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R E S E A R C H R E P O R T

Applications of Multidimensional Item Response Theory
Models With Covariates to Longitudinal Test Data

Jianbin Fu

Educational Testing Service, Princeton, NJ

The multidimensional item response theory (MIRT) models with covariates proposed by Haberman and implemented in the mirt
program provide a flexible way to analyze data based on item response theory. In this report, we discuss applications of the MIRT
models with covariates to longitudinal test data to measure skill differences at the individual and group levels. In particular, we describe
the differential item functioning procedure to identify common items with item drift across test occasions, and model selection and
evaluation based on model comparison, fit statistics, and skill estimates. A real dataset on algebra tests is used to demonstrate the
applications.
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Longitudinal test data contain item scores obtained from a common group of examinees across multiple test occasions.
To measure students’ growth, tests at different occasions should be placed on the same scale. In practice, the common
approach is to use a unidimensional item response theory (IRT) model to calibrate each test separately and then to equate
them to a common scale using common items as anchors. Multidimensional IRT (MIRT) models can be used to calibrate
longitudinal test data concurrently, which has the potential to increase estimation accuracy. In addition, the mean vector
and the covariance matrix of examinees’ abilities at the population level across test occasions can be estimated. Applying
MIRT models to longitudinal test data has been discussed in, for example, Embretson (1991, 1997); Meiser (1996); Meiser,
Stern, and Langeheine (1998); te Marvelde, Glas, Van Landeghem, and Van Damme (2006); and von Davier, Xu, and
Carstensen (2011). Recently, Haberman (2013) proposed MIRT models with flexible covariate structures on latent skills
and implemented in the computer program, mirt. Incorporating covariates into MIRT calibrations has the potential to
further increase estimation accuracy because auxiliary information is used (Mislevy, 1991). IRT models with covariates
have been studied before in, for example, Adams, Wilson, and Wu (1997); De Boeck and Wilson (2004); and Zwinderman
(1997). However, the mirt program provides a general treatment of IRT models with covariates and a feasible estimation
procedure. In this report, issues related to applying MIRT models with covariates to longitudinal test data are discussed,
and a real dataset is used for demonstration.

In the following sections, the MIRT models with covariates proposed by Haberman (2013) are first introduced, followed
by discussion of several issues regarding the applications of the MIRT models with covariates to longitudinal test data. A
real dataset on algebra tests is then used to demonstrate the applications. In the final section, a summary and discussion
are provided.

Multidimensional Item Response Theory Models With Covariates

A MIRT model with covariates includes two basic functions: an item response function and a skills distribution function
conditioned on covariates. In Haberman’s (2013) computer program, mirt, the item response function can be very flexible,
for example, (a) one-, two-, and three-parameter logistic models and their multidimensional extensions; (b) a multidi-
mensional random coefficients multinomial logit model (Adams, Wilson, & Wang, 1997) and its submodels, such as the
family of linear logistic test models (Fischer, 1973, 1997; Fischer & Ponocny, 1994, 1995); (c) a conjunctive Rasch model
(Maris, 1995); (d) a noncompensatory multiple classification latent class model (Maris, 1999) and its submodel, the noisy
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inputs, deterministic “and” gate model (Junker & Sijtsma, 2001); and (e) a disjunctive multiple classification latent class
model (Maris, 1999). In this report, the commonly used multidimensional generalized partial credit model (MGPCM;
e.g., Fu, 2009; von Davier, 2008) is introduced as an example. The item response function of MGPCM for longitudinal test
data is written as

P
(

xjit = sitm|𝜃jt

)
=

exp

(∑
k∈Kit

aikt𝜃jktsitm − bitsitm

)
Mit−1∑

f=0
exp

(∑
k∈Kit

aikt𝜃jktsitf − bitsitf

) , (1)

where
∑

k∈Kit

aikt𝜃jktsit0 − bitsit0
≡ 0; xjit is examinee j’s score on item i on Test Occasion t; 𝜽jt is the latent skill vector of

examinee j at Test Occasion t with elements 𝜃jkt that denotes the value (continuous or discrete) of examinee j’s skill k
(k= 1, 2, … , K) at Test Occasion t; Mit is the number of score categories of item i at Test Occasion t; sitm is the score of
score category m (m= 1, 2, … , Mit) for item i at Test Occasion t, which can be any real value but is typically the integer
m− 1; kit is the set of latent skills related to item i at Test Occasion t; aikt is the discrimination parameter of item i at
Test Occasion t for latent skill k; and bitsitm

is the parameter related to the difficulty of score category m for item i at Test
Occasion t. By restricting aikt = 1, the MGPCM is reduced to the multidimensional partial credit model.

The distribution function of latent skills conditional on covariates (e.g., demographic variables, previous test scores)
is denoted as P(𝜽j|zj). Note that 𝜽j is the latent skill vector of examinee j including all skill values across test occasions;
that is, 𝜽j = {𝜽jt}. For convenience, the elements of 𝜽j are denoted as 𝜃jd, where d (d= 1, 2, … , D) refers to a skill at a
certain test occasion. Furthermore, zj is the covariate vector of examinee j across test occasions with elements zjh, that is,
examinee j’s covariate h (h= 1, 2, … , H). Note that the first element in zj is the intercept, that is, zj1 = 1. For continuous
latent skills, P(𝜽j|zj) is assumed to follow a multivariate normal distribution (Haberman, 2013) with mean

𝜇
(
𝜃j|zj

)
=
[
−2Λ

(
𝜂, zj

)]−1
𝛽zj (2)

and covariance matrix ∑(
𝜃j|zj

)
=
[
−2Λ

(
𝜂, zj

)]−1
, (3)

where 𝜷 is a D×H coefficient matrix for the covariate vector zj and elements 𝛽dh are the coefficient for the hth covariate
zjh on latent skill d; 𝜼 is an array with elements 𝜂dd′h, 1≤ d≤ d’ ≤D, 1≤ h≤H; and 𝚲(𝜼, zj) is a D×D positive definite
matrix with elements

Λdd′
(
𝜂, zj

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1∕2)
H∑

h=1
𝜂dd′hzjh, d < d′,

H∑
h=1

𝜂dd′hzjh, d = d′,

(1∕2)
H∑

h=1
𝜂d′dhzjh, d > d′,

(4)

for 1≤ d≤D and 1≤ d’ ≤D. Note that the matrix 𝚲(𝜼, zj) is symmetric. The model parameters to be estimated in the
skills distribution function are 𝜷 and 𝜼. Note that because both the means and covariance matrix of the latent skills can
depend on the covariates, the skills distribution defined here is very general. Thus, for example, the means and covariance
matrix of latent skills for examinees with different covariates are different; however, for all examinees, the distributions of
latent skills are assumed to be multivariate normal. The mean vector and covariance matrix can be simplified by imposing
constraints on 𝜂dd′h. If 𝜂dd′h is restricted to 0 for d≠ d′, then the latent skills for each examinee are independent of each
other, conditional on the covariates. If 𝜂dd′h is restricted to 0 for 1< h≤H, then the covariance matrix of the latent skills is
the same for all examinees across test occasions. If both kinds of restrictions are imposed, then the covariance matrix of the
latent skills is a diagonal matrix and is the same for all examinees across test occasions. In this case, the skills distribution
function is actually the regular linear regression model.
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For discrete latent skills, 𝜽j can be any vector 𝝎 in the finite space Ω. Then P(𝜽j =𝝎|zj) follows a quadratic log-linear
model (Haberman, 2013; Haberman, von Davier, & Lee, 2008) and is written as

P
(
𝜃j = 𝜔|zj

)
=

W (𝜔) exp
[
𝜔′𝛽zj + 𝜔′Λ

(
𝜂, zj

)
𝜔
]

∑
𝜃j∈Ω

W
(
𝜃j

)
exp

[
𝜃′j 𝛽zj + 𝜃′j Λ

(
𝜂, zj

)
𝜃j

] , (5)

where W(𝝎) is the known positive weight for 𝝎; the prime indicates the transpose of a matrix, and the other notation is
defined in Equations 2–4.

Note that by treating group indicator(s) as covariate(s), the multiple group models (Bock & Zimowski, 1997; Fu, 2009;
von Davier, 2008) are special cases of the MIRT models with covariates.

The mirt program (Haberman, 2013) can be used to estimate MIRT models with covariates. This program employs
log-linear modeling and implements the maximum marginal likelihood method with the stabilized Newton–Raphson
algorithm. The stabilized Newton–Raphson algorithm is different from the expectation-maximization algorithm (Fu,
2009), which is the most common algorithm used for maximum marginal likelihood estimation of IRT models. In the
mirt program, model parameters can be fixed to constants or constrained to be equal to other parameters. For latent skills,
maximum a posteriori and expected a posteriori (EAP; Bock & Aitkin, 1981) estimates are provided.

Considerations in Applying Multidimensional Item Response Theory Models With Covariates
to Longitudinal Test Data

When calibrating longitudinal test data, each skill at each test occasion is treated as a factor in the MIRT model, and each
factor can have a different covariate vector. In the following, we discuss three common issues in calibrating longitudinal
test data.

The first issue is regarding separate versus concurrent calibrations. For separate calibrations, test data at each occa-
sion are calibrated in separate runs and then equated to a common scale by an equating method, while a concurrent
run calibrates all data across test occasions together to achieve a common scale. Separate calibrations may be necessary
in some cases where, for example, the number of items and/or examinees is very large in each test occasion and/or test
results need to be reported immediately after each administration. However, unlike concurrent calibration, separate cal-
ibrations cannot easily provide the correlation estimates among skills across occasions at the population level. In either
case, appropriate constraints on model parameters should be imposed to identify the models.

The second issue is about model selection. Model selection includes the selection of both item response function and
skills distribution function. The goal is to find an appropriate item response function and a concise skills distribution
function that includes only the important covariates. The model of choice is the most parsimonious model with best
model fit. The mirt program provides several indexes for comparing models and evaluating model fit that are described
in the next section.

The third issue is about item parameter drift across test occasions. In longitudinal test data, anchor items are com-
mon items used to link test scale across test occasions. An anchor item’s item parameters are kept the same across test
occasions to establish a common scale. However, a common item may be functioning differently across test occasions;
that is, the item may have differential item functioning (DIF) across test occasions. A common item with DIF should be
removed from the anchor set and its item parameters allowed to be different across occasions. Therefore, when calibrating
longitudinal test data, we need to identify the common items with DIF across test occasions and remove them from the
anchor set.

A Real Data Example

In this section, the process of detecting DIF across test occasions for common items and selecting an appropriate MIRT
model with covariates to calibrate longitudinal test data based on concurrent calibration is demonstrated using a real
dataset on algebra tests from the CBAL™learning and assessment tool research initiative supported by Educational Testing
Service (ETS). Specifically, an IRT DIF procedure was first conducted on all common items across test occasions based on
a preselected MIRT model. The common items identified with DIF were removed from the anchor set in the subsequent
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Table 1 Design of 2012 CBAL Mathematics Study

Algebra A (Administration 1) Algebra B (Administration 2)

Test sequence
NAEP item

blocks Session 1 Session 2
NAEP item

blocks Session 3 Session 4

1 B1, B2 Moving Sidewalks 1R All Wet B3, B4 Moving Sidewalks 2R Heights and growth
2 B3, B1 Moving Sidewalks 1R Smartphones B4, B2 Moving Sidewalks 2R Heights and growth
3 B2, B4 Moving Sidewalks 1R All Wet B1, B3 Moving Sidewalks 2R Keeping in touch
4 B4, B3 Moving Sidewalks 1R Smartphones B2, B1 Moving Sidewalks 2R Keeping in touch

Note. NAEP=National Assessment of Educational Progress.

Table 2 Distribution of Examinees Across Two Administrations

Administration 2

Administration 1 Yes No Total

Yes 2,696 159 2,855
No 59 – 59
Total 2,755 159 2,914

model selection process. In model selection, the model fit statistics from several MIRT models with varying levels of
complexity were compared, and the most appropriate model was recommended.

CBAL is intended to create a model for an innovative K–12 assessment system that measures students’ achievement
(of learning), provides timely feedback for educational intervention (for learning), and is a worthwhile educational expe-
rience in and of itself (as learning; Bennett, 2010). CBAL tests are developed for mathematics, reading, and science based
on underlying cognitive competency models that incorporate curriculum standards with the results of learning sciences
research. CBAL tests are administered online and include innovative “technology-enhanced” items that are typically orga-
nized under a common scenario and gauge higher order critical thinking abilities.

Data

The CBAL data used in this study were obtained from Grade 8 algebra tests (van Rijn, Wise, Yoo, & Chung, 2013). These
tests comprised six tasks; the number of items in each task ranged from 16 to 27, based on a common scenario. In addition,
four blocks of 10 discrete items were used to establish links between tests and between administrations. These discrete
algebra items were taken from the National Assessment of Educational Progress (NAEP) program. All tasks were admin-
istered by computer, and some items involved simulations. The item types included constructed response, numeric entry,
selected response, and graph drawing. The item scores were dichotomous (0, 1) or polytomous (integers from 0 to 4).

The six tasks and the four blocks of 10 NAEP items were arranged into four test sequences across two test admin-
istrations (see Table 1). Each administration comprised two test sessions, and each test session lasted 45 minutes. The
two administrations took place in Winter 2011 and Spring 2012, respectively, with an interval of approximately 3 months
between the two administrations.

Schools were recruited throughout the United States and received monetary rewards for their participation. Students
were randomly assigned to one of the four test sequences. The tests were stored on an ETS server, and students completed
the tests online at local schools via Internet connection to the server. In this study, several demographic variables were
collected from students, and only gender was used in this demonstration, as this variable was well represented. Two
students with missing gender were excluded from the analyses. Omitted item responses (i.e., missing responses in the
middle of a test session) were coded as 0. Not reached responses (i.e., missing responses toward the end of a test session)
as well as any missing responses due to system administration problems were treated as missing. The resulting dataset
used in the analyses included 1,467 males and 1,447 females with a total of 2,914 students, among whom 2,696 students
participated in both test administrations (Winter 2011 and Spring 2012); see Table 2 for the distribution of examinees
across the two administrations.
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Method

CBAL items are organized under a common scenario (task), and therefore task-specific factors besides the general factor,
algebra skill, may have potential effects on item responses. A preliminary analysis1 showed that the task Moving Sidewalks
2R had the most reliable task effect; thus, only the task factor specific to the Moving Sidewalks 2R task was considered
in this demonstration. Note that for scaling purposes, the general factor represents the targeted skill of an assessment. A
task-specific factor is usually treated as a nuisance dimension that is unrelated to the general factor or to other task-specific
factors. The steps made in analyzing this dataset are described in the following paragraphs.

First, DIF analyses were conducted on the 40 common items based on the two-factor MGPCM without covariates. The
first factor was algebra skill at the first administration, and the second factor was algebra skill at the second administration.
In the baseline model, the item discrimination (a) and difficulty (b) parameters of every common item were constrained
to be the same across test occasions. In the augmented model for each common item, both the item discrimination and
difficulty parameters of the target item were free to estimate at both test occasions. Then, the two nested models were
compared by the likelihood ratio test for each common item, and a test with a significant p value, p< .05, indicated DIF
on the target item. In practice, effect size measures, for example, the difference of average item scores between two test
occasions, may be combined with the significant test to identify the drifted common items with practical importance. In
this report, the effect size criterion is not employed.

Second, the following four MIRT models with different complexities were used to calibrate the test data concurrently.
The item parameters of common items were constrained to be the same across test occasions, except for the common
items that were identified to have DIF at the first step. The results were then evaluated in terms of model comparison and
fit statistics and latent skill estimates:

Model 1 (M1). M1 is a three-factor MGPCM with a covariate, gender. The first one is the algebra skill relating to all
items at the first test occasion, the second one is the algebra skill relating to all items at the second test occasion, and
the third one is the task factor specific to Moving Sidewalks 2R and relates only to items corresponding to the Moving
Sidewalks 2R task at the second test occasion. The first two factors are correlated but are independent to the third
factor. All factors have the gender covariate plus intercept.

Model 2 (M2). M2 is a submodel of M1 without the gender covariate.

Model 3 (M3). M3 is a submodel of M1, excluding the task-specific factor; that is, M3 is a two-factor MGPCM with
the gender covariate plus intercept.

Model 4 (M4). M4 is a submodel of M3 without the gender covariate.

Restrictions should be imposed to identify these models. For M4, the traditional way to identify the model is to fix
the mean and variance of the algebra skill at Test Occasion 1 at the group level to, for example, 0 and 1, respectively.
The mean and variance of the algebra skill at Test Occasion 2 as well as the covariance of the two factors at the group
level are free to estimate, as its scale can be determined by the common item parameters of anchor items across the two
test occasions. In mirt, the idea is similar; however, the constraints are made on the element(s) related to the algebra
skill at Test Occasion 1 in the inverse of the variance–covariance matrix of factors, 𝚲(𝜼, zj) (see Equations 3 and 4), and
the coefficient matrix for the covariate vector, 𝜷 (see Equation 2). Specifically, the intercept for the algebra skill at Test
Occasion 1, 𝛽11, is set to 0, and the diagonal element related to the algebra skill at Test Occasion 1, 𝜂111, is set to −1/2.
However, note that these constraints do not lead to the fix of the mean and variance of the algebra skill at Test Occasion
1 at the group level to 0 and 1, respectively. For M3, the same constraints as M4 apply; however, the two constraints in
M3 are now related to the algebra skill at Test Occasion 1 for the female group. For M1 and M2, additional constraints are
needed: (a) set 𝜂131 = 𝜂231 = 𝜂311 = 𝜂321 = 0 in M2 and, additionally, 𝜂132 = 𝜂232 = 𝜂312 = 𝜂322 = 0 in M1 so that the task-
specific factor is independent of the two algebra factors; (b) set 𝛽13 = 0 and 𝜂331 =− 1/2 to fix the mean and variance,
respectively, of the task-specific factor at Test Occasion 1 for the whole group in M2 and for the female group in M1 to 0
and 1.
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Three statistics related to the expected log penalty per item response were used for model comparisons (Haberman
et al., 2008, pp. 7–8):

1. Estimated expected log penalty per item response. It is equal to the log likelihood of a model divided by the total
number of item responses in the dataset. This statistic does not take into account the number of model parameters
being estimated.

2. Estimated expected predicted log penalty per item response (Gilula & Haberman, 2001). This statistic treats model
complexity as cost and punishes the models with more model parameters.

3. Akaike information criterion (AIC; Akaike, 1974) per item response. The AIC is equal to twice the number of model
parameters plus twice the negative log likelihood. AIC per item response is equal to AIC divided by twice the total
number of item responses in the dataset. This statistic is a simplified approximation to the second statistic listed
here, which assumes that the model is correct.

For all the three statistics, smaller is better. If a complex model has much smaller values on these three statistics than
a simpler model, then the complex model would be recommended. If the differences on the three statistics are minor
between the two models, then it indicates that the two models have similar model fit, and in this case, the simpler model
with fewer model parameters would be preferred.

In addition, four model fit statistics based on generalized residuals (Haberman, 2009; Haberman & Sinharay, 2013)
were compared across the four models. The generalized residual is defined as

q =

(
O − Ê

)
𝜎

O =

N∑
j=1

d
(

xj

)
N

, (6)

where xj is examinee j’s item score vector; N is the number of examinees in a sample; d(xj) is a real function of xj; Ê is
the estimated expected value of O under a proposed model; and 𝜎 is the standard deviation of O−Ê under the proposed
model. If the model fits the data and the sample size is sufficiently large, then theoretically the generalized residual q
follows an approximate standard normal distribution. Therefore, q can be compared to a standard normal distribution to
determine whether a test is significant. If the absolute value of q is larger than 1.960 or 2.576, then the generalized residual
test is significant at the .05 or .01 level. In a test dataset, if more than 5% (or 1%) of the generalized residuals are significant
at the .05 (or .01) level, the model is considered not to fit the data well. However, in practical use, we also need to consider
effect size related to O−Ê to determine practical meanings of a significant test; more discussion about this issue is given
in the Results section The generalized residual test has advantages over the contingency table–based Pearson chi-square
tests and likelihood ratio chi-square tests commonly used for IRT models. First, the generalized residual test has a solid
theoretical basis, whereas all of the chi-square tests for IRT models contain conditions that lead to violations of their
presumed chi-square distribution (Glas & Falcon, 2003; Haberman, Sinharay, & Chon, 2013). Second, the generalized
residual is very flexible, as d(xj) can be any real function of an item score vector. Therefore users can check the particular
important properties of a model by choosing the appropriate d(xj) functions. In this application, the following four types
of generalized residuals were tested:

1. Set d(xj)= 1 if xji = sim, d(xj)= 0 if xji ≠ sim, where xji is examinee j’s score on item i and sim is the score of item
i’s score category m; then O is the proportion of examinees in item i’s score category m. In this application, the
generalized residuals with sim = 1 were examined.

2. Set d
(

xj

)
= xji ∗ xji′ , where i≠ i′; then O is the proportion of the cross product of item scores of the item pair,

item i and item i′. This test statistic is usually used to check whether a model deviates from the assumption of local
independence.

3. Set d(xj)= 1 if
∑

i∈Kv
xji = r, d(xj)= 0 otherwise, where Kv is the set of items in the CBAL task v (v= 1, 2, … , 6);

then O is the proportion of examinees in total raw score r of task v (i.e., the probability of total raw score r).
4. Set d(xj)= 1 if

∑
i∈Kv

xji ≤ r, d(xj)= 0 otherwise; then O is the cumulative proportion of examinees in total raw
score r of task v (i.e., the cumulative probability of total raw score r).

The mirt program (Haberman, 2013) was used for all model estimations. The adaptive Gauss–Hermite quadratures
with 5 points for each latent skill were used in calculating the marginal likelihoods.
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Table 3 Common Items With Differential Item Functioning

Log likelihood No. structural parameters Difference of degree of freedom p Value

Base model −199,051 432
Item 2 −199,048 434 2 .045
Item 5 −199,045 434 2 .003
Item 8 −199,040 434 2 .000
Item 10 −199,046 435 3 .033
Item 13 −199,046 434 2 .008
Item 17 −199,047 434 2 .040
Item 25 −199,047 434 2 .022
Item 36 −199,046 434 2 .015

Table 4 Model Comparisons

Model

Statistics 1 2 3 4

Log likelihood −198,465 −198,454 −199,020 −199,017
No. structural parameters 475 468 454 449
Penalty .617 .617 .618 .618
Akaike .618 .618 .620 .620
Gilula–Haberman .618 .618 .620 .620
Algebra reliability, Test Occasion 1 .956 .956 .956 .956
Algebra reliability, Test Occasion 2 .943 .943 .951 .951
Task-specific skill reliability .502 .511

Results

Table 3 lists the likelihood ratio test results for the common items with test p values smaller than .05. In Table 3, the
number of structural parameters includes all model parameters, except for students’ skill parameters. Eight common
items appeared to have DIF. These eight common items were removed from the anchor set, and their item parameters
were allowed to be different across the two test occasions in the subsequent analyses.

Table 4 lists the three model comparison statistics described previously for each of the four models: estimated expected
log penalty per item response (“Penalty”), AIC per item response (“Akaike”), and estimated expected predicted log penalty
per item response (“Gilula–Haberman”). One can see that the differences for all three statistics across the four models are
minor (no larger than .002), which indicates that the gains in model fit from the three complicated models to the simple
Model 4 were negligible. Table 4 also shows the reliabilities of the EAP estimates of the algebra skill at Test Occasions 1
and 2 and/or task-specific skill related to the task Moving Sidewalks 2R for each model. The reliability is calculated as
the ratio of the variance of the sample EAP estimates over the variance of the population EAP estimates (e.g., Adams,
2006; Haberman & Sinharay, 2010). All the models have the same reliability estimate of .956 on algebra skill at the first
administration. For algebra skill at the second administration, M3 and M4 have the reliability estimate of .951, which is
.08 higher than for M1 and M2. The task-specific skill reliability estimate in M2 is .511, which is .09 higher than for M1.
Although the differences in reliability estimates are small, they do suggest an appreciable difference in the proportion of
population variance explained by the sample EAP estimates.

The four types of generalized residuals as defined previously were used to compare model fit in the four models. Note
that a generalized residual test was reported only if the ratio of the standard error of the generalized residual, 𝜎, over the
standard error of O in Equation 6 was larger than .1 and the standard error of O was not equal to 0, because if 𝜎 is too
small due to computational errors that occur within iterative algorithms, a generalized residual test is not meaningful. For
the generalized residual tests for single items as described earlier, only 64 out of 205 items are reported. The percentages
of the significant generalized residuals in the total reported tests at the .05 level are shown in Table 5 for the four types
of generalized residuals in the four models. As can be seen in Table 8, for each type of generalized residual, the percent-
ages of significant generalized residuals are similar across the four models, and the complicated models do not appear
to have significantly better fit than the simple M4. However, all the percentages of significant generalized residuals were
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Table 5 Percentages of Significant Generalized Residuals

Model

Generalized residual No. tests 1 2 3 4

Percentage of examinees with score 1 in each item 64 12.5 9.4 12.5 12.5
Average cross-product of item scores of each item pair 17,275a 16.5 15.8 17.1 16.2
Percentage of examinees with each total raw score in each CBAL task 222 18.0 18.0 18.9 18.9
Cumulative percentage of examinees with each total raw score in each CBAL task 217 47.9 46.1 48.8 48.4

aExcluded tests where 17 examinees or fewer answered both items; for the included tests, at least 551 students responded to both items.

Table 6 Pearson Correlations of Expected a Posteriori Estimates for General Skill Among Four Models

Administration Model 1 Model 2 Model 3

First
Model 2 1.000
Model 3 1.000 1.000
Model 4 1.000 1.000 1.000

Second
Model 2 1.000
Model 3 .992 .993
Model 4 .993 .993 1.000

Growth (second minus first)
Model 2 .996
Model 3 .945 .948
Model 4 .945 .950 .999

much larger than 5%. For each CBAL task, the percentages of significant generalized residuals for total raw scores and for
cumulative total raw scores, while varied across the six tasks, were also much larger than 5%. Note that this result is not
unusual. Sinharay, Haberman, and Jia (2011) applied the generalized residual tests to several operational test data sets and
found that, for all the datasets, the IRT models used to calibrate the test data did not fit the data well. However, they found
that not all the misfit was of practical significance. The same question applies to the CBAL data: Whether the statistically
significant generalized residuals are also practically significant is a topic that needs to be further explored based on the
intended uses of the test scores. For example, a rule based on effect size, for instance, the residual (i.e., |O−Ê|), or the
portion of residual over the fitted statistic (i.e., |(O−Ê)/Ê|), can be combined with the significant test and used to select
residuals with practical importance. In Table 5, the maximum residual (i.e., |O−Ê|) for single items is only about .03,
which may not be considered as large a discrepancy in practice.

To compare the EAP estimates of the algebra skill for each of the four models, Pearson correlations were calculated
among the four models for the algebra skill factor at each administration as well as the growth between the two adminis-
trations. As shown in Table 6, all correlations are equal to or larger than .992, except that the correlations on the growth
measures between one model with the task-specific factor (M1 or M2) and one model without the task-specific factor (M3
or M4) are approximately .95. This indicates that the gender covariate does not have much impact on estimation of the
algebra skill, but whether the task-specific factor is taken into account slightly affects the estimation of the algebra skill.
This finding is further verified by the analyses of the agreement of the fail/pass classifications among the four methods.
The failure rates were set at 10%, 20%, and 25% for the less able students. Tables 7 and 8 show the number of students with
different classifications among the four methods, given each of the three failure rates, for the first and second adminis-
trations, respectively. One can see that the numbers of students with disagreement between M1 and M2 and between M3
and M4 are much smaller than those between one model with the task-specific factor (M1 or M2) and one model without
the task-specific factor (M3 or M4). In addition, the numbers of students with disagreement between one model with the
task-specific factor (M1 or M2) and one model without the task-specific factor (M3 or M4) increase from the first test
administration to the second administration and with failure rates.

Table 9 lists the factor mean, standard deviation, and correlation estimates at the population level for the whole
group as well as for the male and female groups, if applicable, from the four models. One can see that the correlation
estimates on algebra skill between the two administrations from the four models are very close at approximately .93.
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Table 7 First Administration: Disagreement of Fail/Pass Classification Among Four Models

Failure rate Model 1 Model 2 Model 3

10% of bottom students
Model 2 4
Model 3 8 8
Model 4 8 8 2

20% of bottom students
Model 2 4
Model 3 12 12
Model 4 14 14 4

25% of bottom students
Model 2 6
Model 3 16 14
Model 4 16 14 2

Note. The value in each cell represents the number of students with different classifications between two methods.

Table 8 Second Administration: Disagreement of Fail/Pass Classification Among Four Models

Failure rate Model 1 Model 2 Model 3

10% of bottom students
Model 2 6
Model 3 22 24
Model 4 20 22 2

20% of bottom students
Model 2 6
Model 3 38 36
Model 4 38 36 2

25% of bottom students
Model 2 12
Model 3 56 52
Model 4 58 54 6

Note. The value in each cell represents the number of students with different classifications between two methods.

Although the factor mean and standard deviation estimates cannot be compared directly across the models because
their scales are different, the observed patterns across the two administrations and the gender groups are the same.
Specifically, (a) in all models, students appeared to have slight improvement as well as a little more dispersion on
algebra skill at the second administration compared to the first administration; (b) in M1 and M3, females appeared
to have a little better algebra skill than males did; and (c) in M1, males showed a slightly higher mean score on the
task-specific factor than females did. Note that the way to fix scales in the mirt program (see the preceding discus-
sion regarding imposing constraints on 𝜷 and 𝜼 for purpose of model identification) is different from the traditional
way (e.g., fix the mean and standard deviation of a latent skill in a group to 0 and 1, respectively). That is the rea-
son we see the much larger standard deviation estimates of algebra skills at both administrations in Table 9 than we
would normally get from other IRT programs and no group mean of the algebra skill at either administration that is
fixed to 0.

In sum, the model comparison and fit statistics show that the model fit of the simple M4 is similar to that observed
for the other three more complicated models, and therefore M4 is recommended as the scaling model for the CBAL data
from the parsimonious perspective.

Discussion

The MIRT models with covariates proposed by Haberman (2013) and implemented in the mirt program provide a more
flexible way to analyze data based on IRT. In this report, we discuss the applications of the MIRT models with covariates
to longitudinal test data to measure skill differences at the individual and group levels. In particular, we describe the DIF
procedure to identify common items with item drift across test occasions, and we describe model selection and evaluation
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Table 9 Factor Population Mean, Standard Deviation, and Correlation Estimates

Statistic Algebra skill at first admin. Algebra skill at second admin. Task-specific factor

Model 1
Male

M .045 .075 .038
S.D. 2.561 2.850 .980
Corr. .935 NA

Female
M .231 .279 .000
S.D. 2.537 2.810 1.000
Corr. .919 NA

All
M .193 .238 .018
S.D. 2.556 2.840 .991
Corr. .928 NA

Model 2
All

M .244 .292 .000
S.D. 2.704 2.999 1.000
Corr. .929 NA

Model 3
Male

M −.055 −.018 NA
S.D. 2.546 2.757 NA
Corr. .931 NA

Female
M .132 .154 NA
S.D. 2.526 2.716 NA
Corr. .918 NA

All
M .089 .121 NA
S.D. 2.547 2.747 NA
Corr. .926 NA

Model 4
All

M .247 .287 NA
S.D. 2.642 2.850 NA
Corr. .926 NA

based on model comparison and fit statistics and skill estimates. A real dataset from CBAL algebra tests has been used to
demonstrate the applications.

Many factors should be taken into account when choosing a scaling method for longitudinal test data. Practical con-
siderations may play a more important role than statistical criteria in some contexts. Sometimes the finding of statistical
significance between two models does not necessarily represent a practical significance; the practical meaning of model
differences should always be investigated. Complicated models often pose challenges for practical use, such as subtle
model identification issues, heavy computational burden, unstable parameter estimates, and difficulties in interpreting
model parameters for laypersons.

A useful feature of the mirt program that is not described in this report is its capacity to handle stratified sampling.
Stratified sampling is commonly used in large-scale assessments for survey, for example, in the NAEP and the Program
for International Student Assessment. When analyzing data from stratified sampling based on IRT models, the number of
strata and primary sampling units should be taken into account. See Haberman (2013) for more details and Qian (2015)
for an application.
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Note

1 In the preliminary analysis, a bifactor MGPCM with eight factors was fitted to the CBAL data. First was the general factor
representing algebra skills and including all items; the other seven factors were specific to the six CBAL algebra tasks and the
NAEP items (all NAEP items were treated as one task), respectively. A task-specific factor included only the items in that task.
The eight factors were assumed to be independent. The general factor and the task-specific factor for the NAEP items had one
covariate plus intercept, test occasion, whereas the other task-specific factors did not have the covariate of test occasion, as those
tasks were only administered once. The simplex quadrature (Haberman, 2013) was used to calculate the marginal likelihood for a
faster calibration. The results show that the EAP estimates of the task-specific factor for Moving Sidewalks 2R had the highest
reliability, at 0.501, among the seven task-specific factors.
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