","scenarioTime":"09:25"}
wed May 15 2013 16:57:29 GMT-0400 (Eastern Daylight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 09:37

won won 4

GL_Action_Building {"action":"viewed","name"”:"Del Monte Apts","scenarioTime":"09:37'
wed May 15 2013 16:57:53 GMT-0400 (Eastern Day]ight Time) b5ea89c0-bda0-11e2-af38-51056358e7a0 10:02

GL_Cha 1en9e_Heartbeat {"attendance":"0.10","busstops":"0", "name": "Medusa Al - Bus
Stop.txt","scenarioTime":"10:02"}

Figure 1 Log file from the pilot study of SimCityEDU (Mislevy et al., 2014).

Current Status of Log Files From G/SBAs

Activities are captured in two ways in existing G/SBAs: (a) activities are recorded into log files or (b) game/simulation
information is ported directly into a database in real time. Although the focus in this report is mainly on the log file
approach, the report also provides valuable guidance for designing an appropriate database schema to store informa-
tion. The log files of existing G/SBAs can be classified into two categories: (a) plain text files with line-by-line dumps of
events without systematic structures and (b) structured logs in XML, JavaScript Object Notation (JSON), or some other
structured format. Figures 1 and 2 show two example log files corresponding to these categories.

In the case of Figure 1, because the log file is not structured, parsing through the text file and extracting information is
cumbersome and error-prone, though not impossible. For example, not all lines have the same number of elements, and
the number of logical chunks in each line is not fixed. Writing a parser to extract information from such a log requires
daunting effort and presents an unpredictable number of exceptions. In the case of Figure 2, although the log file is in
a structured XML format, its organization is not optimized for analysis. For example, the analysis unit for the log is not
clearly represented, and the attributes and elements are not systematically organized. These characteristics make working
with the potential evidence contained in the log files inefficient and error-prone.

In current practice, researchers in the field of educational data mining normally create their own conventions for
extracting information from log files based on their own convenience (Kerr & Chung, 2012). If the log files come with
erroneous entries and are not well formatted, extracting information in this way is very inefficient, as a user then needs to
include many exceptions in his or her programs to accommodate the potential erroneous entries and irregular structures.
Moreover, the user additionally needs to customize his or her reduction pipeline for different games/simulations.

Educational game/simulation developers, conversely, generally develop their own data collection systems, on top of
which some analysis tools are built to provide some predefined and high-level aggregated information and visualization
(Gibson & Jakl, 2015; Halverson & Owen, 2014). Although intended for researchers, these tools are not sufficient, as
researchers normally need to manipulate in-game activities at a much finer level (e.g., for each time stamp) and craft their
own ways of slicing, aggregating, and visualizing the data. All these processing stages need to be done at a faster turnaround
rate rather than waiting for game developers to implement (if they eventually agree) the needed functionalities into their
system.

Can we develop a data model for log files that is well structured and can be applied to a wide range of G/SBAs? Although
specific G/SBAs can be very different, they share many commonalities that provide the grounds for developing a data

2 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



—

.Hao et al. Taming Log Files From Game/Simulation-Based Assessments

kstateInfo>
<Init Fragment="600" Style="blue" Language="ENG" />
<FSMStates Count="7"=>
<finishButtonFSM>Stop Flashing</finishButtonFSM>
<popupSubmitButtonFSM>Stop Flashing</popupSubmitButtonFSM>
<submitButtonFSM>Stop Flashing</submitButtonFSM=>
<continueButtonFSM>Stop Flashing</continueButtonFSM>
<nextButtonFSM>Stop Flashing</nextButtonFSM>
<timeoutFSM>Clear</timeoutFSM>
<playmaker FSM>Finish</playmaker FSM>
</FSMStates>
<Othervars Count="3">
<F6_Response>A</F6_Response>
<F6_Reasonl>asdf</F6_Reasonl>
<F6_Reason2>asdf</F6_Reason2>
</OthervVars>
</stateInfo=
<itemResult accessionNumber="TestAccNum" itemType="SBT" childItemAccessionNumber="176"
blockCode="TestBlockCode">
<responseVariable cardinality="single" baseType="string">
<candidateResponse>
<value=><![CDATA[{"Selection of relevant questions”:"Y,Y,Y,N"}]]=</value=>
</candidateResponse>
</responsevVariable>
<responseVariable cardinality="single" baseType="string">
<candidateResponse>
<value><![CDATA[{"How far away is the well?":"(a)Yes","Follow-up":"(a)There is probably not
enough water underground"}]]=</value>
</candidateResponse>
</responseVariable>
<responseVariable cardinality="single" baseType="string">
<candidateResponse>
<value><![CDATA[{"Wells in other villages?":"(b)No","Follow-up":null}]]=</value>
<f/candidateResponse=>
</responseVariable>
<responseVariable cardinality="single" baseType="string">
<candidateResponse>

Figure 2 Log file from the pilot study of the National Assessment of Educational Progress Technology and Engineering Literacy pump
repair task (National Center for Education Statistics, 2013).

model that can be applied to generic log files. Fixing the data model will allow us to further develop a software package
to handle some generic log file analyses. In the next section, we first propose such a data model.

Data Model for G/SBA Logs
Data Model

A data model describes how data are structured and defines the data types for different fields. Many different data models
can be used to represent the same information in a G/SBA log file, depending on how a user determines the logical chunks
and how much detail the user wants to include. Generally speaking, the elements in the log file of a G/SBA can be classified
as atomic or composite. Atomic elements are the information that cannot be derived from other information in the log
file, whereas composite elements are those elements that can be derived from other information in the logs. To specify
a data model in the most concise yet complete way, we need to identify the atomic elements in a given game/simulation.
All other composite elements can be derived later on in the processing stage. However, some composite elements may
not be easily reconstructed based on atomic elements later on but are rather easy to record from the server side of the
game/simulation. An example is the attempt number for a player who plays the game several times in a year. Although
we can reconstruct the attempt number based on the number of times the player has played, handling from the client
side the bookkeeping over all attempts over such a long time period will be very cumbersome and error-prone. It is much
easier to assign an attempt number from the server side each time the player plays. In practice, we will treat these kinds of
elements as atomic.

Our goal is to design a data model for the logs of games/simulations for educational assessment, not for all
games/simulations. This constraint narrows the possibilities of the log files and allows us to create a generic data model.
Focusing only on logs for G/SBAs allows two major simplifications. First, assessment is normally for an individual
person so that we do not need to worry about interactions among multiple players. Second, ECD will help clarify the
evidence sought from the game/simulation to support inferences about particular constructs. This will filter out many

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 3



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

Table 1 Attributes of Events

Attribute Description

Event name Element describing the name of the event

Event start time Element describing the starting time of the event
Event end time Element describing the ending time of the event
Event by Element describing who triggers/commits the event
Event to Element describing on whom the event has an effect
Event location Element describing where the event happens

Event result Element describing the results of the event

in-game/simulation activities that may not be useful for assessment purposes. Based on these considerations, the activities
of the player and the game system in a G/SBA are essentially a collection of time-stamped events of different types, with
different attributes and consequences. This makes it possible to develop a generic data model that can be applied to a
number of G/SBAs.

To arrive at such a data model, we need to clarify the basic unit of analysis. As the assessment is for each individual
player, at first blush, it might appear that the player would be the natural unit of analysis. But because each player can play
the game/simulation many times, a more appropriate choice of unit of analysis would be each time each player plays the
game/simulation, which we call a session. A single player ID, session ID, and attempt ID are the minimum requirements
to specify a session. Each session consists of many events of different types. To specify an event at the minimal level, we
need at least the attributes shown in Table 1.

So far, we have introduced the minimal set of attributes needed to describe a session and an event. In reality, there are
different types of G/SBAs, and each type may have its additional unique features that need to be captured. Therefore, in
addition to the minimal set of attributes, we should also allow users to add their additional attributes. First, at the session
level, users may want to include more information about a given session, so we need to provide a placeholder for this
extra information. Second, at the event level, users may have additional attributes to describe a given event, so we also
need to provide a placeholder for this. As a result, aside from the attributes we set forth, we need to have two additional
attributes, namely extended session data and extended event data, to accommodate the user-defined information. As we
cannot predict the names and specifics for these user-specified fields in advance, we will use pairs of keys and values as
placeholders; that is, each user-specified field is realized by a set of keys and the corresponding values. For example, if a
user also wants to record the age of the player, the user can use

key="age," value = 20

Users can specify as many of these pairs as they want, and these pairs can be specified at both the session level and the
event level. Such key and value pairs can be used to specify almost any complex attribute. Figure 3 is a schematic of the
structure of the data model discussed.

So far, we have a general idea about the data structure that a log file from a G/SBA should follow. Next, we specify the
data model in XML format and provide the corresponding XML schema for compliance checking (we introduce details
of both in the next section). It is worth noting that we choose to use XML here, but the same data model can be realized
using other structured languages, such as JSON, in a similar way.

Extensible Markup Language and Extensible Markup Language Schema

XML is a markup language that defines a set of rules for encoding documents in a format that is both human readable
and machine readable (Bray, Paoli, Sperberg-McQueen, Maler, & Yergeau, 1998). XML is self-explanatory and is fully
specified by the markup constructs. It has been widely used for data standardization in science (e.g., Williams et al., 2002)
and industry. A detailed description of XML is beyond the scope of the current report, but readers can refer to the W3C
Web page for more details.?

An XML schema is a file that provides a detailed description of the corresponding XML file (with a well-defined struc-
ture of its own). It defines the structure of the XML file and specifies the data type of each field in the XML file. The
XML schema is also written in XML and is a convenient way to specify the data model that the XML file follows. Most
important, the schema can be used to validate whether an XML file complies with its definition. For example, if a certain

4 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

attribute is defined to contain an integer, a value of “TRUE” will be flagged. This is an important feature for ensuring that
a delivered XML file meets the requirements set forth by the data model.

Data Model for a Game Log in Extensible Markup Language

We now can specify the data model in Figure 3 in XML format. The XML skeleton corresponding to the data model is as fol-
lows:

<?xml version="1.0" encoding="iso-8859-1"7?>
<gameLog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema -instance">
<session>
<sessionID> ** </sessionID>
<playerID> ** </playerID>
<attemptID> ** </attemptID>
<sessionExtData>
<pair>
<key> ** </key>
<value> ** </value>
</pair>

<eventSequence>
<event>
<eventName> **</eventName>
<eventStartTime> ** </eventStartTime>
<eventEndTime> ** </eventEndTime>
<eventBy> ** </eventBy>
<eventTo> ** </eventTo>
<eventResult> ** </eventResult>
<eventLocation> ** </eventLocation>
<eventExtData>
<pair>
<key> ** </key>
<value> ** </value>
</pair>
</eventExtData>
</event>
<event>

</event>

</evéntSequence>
</session>
</gameLog>
Double asterisks (**) in the XML skeleton represent any string. Suspension points ( ... ) indicate that the elements can
be repeated in parallel. Table 2 details each tag in the XML skeleton.

Aggregation of Distributed Log Files

A log file will be generated when a player plays one session of the game/simulation. In a real administration of a G/SBA,
a game/simulation can either be distributed on each player’s computer or hosted on a central server. Either means of
administration will lead to a set of log files in XML format with root element < gameLog/>. During data reduction and
analysis, it is customary to aggregate the log files into certain larger chunks to facilitate analysis —all the sessions of a given
player, for example, or all first sessions of a group of players. The data model we specified makes it very easy to aggregate
all log files simply by appending the contents enclosed by the < session/> element.

Analysis Methods

So far, we have introduced the data model for log files of G/SBAs. The next question is what analyses should we perform
after generating a log file following the specified data model. Different games/simulations have their specific features, and

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 5



J. Hao et al.

Session

|
! ' ! '

. Session Extended Event
Sessian ID Player ID Attempt ID Data Sequence
,J 1 L‘
) 4 |
Pai - ified
airs {user-specifie Event
keys and values)

Taming Log Files From Game/Simulation-Based Assessments

! ' ' ! ' !

!

l

Figure 3 Schematic of the structure of our proposed data model for game/simulation logs.

Event Event Event Event Event Event Extended
Name Start Time End Time Event By Event To Result Location Data
0
Pairs (user-specified
keys and values)

Table 2 Description of the Tags in the Extensible Markup Language Skeleton

Tag Name Meaning Data Type®
<gameLog> Root element of the game log file idType
<session> Child element of <gameLog>, specifying the block of session
<sessionID> Child element of <session>, specifying the session’s name or other identifier idType
<playerID> Child element of <session>, specifying the player idType
<attemptID> Child element of <session>, specifying the attempt of the player for this session idType
<sessionExtData>  Child element of <session>, specifying additional information defined by the users about dictType

the session
<eventSequence> Child element of <session>, specifying the block of events in the given session
<event> Child element of <events>, specifying information about a specific event in the eventType

game/simulation
<eventName> Child element of <event>, specifying the name of the specific event idType
<eventStartTime>  Child element of <event>, specifying the time when the event starts timestampType
<eventEndTime> Child element of <event>, specifying the time when the event ends timestampType
<eventBy> Child element of <event>, specifying the committer of the event idType
<eventTo> Child element of <event>, specifying the target of the event idType
<eventResult> Child element of <event>, specifying the outcome of the event String
<eventLocation> Child element of <event>, specifying the location of the event; location can be physical or ~ idType

the progress location of the game/simulation
<eventExtData> Child element of <event>, specifying additional information about the event specified by dictType

users

A detailed definition of each of the data types can be found in the schema in the Appendix.

analysts need to apply or develop specific analysis methods as needed. However, as we have shown, all games/simulations
share some common characteristics, a fact that allows us to put forth some generic analysis methods in addition to the
common data model. While developing the package, we envisioned two types of analyses for users of different levels of
programming proficiency. First, for entry-level users, we provide an overall summary function that will generate summary
information based on the log files. In this case, a user does not need to be a proficient Python programmer and can obtain
much summary information about the log files simply by typing a single command (i.e., running a single function).

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

Second, for more advanced users, we developed a set of functions that can be called individually to perform specific
analyses. In this case, users need to know how to program in Python and can incorporate the functions into their own
analysis pipelines. In the following, we introduce the details of these functionalities.

LogSafari

This overall summary function is intended for entry-level users. Users can simply run this function to obtain a set of useful
summary information about the log files. Following is a list of summary information we have currently implemented in
the logSafari function: (a) check compliance against the data model schema, (b) report total number of sessions, (c) report
number of unique players, (d) summarize number of attempts of each player, (e) report the starting time and duration
of each session, (f) report the frequency of each event, (g) report the frequency of adjacent event pairs, and (h) create an
event sequence number versus event time plot.

It is worth noting that this list is not static but expanding as our research is ongoing. We will include new summary
information in this function as long as we think it is informative and generalizable.

Extensible Markup Language Validation

This functionality implements a compliance check of a delivered log file against the data model specified by our XML
schema; that is, every log file that claims to follow the data model will be checked as to whether it meets the requirements
specified by the schema. If it does not meet the schema’s requirements, we need to notify the user to make changes to the
log files to comply with the schema. This process is a bit painful for developers at first, but the benefit is worry-free data
analysis later on. As long as the game developer can correctly specify the log file based on the schema we provided, this
process will be smooth. Moreover, such a validation mechanism can safeguard the logs from potential erroneous entries
that will plague the analysis later on due to unknown bugs in the logging system.

Event N-Gram

The core of a game/simulation is a sequence of events occurring during a session. Therefore, obtaining a general summary
of information about the events and event sequence is generally the first step in analyzing the logs. We are interested
not only in the frequency of each event (unigram) but also in the frequency of the event sequence (bigram, trigram,
... » N-gram). If we temporarily put aside the temporal dependence and look only at the types of events in the logs, a
complete description of the events can be casted as an N-gram expansion of the event sequences, that is, from unigram
(frequency of different events) to bigram (frequency of two consecutive event sequences) up to N-gram (frequency of n
consecutive event sequences). By appending the N-gram features, one can form vectors with elements as the frequency
of the corresponding N-gram. With such a vector, one can classify and compare players’ performances using different
similarity measures. In the glassPy package, we provide a function that can calculate the frequency of N-gram events up
to a user-specified n.

Event Sequence Matching

In a G/SBA, both the system state information and a player’s activities are essentially a list of time-stamped events. The
order and time stamps of the sequences or subsequences convey information about a player’s proficiency on certain tasks.
Therefore, these sequences and subsequences are important ingredients for scoring rules for the G/SBA. As such, it is
customary to identify certain event subsequences from the whole event sequence. We developed a function to locate all
specified subsequences from the whole sequence and return their indices in the whole sequence. This function greatly facil-
itates implementations of scoring rules based on the subsequences. It also simplifies further analysis of the time intervals
between the events in a subsequence.

Weighted Levenshtein Edit Distance

Edit distance can be used as a measure to compare how different two event sequences are and has been shown to be useful
for scoring G/SBAs (Hao, Shu, & von Davier, 2015) and for clustering performance (Bergner, Shu, & von Davier, 2014).

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 7



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

To choose an appropriate edit distance, one can change the editing operations or vary the weights assigned to each edit
operation. The most widely used edit distance is the Levenshtein distance (Levenshtein, 1966), which defines the edit oper-
ations as deletion, insertion, and substitution, all with equal weight. If we fix the edit operation and let the weights vary, we
arrive at the weighted Levenshtein distance (Jurafsky & Martin, 2000). For different G/SBAs, one can adjust the weights
to achieve optimal separation of event sequences based on content knowledge about the specific game/simulation.
In the glassPy package, we provide a function to calculate weighted Levenshtein edit distances using dynamic
programing.

Hierarchical Vectorization

We have discussed the N-gram representation of game events, which ignores temporal information about the events. To
capture temporal information, we introduce a hierarchical vectorization method. In this method, we put aside the specific
events’ names and focus only on the time stamps of all the events. That way, the temporal information is summarized by
a set of time intervals of different lengths. The real challenge is how to align different players’ sets of time intervals for
comparison, as players have different play times and varied time intervals.

The method we propose here is to align different players’ time intervals by ranking orders. We rank each player’s time
intervals from highest to lowest, that is, the longest, second longest, and so on. Then, we can compare across players
by aligning the ranking orders; for example, we can compare the longest interval, second longest interval, and so on,
across all players. This is equivalent to building a hierarchical clustering tree based on the time intervals using a sin-
gle linkage, which is why we call it hierarchical vectorization. Each ranking order corresponds to a depth level of the
hierarchical tree. At each depth level, we calculate some characteristic feature variables to represent the temporal infor-
mation at each level. Two natural feature variables are the interval length and the location of corresponding intervals at
the given depth level. In addition to these two feature variables, we also want to know how fragmented the intervals are
at each depth level. To quantify this, we introduce two additional feature variables, namely, the mean intracluster vari-
ance and the intercluster variance. The former is defined as the average of the time interval variance within each cluster
formed at the corresponding hierarchical level. The latter is defined as the variance of the time stamps corresponding to
the cluster mean location. By appending the feature variables from different levels up to a specified depth level, a vector
can be created to represent the temporal information for each single session. We have applied this method to analyzing
play strategy in the SimCityEDU game (Hao & Kitchen, 2015) as well as the keystroke information of essay composi-
tion (Zhang, Hao, Li, & Deane, in press). In the glassPy package, we provide a function to calculate the hierarchical
vectorization.

Time Interval Distribution of Consecutive Events

Consecutive events in game logs play important roles. Although the Markov assumption (i.e., an event depends only on
the immediately preceding event) may not be true in general, the first-order association of the events clearly encodes most
of the information. For consecutive events that appear many times, the time interval distribution will provide valuable
information about the particular pairs of events. For example, when the time intervals between two consecutive events
are very small for all the pairs, this suggests that little thinking is needed when executing the second event after the first.
Conversely, if the variance of the interval distribution is large, this might imply that the player needs to think about
what to do after the first event in different situations. As an illustrative example, think of our daily use of the mouse and
keyboard. The time intervals between a left click and a mouse move should show little variance. However, the intervals
between a keystroke on the keyboard and movement of the mouse may vary a lot. This is because in the latter case, there
is more thinking about when to use the keyboard and when to use the mouse. Therefore, the distribution of the intervals
between consecutive events will signify the importance of the event pairs and direct our attention to those interesting
pairs. In the glassPy package, we provide a function to return the time interval distribution for a set of user-specified
event pairs.

Recap

We listed here seven analysis methods. This list is far from complete and is currently expanding as our research proceeds.
In the next section, we introduce the implementation of the methods in the Python programming language.

8 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

Table 3 Dependent Python Packages for glassPy

Library Name Main Functionality Package URL
Numpy Backbone of all low-level numerical operations http://www.numpy.org/
Scipy Package that include many algorithms for scientific computing http://www.scipy.org/
Pandas Data organization, query, etc. http://pandas.pydata.org/
Matplotlib 2-D plotting http://www.matplotlib.org/
NLTK Natural language processing http://www.nltk.org/
Sklearn Machine learning tool kit with most of the popular machine learning algorithms http://www.scikit-learn.org/

Implementation in Python

The Python programming language is a widely used open source and interpretative language that is well suited for both
interactive analysis and software development. It is one of the major programming languages used by major IT compa-
nies, such as Google and Facebook. Python contains many well-developed software packages for statistical analysis, data
mining, text processing, visualization, and so on. Given the virtues of Python, we chose to use it to implement our analysis
methods. In this section, we introduce some general ideas behind this implementation.

Pandas Data Frame

So far, we have defined a structured log file in XML format. However, when we analyze the logs, we need to read the
XML logs into computer RAM and store them as a certain data structure so that we can operate on them directly. Python
contains many different data structures. The one we chose to implement in our package is the data frame provided in the
pandas package (McKinney, 2012), which is analogous to the data frame in the R programming language. The data frame
is essentially a table structure with additional index columns (one or many). This data frame supports various analysis
methods, such as query, slice, and join, making it an ideal choice for data structures in Python programming.

In the glassPy package, we provide a function “xml_to_dataframe” to convert an XML log file following our data
model into a pandas data frame. When converting, it is necessary to clarify the data type in the data frame for each field
or element of the data model. For most of the fields, this is straightforward. ID type corresponds to string type in Python,
and integer type corresponds to integer type in Python. The only place that may be complicated is the dictionary type we
used as a placeholder for user-specified information in the data model. The good news is that there is a built-in data type
in Python, dictionary, that can be seamlessly mapped to the key-value pairs specified in the dict type. The columns of the
data frame are a direct mapping of the tag names in the data model, except we change uppercase to lowercase and change
camel case with underscore hyphenated to comply with the PEP-8 style guide widely used in Python programming (van
Rossum, Warsaw, & Coghlan, 2001). For example, “eventName” (in camel case) will be changed to “event_name” (in PEP-8
style). Accordingly, the column names in the data frame are as follows: session_id, player_id, attempt_id, session_ext_data,

event_name, event_start_time, event_end_time, event_by, event_to, event_location, event_ext_data.
Each row of the data frame corresponds to a time stamp of the event. This format means the session_id, player_id,

attempt_id, and session_ext_data will be repeated throughout the same session for all events. This is clearly not an
economical way to do things in the sense of memory usage. However, it is a compromise, because we cast everything into
a table structure. If we were to choose a hierarchical data structure, we could avoid this. However, because many people in
educational measurement use Microsoft Excel-based software, we kept a table structure in the current implementation.

Dependent Packages

The glassPy package is dependent on many other open source packages in Python. These dependencies are summarized
in Table 3.

Operation of the Functions

After reading the log file into a pandas data frame, we need to apply various analysis methods to the data or sub-
set of the data. One of the crucial parts of this process is choosing the subset of the data frame under different
conditions. The most common subset is each column. Each column of the data frame can be accessed by the “”

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 9



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

operation. For example, df.player_id refers to the “player_id” column of a data frame called “df.” To choose a sub-
set that meets certain criteria, the pandas data frame provides a nice query function that can execute structured
query language-type queries to choose the subset of the data. For example, if we want to choose the subset that
includes all the events with the name “open the door” and belongs to player “bob,” we can do the following query:

df .query (‘event name == open the door & player id == bob’)

Once we have chosen the subset of the data, we are ready to apply the functions in the glassPy package. Specific ways
to call the functions can be found in the documentation part of each function. In addition to the functions we supplied in
the package, users can use all other functions provided by the vast collection of existing Python packages. For the specific
usage of those functions, the reader can refer to the relevant documentation.

Summary of the Implementation

The glassPy package provides a suite of convenient functions to facilitate the analysis of log files from G/SBAs. Because it
is written in Python, a user can easily incorporate the vast collection of Python packages for statistical analysis, machine
learning, visualization, and so on. The set of functionalities in our package is expanding as our research proceeds.

Examples From SimCityEDU

In this section, we showcase examples using some of the analysis methods presented in previous sections to give readers
a general sense about functionality. We use the log files from SimCityEDU, an educational game developed by GlassLab
(Mislevy et al., 2014). This game is modified from a well-known video game, SimCity. The game has four different missions,
School Is In, We Need Jobs, Pollution Problems, and It’'s Complicated, by which players’ skills in system thinking, critical
thinking, cause and effect, and system modeling are measured. For details about SIimCityEDU, see Mislevy et al. (2014).

Log File Validation

The raw log file from SimCityEDU does not follow our data model, as the file was developed before the data model existed.
For pedagogical purposes, we convert the raw log files from SimCityEDU into a format in XML that complies with the
schema and name it schema_test_simcityEDU.xml. We also create another XML file, but with date/time recorded differ-
ently from the specification of our data model, and name it schema_test_simcityEDU_incorrect.xml. We show snippets of
the two in Figures 4 and 5, respectively. Lines 20 and 21 are where different date/time formats are used.

Next, we show how to use the function xml_validation in the glassPy package to validate the XML file against the
schema (see the Appendix). In Figure 6, we show a screenshot of the procedures.

Event Frequency (Unigram) and Interevent Interval Distribution

As we pointed out earlier, we included some convenient functions in the glassPy package. In the following figures, we
show two plots from two different analyses. The first one, Figure 7, concerns the frequency distribution of different events
in one session of SimCityEDU.

Based on such a plot, one can quickly classify the events into different categories. For example, the first event,
GL_Challenge_Heartbeat, has a much higher frequency than the others. This event is the system pull of the game state
information, and GL_Zone to GL_Workers are events that are more frequent than the rest, as they are also system
information pulls of a different kind. The rest of the events that happen at much lower frequencies are actions performed
by the player. Although more careful scrutiny is needed to more meaningfully interpret these events, the plot in Figure 7
can help us quickly narrow our scope for future analysis.

In the second example (Figure 8), we show the distribution of interevent time intervals for the most frequent event
pairs (bigrams) for a given session. This plot can help us identify the interesting event sequences at the bigram level, as
discussed in the Analysis Methods section.

From Figure 8, one can observe that the variance of the time intervals between the event Simoleons and the event
Zone is quite large compared to that between Coal_Power_Produced and Zone. The first pair are the variance of the
thinking time between checking the available money (Simoleons) and planning for building power plants (Zone). The
second pair are the variance of thinking time between checking the amount of energy produced (Coal_Power_Produced)

10 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

1 <?xmlversion="1.0"encoding="UTF-8'?>

2 E<gamelog>

3 [H] <session>

4 <sessionlD>5b069190-bbc7-11e3-b126-1508ec786338</sessionID>
5 <attemptiD>1</attemptiD>

6 <playeriD>429</playeriD>

7 : <sessionExtData>

8 1 |i<pair>

9 i <key>MissionName</key>

10 i <value>MedusaA1Jobs01</value>
11 | i</pair>

120 |i<pair>

13 i <key=rowlD</key>

14 i <value>1947911</value>

15 | i</pair>
16 [ | </sessionExtData>
17 [5] | <events>
18 H i <event>

19 <eventName>GL_Scenario_Loaded</eventName>

20 <eventStartTime>2014-04-04T07:04:41Z</eventStartTime>
21 <eventEndTime>2014-04-04T07:04:41Z</eventEndTime>
22 <eventBy>player</eventBy>

23 <eventTo>system</eventTo>

24 <eventResult>Scenario_Loaded</eventResult>

25 <eventLocation>Scenario_Loaded</eventLocation>

26 [0 ::i<eventExtData>

Figure 4 Snippet of schema_test_simcityEDU.xml, which fully complies with our data model.

and planning for building power plants (Zone). A valuable implication from this is that the information of actual power
produced has more direct impact on this player’s decision to build power plants than the information of available money.

LogSafari Summary Information

As we introduced in a previous section, we include an overall summary function intended to allow entry-level users to
obtain some summary information about the log files. The summary information is output in HTML format, and a user
can open it with any Web browser. In Figure 9, we show a screenshot of one such output.

Summary and Discussion

In this report, we presented a systematic solution for initial stages of evidence identification from log files of G/SBAs.
Our solution has two components: a well-structured data model and a suite of functionalities encapsulated into a Python
package. We proposed a data model based on our investigation of various existing G/SBAs and implemented this data
model in XML format. Moreover, we provided the corresponding XML schema for the data model with which all incoming
log files are checked for compliance. Based on such a setup, we can ensure that the log files come in good shape, and we
can reduce the pains of error handling when developing the analysis tools. On the basis of this data-structuring work, we
developed a set of analysis functionalities in Python. As our research on G/SBAs moves ahead, the functionalities in the
package will continue to become richer. We are planning a release of the package to users in the community in the near
future.

Although the data model and the analysis tool go well with our existing logs, and are designed to be extensible based
on our current best knowledge about the G/SBAs, we caution that they may not be adequate nor optimized for situations
where the games/simulations are extremely complex or atypical. Readers and users are advised to use discretion when
applying the data model to their specific G/SBAs.

Acknowledgments

This research was supported in part by the ETS Foundational and Applied Statistics and Psychometrics Initiative (2014).

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 11



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

1 <?xmlversion="1.0"-encoding="UTF-8'?>

2 E<gamelog>

3 <session>

4 <sessionlD>5b069190-bbc7-11e3-b126-1508ec786338</sessionID>
5 <attemptiD>1</attemptIiD>

6 <playeriD>429</playeriD>

7 & i <sessionExtData>

8=

9

<pair>
i <key>MissionName</key>
10 i <value>MedusaA1Jobs01</value>
11 | ii</pair>
123 ii<pair>
13 i <key>rowlD</key>
14 i <value>1947911</value>

15 | i</pair>
16 [ :</sessionExtData>
17 @ : <events>

=]

18 <event>

19 <eventName>GL_Scenario_Loaded</eventName>

20 <eventStartTime>04/04/2014T07:04:41Z</eventStartTime>
21 <eventEndTime>04/04/2014T07:04:41Z</eventEndTime>
22 <eventBy>player</eventBy>

23 <eventTo>system</eventTo>

24 <eventResult>Scenario_Loaded</eventResult>

25 <eventLocation>Scenario_Loaded</eventLocation>

26 & || <eventExtData>

Figure 5 Snippet of schema_test_simcityEDU_incorrect.xml, which does not fully comply with our data model. The noncompliant
part is the date format in Lines 20 and 21. All other parts comply with the data model.

0 © & jghao@jghao-ThinkPad-w530: ~

jghao@jghao-ThinkPad-W530:~S ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright”, "credits" or "license" for more information.

IPython 1.2.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.

from glasspy import *
schema = 'gamelog_schema.xsd'
xml_comply = 'schema_test_simcityEDU.xml'
xml_non_comply = 'schema_test_simcityEDU_incorrect.xml'
5 xml_validation(xml_comply,schema)

---- The log file complies with the schema
True
xml_validation(xml_non_comply,schema)

The log file does not comply with the schema. Please fix the log file first! ----

Element 'eventStartTime': '04/04/2014T07:04:41Z' is not a valid value of the atomic type 'timestampType'.
False

Figure 6 Example of extensible markup language schema validation using the function xml_validation in the glassPy package. When
the log file complies with the schema, it will print out “The XML file complies with the schema,” whereas “The XML file does not comply
with the schema” as well as the reason why it does not comply will be displayed if the log file does not comply.

12 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



Taming Log Files From Game/Simulation-Based Assessments

J. Hao et al.

HeISay oueudds 19
paads 135 19

XN oleUaIS 9

1 paynwgng oueuad’s 19
papeo] oLeU3IS 19

H pajdaioy oueuadg 9
pamaip“sdii 19

1 pPaMaIAOJuUl OLIRUIDS 1D

1 Jakedep uondy 19
+{3@sueapy sdil 19
{auozag™9

1 Asobajenjool "uoidy 19

11001 0yu| s$929% 19
13zoping 3un 19

{dold 1un™9

16uipiing uondy 19
1s13%0M 10
pasnpoid 1amod puipy 1o
1pa3npoid 1amod J1ejes 19
1swis™o

4 suoajowis™o

1paisem 1amod 19
{pasnpoid 1amod 19

1{pawnsuo)y 1amod 19
16uney Jokepw 19
1saolM9

1awoou™9
{ssauiddey 19
{sasuadx3 o

1{pa>npoid 1amod |1e0d 19
Juonniiod 1y 19
1auoz™ 19

250

200

150

SULS)

100 |

50 |

oieaqueay abuajieyd 19

Figure 7 Frequency of events in one session of SimCityEDU. The x axis is for different game events, and the y axis is for the count

(frequency) of the events.

Time Interval Distribution for Top 20 Most Frequent Consecutive Game Action Sequences for Player ID:1048

25

9

10

14 10 10 10

16

33

Frequency

:

T

H

se oo o.-_.Dn_;

i L

20

" o
— —

[2@s] |lersajul duI]

Buip|ing”uondy <- azop|ing 1un

awodu| <- auoz

aU0Z <- SISNIOM

auoZ <- pasnpold Jemod |eod)

ssaulddey <- auoz

8U0Z <- suoajowIs

auo7 <- paIsep 1amod

azop|ing Jun <- Buipjing uonoy

SUO3|OWIS <- BUOZ

PaWNsuoD 1aMod <- 3UoZ

3U07Z <- padnpold Jamod puip

3UOZ <- PadnNpold Jamod

pasnpold 1amod <- auoz

Buipjing uondy <- buip|ing uody

auoz <- auoz

Figure 8 Distribution of the interevent time intervals for the most frequent event pairs (bigrams). The box plots show how the time

intervals are distributed for different event pairs.

13

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

C' [} ets-research.org/jhao/glassPy/logSafari_output_html/logSafari_output.html

Summary of log files

Listenlng. Leaming. Leadiog

Generated by: logSafari in glassPy package. For additional support, please contact: jhao@ets.org

Total sessions: 53

Total players: 19

Session summary

Session start time Duration

player_id attempt_id

185 1 2014-04-15 00:36:48+00-00 00:01:24
2 2014-04-15 00:39:21+00:00 00:08:50
26 1 2014-03-19 04:53:39+00:00 00:04:18
2 2014-03-19 22:14:07+00:00 00:01:41
419 1 2014-04-02 08:36:44+00:00 00:05:08
2 2014-04-02 08:42:25+00:00 00:05:37
3 2014-04-04 07:02:36+00:00 00:06:00
4 2014-04-29 18:59:59+00:00 00:00:00
421 1 2014-04-04 07:03:33+00:00 00:01:20
2 2014-04-04 07:09:14+00:00 00:07:54

Figure 9 Snippet of part of the output of the logSafari summary function.

Notes
1 SimCityEDU was developed by GlassLab in collaboration with ETS and Pearson, with support from Electronic Arts, the Bill and
Melinda Gates Foundation, and the John D. and Catherine T. MacArthur Foundation. GlassLab develops and researches
next-generation learning games to support acquisition of critical 21st-century skills and creates tools to enable game developers
to build better learning games and reach more learners.
2 See http://www.w3.org/XML/

References

Bejar, . I, Mattson, D., Wagner, M., Driscoll, G., & Hakkinen, M. T. (2014). Accessibility, interoperability, and model-based test produc-
tion: Leveraging the synergies (Research Report No. RM-14-08). Princeton, NJ: Educational Testing Service.

Bergner, Y., Shu, Z., & von Davier, A. A. (2014). Visualization and confirmatory clustering of sequence data from a simulation-
based assessment task. Proceedings of the 7th International Conference on Educational Data Mining (pp. 177 -184). Retrieved from
http://educationaldatamining.org/EDM2014/uploads/procs2014/long%20papers/177_EDM-2014-Full.pdf

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (1998). Extensible markup language (XML) (World Wide Web
Consortium Recommendation No. REC-xml-19980210). Retrieved from http://www.w3.0org/TR/1998/REC-xml-19980210

14 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

Gibson, D., & Jakl, P. (2015). Theoretical considerations for game-based e-learning analytics. In Gamification in education and business
(Aufl. ed., pp. 403-416). Cham, Switzerland: Springer International.

Halverson, R., & Owen, V. E. (2014). Game-based assessment: An integrated model for capturing evidence of learning in play. Interna-
tional Journal of Learning Technology, 9(2), 111-138.

Hao, J., & Kitchen, C. (2015). Characterizing the time spending strategy in game based assessment: A hierarchical vectorization approach
(Unpublished manuscript).

Hao, ], Shu, Z., & von Davier, A. (2015). Analyzing process data from game/scenario-based tasks: An edit distance approach. Journal
of Educational Data Mining, 7(1), 33 -50.

Hao, J., Smith, L., ITI, Mislevy, R., & von Davier, A. (2014). Systems and methods for designing, parsing and mining of game log files. U.S.
patent 14/527,591.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing. Upper Saddle River, NJ: Prentice Hall.

Kerr, D., & Chung, G. K. (2012). Identifying key features of student performance in educational video games and simulations through
cluster analysis. Journal of Educational Data Mining, 4(1), 144-182.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10, 707 -710.

McKinney, W. (2012). Pandas: A Python data analysis library. Retrieved from http://pandas.pydata.org/

Mislevy, R.]., Behrens, J. T., DiCerbo, K., & Levy, R. (2012). Design and discovery in educational assessment: Evidence centered design,
psychometrics, and data mining. Journal of Educational Data Mining, 4(1), 11-48.

Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for educational testing. Educational Measurement:
Issues and Practice, 25(4), 6-20.

Mislevy, R. J., Oranje, A., Bauer, M. I, von Davier, A., Hao, J., Corrigan, S., ... John, M. (2014). Psychometric considerations in game-
based assessment. New York, NY: Institute for Play.

National Center for Education Statistics. (2013). TEL WELL task. Retrieved from http://nces.ed.gov/nationsreportcard/tel/wells_item
.aspx

van Rossum, G., Warsaw, B., & Coghlan, N. (2001). PEP 8 —Style guide for Python code. Retrieved from http://www.python.org/dev/
peps/pep-0008

von Davier, A., & Mislevy, R. (in press). Design and modeling frameworks for 21st century simulations and game-based assessments.
In C. Wells & M. Faulkner-Bond (Eds.), Educational measurement: From foundations to future. New York, NY: Guilford Press.

Williams, R., Ochsenbein, E, Davenhall, C., Durand, D., Fernique, P, Giaretta, D., & Wicenec, A. (2002). VOTable: A proposed XML
format for astronomical tables. Strasbourg, France: CDS.

Zhang, M., Hao, ], Li, C., & Deane, P. (in press). Classification of writing patterns using keystroke log, Proceedings of the 80th Annual
Meeting of Psychometric Society.

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 15



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

Appendix

Game Log Schema

<?xml version="1.0"encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">

<I--

Game Log Schema

Version 1.0

Authors:
Lonnie Smith (lsmitheets.org)
Jiangang Hao (jhaoeets.org)

Note: this is final version as of 3/16/2015

(c) 2014, Educational Testing Service
-->

<!--overall structure of the log-->

<xs:element name="gameLog">
<xs:complexType>
<XSs:sequence>
<xs:element name="session" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<XS:sequences
<xs:element name="sessionID" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="playerID" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="attemptID" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="sessionExtData" type="dictType" minOccurs="0" maxOccurs="1"/>
<xs:element name="eventSequence" minOccurs="1" maxOccurs="1">
<xs:complexType>
<XS:sequences
<xs:element name="event" type="eventType" minOccurs="1" maxOccurs="unbounded"/>
</Xs:sequences>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</Xs:sequence>
</xs:complexType>
</xs:element>

<!--Data type definitions -->

<!—definition of idType. All identifiers must follow this rule -->
<xs:simpleType name="idType">
<xs:restriction base="xs:string"s>
<xs:pattern value="([a-2zA-Z0-9 ,-:\-1)*"/>
</xs:restriction>
</xs:simpleType>

<!--definitionof timestampType. Follow subset of ISO 8601 standard, must use UTC -->
<xs:simpleType name="timestampType">
<xs:restriction base="xs:dateTime">
<xs:pattern value="20\d{2}-\d{2}-\a{2}T\d{2}:\a{2}:\d{2}z"/>
</xXs:restriction>
</xs:simpleType>

16 ETS Research Report No. RR-16-10. © 2016 Educational Testing Service



J. Hao et al. Taming Log Files From Game/Simulation-Based Assessments

<!--definition of dictType for "extended" data (sequence of key/value pairs) -->
<xs:complexType name="dictType">
<XS:sequence>
<xs:element name="pair" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>
<xs:element name="key" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="value" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xXs:sequence>
</xXs:complexType>
</xs:element>
</xsequence>
</xs:complexType>

<!l-definition of eventType-->

<xs:complexType name="eventType'">

<XS:sequence>
<xs:element name="eventName" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventStartTime" type="timestampType" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventEndTime" type="timestampType" minOccurs="0" maxOccurs="1"/>
<xs:element name="eventBy" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventTo" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventResult" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventLocation" type="idType" minOccurs="1" maxOccurs="1"/>
<xs:element name="eventExtData" type="dictType" minOccurs="0"maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

</xs:schemas>

Suggested citation:

Hao, J., Smith, L., Mislevy, R., von Davier, A., & Bauer, M. (2016). Taming log files from game/simulation-based assessments: Data models
and data analysis tools (Research Report No. RR-16-10). Princeton, NJ: Educational Testing Service. http://dx.doi.org/10.1002/ets2.
12096

Action Editor: Rebecca Zwick
Reviewers: Andreas Oranje and Diego Zapata Rivera

ETS and and the ETS logo are registered trademarks of Educational Testing Service (ETS). MEASURING THE POWER OF LEARNING
is a trademark of ETS. All other trademarks are property of their respective owners.

Find other ETS-published reports by searching the ETS ReSEARCHER database at http://search.ets.org/researcher/

ETS Research Report No. RR-16-10. © 2016 Educational Testing Service 17



