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Abstract

Dodeen (2004) studied the correlation between the item parameters of the three-parameter logistic

model and two item fit statistics, and found some linear relationships (e.g., a positive correlation

between item discrimination parameters and item fit statistics) that have the potential for

influencing the work of practitioners who employ item response theory. This paper examines the

same type of linear relationships as studied in Dodeen. However, this paper adds to the literature

by employing item fit statistics not considered in Dodeen, which have been recently suggested

and whose Type I error rates have been demonstrated to be generally close to the nominal level.

Detailed simulations show that if one uses certain of the recently suggested item fit statistics,

there is no need to worry about any linear relationships between the item parameters and item fit

statistics.
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Model checking remains a major hurdle to the effective implementation of item response

theory (IRT; Hambleton & Han, 2004). Recent works like Stone and Zhang (2003), Orlando

and Thissen (2003), Hambleton and Han (2004), and Sinharay (2005) notwithstanding, there is

substantial scope of further research needed on the topic. Item fit is a major area of interest

in model checking. Though researchers have suggested several different item fit statistics (e.g.,

Bock, 1972; Orlando & Thissen, 2000; Sinharay, 2006; Stone, 2000; Stone & Zhang, 2003; Glas

& Suarez-Falcon, 2003; Yen, 1981), there is a lack of sufficient knowledge regarding factors that

usually cause item misfit. For example, more appropriate assessments have resulted because the

substantial existing knowledge of factors affecting differential item functioning, or DIF, (see, for

example, Schmitt, Holland, & Dorans, 1993, and the references therein) often help test developers

to control the number of items with DIF. Unfortunately, there is a general lack of such knowledge

regarding the factors affecting item misfit.

In an attempt to explore such factors, Dodeen (2004), in the context of the three-parameter

logistic (3PL) model, studied the linear relationships between item parameters and two item fit

statistics: (a) the G2-like item fit statistic χ2
G (Mislevy & Bock, 1990), and (b) the standardized

residual (Hambleton, Swaminathan, & Rogers, 1991). The paper reported substantial linear

relationships (e.g., a positive correlation between the discrimination parameters and the item

fit statistics) and also a positive correlation between the guessing parameters and the item fit

statistics. These findings have the potential to influence construction of assessments that employ

IRT models. For example, the positive correlation between the discrimination parameters and item

fit statistics that Dodeen found may create a dilemma regarding the use of highly discriminating

items in tests.

Several item fit statistics have been suggested recently, by researchers such as Glas and

Suarez-Falcon (2003), Orlando and Thissen (2000), Sinharay (2006), Stone (2000), and Stone and

Zhang (2003). There is a need to study the same relationships as studied by Dodeen (2004), but

with these recently developed item fit statistics; if the relationships hold for these newer statistics

as well, there will be sufficient reason to be careful about test construction.

Hence, this paper examines the same relationships studied by Dodeen (2004) using several

simulated data sets and a real data set employing several newer item fit statistics: The S −χ2 and

S −G2 statistics of Orlando and Thissen (2000) and the χ2∗ and G2∗ statistics of Stone (2000).
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These four statistics, unlike those used by Dodeen, have been demonstrated to have Type I error

rates generally close to the nominal level under a wide variety of conditions. The first two of

these use examinee groups defined using the raw score scale while the latter two use examinee

groups defined using the ability parameter scale. This paper performs simulations under the same

conditions as in Dodeen, and also under more conditions.

The next section describes the study by Dodeen (2004). The Simulations section covers

simulations like in Dodeen. The Further Simulations section shows results from simulations

under more conditions than considered in Dodeen. The Real Data section discusses results

from a real data example. The Closer Look section examines the reasons behind the differences

between Dodeen’s results and those in this paper. The last section provides discussion and

recommendations.

Brief Description of the Study of Dodeen

Dodeen (2004) studied the linear relationships between item parameters and item fit statistics

for data generated from and analyzed using the 3PL model. The author employed two item fit

statistics. The first is χ2
G (Mislevy & Bock, 1990)1 given by:

χ2
G = 2

n∑
j=1

Nj

[
Oj log

(
Oj

Ej

)
+ (1−Oj)log

(
1−Oj

1− Ej

)]
, (1)

where the ability (θ) scale is divided into n groups; Oj and Ej are, respectively, the observed and

expected proportions of correct responses to the item in ability group j; and Nj is the number of

examinees in group j. The second item fit statistic used by Dodeen is the standardized residual

(SR; Hambleton, Swaminathan, & Rogers, 1991) given by:

zj =
(Oj − Ej)√

Ej(1− Ej)/Nj

, j = 1, 2, . . . n· (2)

Under each of nine test conditions, Dodeen (2004) simulated and analyzed 100 data sets,

each with 1,000 examinees and 50 multiple-choice items, employing the 3PL model. Examinee

ability parameters were generated from a N (0, 1) distribution. The item parameters under

the different test conditions were drawn from a normal distribution with means and standard

deviations (SD) as shown in Table 1. Note that the first three test conditions differ only in

mean discrimination, the next three only in mean difficulty and the last three only in mean
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discrimination. BILOG 3.11 (Mislevy & Bock, 1990) was used for fitting the 3PL model to the

simulated data sets and for computing the item fit statistics.

Table 1
Generating Item Parameter Distributions

Test Discrimination(a) Difficulty(b) Guessing(c)
condition Mean SD Mean SD Mean SD

1 0.5 0.5 0.0 1.0 0.1 0.1
2 1.0 0.5 0.0 1.0 0.1 0.1
3 1.5 0.5 0.0 1.0 0.1 0.1
4 1.0 0.5 -1.0 1.0 0.1 0.1
5 1.0 0.5 0.0 1.0 0.1 0.1
6 1.0 0.5 1.0 1.0 0.1 0.1
7 1.0 0.5 0.0 1.0 0.1 0.1
8 1.0 0.5 0.0 1.0 0.25 0.1
9 1.0 0.5 0.0 1.0 0.5 0.1

Dodeen (2004) studied the linear relationships between item parameters and item fit statistics

in several ways. The paper reported average item fit statistics, and the correlations between the

item parameters and the average item fit statistics (averaged over 100 replications) under each

of the nine test conditions in Table 1. Further, an analysis of variance (ANOVA) followed by

pairwise comparisons with the average item fit statistics as the dependent variable and the test

condition as the independent variable was conducted on the first three test conditions (to study

the effect of the discrimination parameters on the item fit statistics), on the second three test

conditions (to study the effect of the difficulty parameters on the item fit statistics), and on the

last three test conditions (to study the effect of the guessing parameters on the item fit statistics).

Dodeen found for both of the two item fit statistics, χ2
G and zj , that the average, proportion

significant, and the correlation with item parameters increased with an increase in the average

discrimination parameters, and also with an increase in the average guessing parameters. No such

phenomenon was observed for the difficulty parameters. From these results, Dodeen concluded

that there is a positive correlation between the item discrimination parameters and both item fit

statistics, and also between the item guessing parameters and both item fit statistics.

The findings of Dodeen (2004) may have serious consequences for constructing assessments

that employ IRT models. Items with high discrimination parameters have high values of

information and are usually preferred over other types of items, especially in computer-adaptive
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tests (CAT; e.g., Leung, Chang, & Hau, 2002). So the positive correlation between the

discrimination parameters and item fit statistics that Dodeen found may create a dilemma

regarding the use of highly discriminating items. Some practitioners might subject the highly

discriminating items (assuming these to be more prone to item misfit) to more review than is

necessary, or remove such items from the item pool, which would result in increased cost. On

the other hand, some other practitioners might always retain highly discriminating items in the

operational item pool and ignore observed misfit of such items (using Dodeen’s finding to conclude

that such items, even if from the correct model, have an increased tendency of showing misfit);

this is not a good strategy because the item pool may have truly misfitting items that are highly

discriminating, and retaining those items in the item pool would lead to tests with less than

desirable properties.

Simulations Under the Test Conditions Considered by Dodeen (2004)

We first performed simulations under the nine test conditions considered by Dodeen (2004),

but with five item fit statistics, one of which was employed by Dodeen.

The Item Fit Statistics Considered

The χ2
G statistic was included in the simulations, as in Dodeen (2004), as well as the S − χ2

and S−G2 statistics suggested by Orlando and Thissen (2000). For computing S−χ2 and S−G2,

the examinees were divided into G groups based on their raw scores. The S − χ2 statistic is given

by

S − χ2 =
n∑

j=1

Nj(Oj − Ej)2

Ej(1− Ej)
, (3)

and the S −G2 statistic is given by

S −G2 = 2
n∑

j=1

Nj

[
Oj log

(
Oj

Ej

)
+ (1−Oj)log

(
1−Oj

1− Ej

)]
, (4)

where, Oj and Ej are the observed and expected proportions of correct responses, respectively, to

the item in raw score group j, and Nj is the number of examinees in raw score group j. Glas and

Suarez-Falcon (2003), Orlando and Thissen (2000), Sinharay (2006), and Stone and Zhang (2003)

used detailed simulations to show that when the 3PL model is fit to the data, S − χ2 and S −G2
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are distributed approximately as a χ2 random variable with n − 4 degrees of freedom. The two

statistics have slightly inflated Type I error rates for short tests (Glas & Suarez-Falcon, 2003;

Sinharay, 2006).

Two additional statistics considered in this paper, suggested by Stone (2000), use a

predetermined number of examinee groups defined on the scale of the examinee proficiency

parameter θ. One computes the posterior probability for each examinee of belonging to each

group. Then, for each item and each examinee group, one computes the observed number of

examinees (often called pseudo-counts because these numbers are not truly observed) in each

group who answered the item correctly/incorrectly, and the corresponding expected numbers.

Then, one computes a χ2-type and a G2-type statistic, comparing the observed and expected

proportions using formulae similar to Equations 1 and 3, respectively. Research has shown that

the fit statistic is a scaled χ2 random variable (Stone, 2000). To estimate the scaling factor and

the effective degree of freedom, a resampling-based procedure is used that rescales the χ2-type and

G2-type statistics to conform to a known χ2 distribution for hypothesis testing. These rescaled

statistics are henceforth denoted as χ2∗ and G2∗, respectively. Several studies (Stone, 2000; Stone

& Hansen, 2000; Stone & Zhang, 2003) found these statistics to have Type I error rates close to

the nominal level and adequate power. Lu and Lin (2005) found occasionally high Type I error

rates for these statistics.

While the two item fit statistics suggested by Orlando and Thissen (2000) are computed

using ability groups based on the raw scores of examinees, the fit statistics of Stone (2000) are

computed using ability groups on the proficiency scale. These are the two major ways of forming

ability groups, and hence the item fit statistics chosen for use in this paper are representatives of

the range of recently suggested item fit statistics. Also, these statistics are arguably the most

popular ones in the psychometrics literature and have been shown to perform satisfactorily for a

wide variety of conditions.

Study Design

We simulated and analyzed 100 data sets, each with 1,000 examinees and 50 multiple choice

items, under each of the nine test conditions shown in Table 1, much in the same way as in

Dodeen (2004). Note that Test Conditions 5 and 7 are the same as Test Condition 2. As in
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Dodeen, examinee abilities were always generated from a N (0, 1) distribution, and the item

parameters for the different test conditions were drawn from distributions with means and SDs

as given in Table 1. However, Dodeen used a normal distribution for generating item parameters,

which could lead to negative values of discrimination and guessing parameters in some cases.

Dodeen did not discuss how the negative values were handled. To prevent the occurrence of

negative values, we used a log-normal distribution for generating discrimination parameters and

a beta distribution for generating guessing parameters. The parameters of the log-normal and

beta distributions were chosen to make the mean and SD of the generating distributions the same

as those in Table 1. The values of the generating item parameters remained the same for the

100 data sets generated under any test condition (another version of the simulations allowed the

generating item parameters to vary over the 100 data sets, but the conclusions were the same—so

those results are not reported).

As in Dodeen (2004), the BILOG 3.11 software (Mislevy & Bock, 1990) was used for fitting

the 3PL model to the generated data sets and for computing the values of the χ2
G statistic. The

statistics S − χ2 and S −G2 were computed using the GOODFIT (Orlando, 1997) program. The

statistics χ2∗ and G2∗ were computed using the IRTFIT RESAMPLE program (Stone, 2004).

As in Dodeen (2004), the average item fit statistics, the proportion of item fit statistics that

are significant at 1% level and the correlations between the generating item parameters and the

average item fit statistics (averaged over the 100 replications under any test condition) were

computed under each of the nine test conditions. As in Dodeen, to determine the effect of each

parameter level on the average item fit statistics, an analysis of variance (ANOVA) followed by a

pairwise comparison was performed with the average item fit statistics as the response variable for

Test Conditions 1-3 (to study the effect of discrimination parameters on item fit statistics), then

for Test Conditions 4-6 (to study the effect of difficulty parameters on item fit statistics), and

finally for Test Conditions 7-9 (to study the effect of guessing parameters on item fit statistics).

Results

Table 2 summarizes the results of the simulations for the S − χ2, χ2∗, and χ2
G statistics.

Because the G2-type statistics produced very similar results as the corresponding χ2-type

statistics, values for the S − G2 and G2∗ statistics are not shown. In the table, the correlations
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Table 2
Average Values, Proportion of Misfits (at 1% Level), and Correlations Between Item

Parameters and Item Fit Statistics for S − χ2, χ2∗ and χ2
G for the Nine Test

Conditions

Test Condition
1 2 3 4 5 6 7 8 9

S − χ2 : Av 27.8 32.9 31.3 30.3 32.9 32.5 32.9 29.6 23.2
S − χ2 : Prop 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01
S − χ2 : Cor -0.32 -0.40* -0.32 0.08 0.15 0.30 0.09 0.08 0.00

χ2∗ : Av 3.0 4.7 5.1 4.0 4.7 4.3 4.7 3.0 3.3
χ2∗ : Prop 0.01 0.03 0.04 0.01 0.03 0.04 0.03 0.01 0.02
χ2∗ : Cor -0.17 -0.11 -0.14 0.13 0.04 0.13 -0.16 0.06 -0.03

χ2
G: Av 9.5 12.1 16.9 8.1 12.1 11.8 12.1 8.2 8.7

χ2
G: Prop 0.03 0.10 0.34 0.03 0.10 0.09 0.10 0.03 0.02

χ2
G: Cor 0.32 0.25 0.15 0.49* 0.13 -0.31 -0.22 0.03 0.01

Note. “Av” denotes average statistic, “Prop” denotes proportion significant at 1% level, and
“Cor” denotes correlation.

reported for Test Conditions 1-3 are between the average discrimination parameters and the

average item fit statistics, the correlations for Test Conditions 4-6 are between the average

difficulty parameters and the average item fit statistics, and the correlations for Test Conditions

7-9 are between the average guessing parameter and the average item fit statistics. The correlation

coefficients that are significant at the 1% level (using the result that
√

n− 2 r√
1−r2

∼ tn−2 for a

bivariate normal distribution with population correlation coefficient 0; see, e.g., Rohatgi, 1976) are

marked with an asterisk in the table.

Results for χ2
G. Relationships between values of the χ2

G statistic and those of the slope

parameters are somewhat similar to those observed in Dodeen (2004). The average and proportion

significant for χ2
G increases with an increase in the average discrimination parameter (i.e., over

Test Conditions 1-3). However, unlike in Dodeen (2004), the correlation decreased with an increase

in the average discrimination parameter. Relationships between the difficulty parameters and

the values of the χ2
G statistics were somewhat different from those in Dodeen, but no consistent

pattern was found in the average, proportion significant, and the correlation for χ2
G over Test

Conditions 4-6. Unlike Dodeen’s results, our results do not show any linear relationships between
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the guessing parameters and the χ2
G statistic: The statistic remains unaffected by an increase in

the average guessing parameter. We wonder whether a reason for the differences between the

results here and those in Dodeen is that Dodeen used the normal distribution for generating the

discrimination and guessing parameters, which might have led to a substantial number of negative

values of these parameters.

Results for S − χ2 and χ2∗. The proportion significant for the S − χ2 and χ2∗ are low and

close to the nominal level, for all the test conditions. For the S − χ2 statistic, the averages, the

proportions significant, and the correlations do not show any pattern like those in Dodeen (2004).

Note the substantial negative correlations between average S − χ2 and the slope parameter for

Test Conditions 1-3. The negative correlations should not cause much worry because, even if

they indicate any causal relationship, test developers generally try to include items with high

discrimination parameters anyway, which automatically keeps the values of the S − χ2 statistic in

control. The average χ2∗ statistic increases somewhat over Test Conditions 1-3 (suggesting that it

increases somewhat with an increase in the slope parameter), but the corresponding proportion

significant and the corresponding correlation do not show any consistent pattern over the test

conditions. ANOVA tests of the same kind performed in Dodeen (2004) do not reveal any linear

relationships between item parameters and any of these two item fit statistics. For the S − χ2

statistic, the three ANOVA tests resulted in nonsignificant values of 0.84 (p-value = 0.43), 0.29

(p-value = 0.74), and 0.05 (p-value = 0.95) of the F -statistic with degrees of freedom (df) of 2 and

147 (as there were three test conditions and 150 total items for the three test conditions combined

for each ANOVA test). For the χ2∗ statistic, the corresponding values of the F -statistic were 2.17

(p-value = 0.12), 2.42 (p-value = 0.09), and 0.96 (p-value = 0.37), respectively. So, based on these

simulations, the S − χ2 and χ2∗ statistics do not show any pattern that will cause any worry to

IRT practitioners.

Further Simulations

The above simulations, as in Dodeen (2004), considered only one sample size (1,000) and one

test length (50). However, as sample size and test length differ, item fit statistics often exhibit

different and occasionally poor Type I error rates. For example, Orlando and Thissen (2000) found

the Type I error rate of the S −G2 statistic to vary between 0.09 and 0.13 at the 5% level for Test
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Lengths 10, 40, and 80, while Glas and Suarez-Falcon (2003) found the Type I error rate of the

S−G2 statistic to be greater than or equal to 0.07 at the 5% level for 10-item tests, irrespective of

the sample size. Therefore, this section examines the linear relationships between item parameters

and item fit statistics for several sample sizes and test lengths. Three test lengths, 10, 30, and

50 (representing short, medium, and long tests, respectively), were considered, as well as three

sample sizes, 500, 1,000, and 2,000 (representing small, medium, and large samples, respectively).

Note that simulations for 1,000 examinees and 50 items were performed earlier. For each of the

nine combinations of sample size and test length, 100 data sets each were generated under each

of the first three test conditions described earlier. The first three test conditions are adequate

for studying the linear relationship between the item discrimination parameters and the item fit

statistics, which is of prime concern in this paper.

As in Dodeen (2004), examinee abilities were generated from a N (0, 1) distribution. The

item parameters were randomly drawn from distributions with means and SDs as given in Table 1

in the same manner as in the earlier simulations. The values of the generating item parameters

remained the same for the 100 data sets generated under any simulation condition.

As in Dodeen (2004), the BILOG 3.11 software (Mislevy & Bock, 1990) was used for fitting

the 3PL model to the generated data sets and for computing the χ2
G statistic. The S − χ2,

S − G2, χ2∗, and G2∗ statistics were computed using the GOODFIT (Orlando, 1997) and

IRTFIT RESAMPLE (Stone, 2004) software, respectively.

Table 3 shows the average and percent significant (at the 1% level) for the χ2
G, S − χ2, and

χ2∗ statistics for the first three test conditions for each of the nine combinations of test length and

sample size.

To systematically study if the test conditions affect the item fit statistics, we performed

ANOVAs with each of the six quantities (average and percent significant for the three item fit

indices) reported in the last six columns of Table 3 as the dependent variable, and the test length,

sample size, and test condition as the three independent variables. Because the values of the

average χ2
Gs are often high for Test Length 10, we performed the ANOVAs on the logarithm of

the average item fit statistics.

Table 3 and the ANOVA results indicate the following on the Type I error rates (or the

percent significant) for the item fit statistics:
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Table 3
Average Values and Percent of Misfits Between Item Parameters and Item Fit

Statistics for χ2
G, S − χ2, and χ2∗ for Several Simulation Conditions

Test Sample Test χ2
G S − χ2 χ2∗

length size condition Av % Av % Av %
10 500 1 21.6 49 6.8 5 0.8 8

2 50.2 75 5.5 1 1.3 5
3 59.7 68 5.8 2 1.7 5

1,000 1 38.1 67 7.4 4 1.1 5
2 63.8 75 6.5 0 0.9 2
3 187.2 83 6.4 0 1.4 8

2,000 1 37.7 72 9.1 1 4.1 53
2 57.9 72 8.8 4 3.6 36
3 99.7 74 9.3 3 5.2 37

30 500 1 9.2 5 16.9 1 2.0 2
2 8.0 3 19.6 1 2.7 1
3 9.1 7 17.9 0 3.3 3

1,000 1 11.7 12 18.4 1 2.0 4
2 10.8 9 20.7 1 3.0 2
3 12.8 16 20.1 2 3.9 3

2,000 1 11.1 10 21.0 2 5.5 30
2 11.2 10 23.7 2 6.9 19
3 13.0 20 24.4 3 8.0 23

50 500 1 8.6 4 25.4 1 3.1 3
2 8.3 2 29.0 2 4.1 2
3 9.1 8 26.4 1 4.6 3

1,000 1 9.5 3 27.8 1 3.0 1
2 12.1 10 32.9 1 4.7 3
3 16.9 34 31.3 3 5.1 4

2,000 1 9.6 4 32.8 3 6.2 18
2 11.0 7 38.3 3 8.0 14
3 17.0 32 37.7 3 9.8 20

Note. “Av” denotes average statistic, and “%” denotes the percentage of item fit statistics
significant at 1% level.

• The percent significant for the χ2
G statistic is generally much higher than the nominal level

of 1%, which suggests that the statistic should not be used to evaluate item fit.

• The percent significant for χ2∗ is close to the nominal 1% level for sample sizes 500 and

1,000, but very high for sample size 2,000. This finding suggests the need for further research
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regarding χ2∗. Research by Stone and colleagues (e.g., Stone, 2000; Stone & Hansen, 2000;

Stone & Zhang, 2003) demonstrated respectable Type I error rates of χ2∗ under a wide

variety of conditions, but these papers did not fit the 3PL model. On the other hand, Lu and

Lin (2005) found occasionally high Type I error rates of the χ2∗ and G2∗ statistics when the

3PL model was fitted to data generated from the 3PL model.

• The Type I error rate for the S − χ2 statistic is always close to the nominal level of 1% (and

almost always lowest among the three statistics considered in Table 3) for these simulations.

Table 3 and the ANOVA results indicate the following on the effect of the slope parameters

on average item fit statistics and the percent significant for average fit statistics:

• The χ2
G statistic is affected by test condition. Higher average slope parameters generally result

in higher average and higher percent significant for χ2
G. The main effect of test condition is

statistically significant in the ANOVA for either of average χ2
G or percent significant for χ2

G as

the dependent variable. This effect is the most prominent for Test Length 10 (there is a sharp

rise in average χ2
G for Test Conditions 2 and 3 for Sample Sizes 1,000 and 2,000) followed by

Test Length 50.

• The average value of χ2∗ is affected by the test condition. The main effect of test condition

is statistically significant when average χ2∗ is the dependent variable. In Table 3, the average

χ2∗ often increases with an increase in the average slope parameter. The main effect of test

condition is not statistically significant when percent significant for χ2∗ is the dependent

variable.

• The statistic S − χ2 is not affected by test conditions. The main effect of test condition is

not statistically significant for either the average S − χ2 or the percent significant for S − χ2

as the dependent variable.

Thus, our simulations support the result of Dodeen (2004) that higher values of the average

slope parameter result in higher values of the χ2
G statistic. The same effect is also noticed to some

extent for the χ2∗ statistic. However, no such effect is observed for the S − χ2 statistic. Besides,

the S−χ2 statistic has Type I error rates close to the nominal level in our simulations. Hence, the

simulations demonstrate the superiority of the S −χ2 statistic over the other statistics considered.
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A Real Data Example

Next, we examine the linear relationships between item parameter estimates and item fit

statistics for a real item response data set. The data set, from a basic skills test considered in

Sinharay (2005), has 8,686 examinees and 45 multiple-choice items. Figure 1 shows the values of

the S −χ2 (top row), χ2∗ (middle row), and χ2
G (bottom row) statistics versus the item parameter

estimates obtained using BILOG 3.11 (Mislevy & Bock, 1990) from the data set. Each plot shows

the corresponding correlation coefficients (denoted as Corr) between the item parameter estimates

and the item fit statistics.

Results for χ2
G. At the 1% level, there are 21 significant values of the χ2

G statistic, which

clearly reflects its inflated Type I error rate. While there is a positive correlation between the

estimated discrimination parameters and the χ2
G statistic, there is a negative correlation between

the estimated difficulty parameters and the values of the χ2
G statistic, and also between the

estimated guessing parameters and the values of the χ2
G statistic. The last two of these three

correlations are statistically significant at the 1% level. Negative correlations for the χ2
G statistic

were not found in the simulations in Dodeen (2004) and were seen rarely in this study. However,

the simulations were for the situation when the true model is the 3PL model, while the true model

is unknown for these real data.

Results for S − χ2 and χ2∗. At the 1% level, there are two significant values for the S − χ2

statistic, and no significant value for the χ2∗ statistic. There is a negative nonsignificant correlation

between the estimated discrimination parameters and the item fit statistics for both S − χ2

and χ2∗. The correlations are of opposite signs, and both nonsignificant, between the estimated

guessing parameters and the S − χ2 and χ2∗ statistics. The same is true for the estimated

difficulty parameters. Also, a multiple regression analysis of the values of the S − χ2 statistic on

the estimated discrimination, difficulty, and guessing parameters resulted in a squared multiple

correlation coefficient of only 0.07 and an F -statistic (with df of 3 and 41) with p-value = 0.37;

the corresponding values for the χ2∗ statistic are 0.08 and 0.29. Thus, there are no obvious linear

relationships between the item parameter estimates and either of these two statistics.
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Figure 1. Plot of item parameter estimates versus item fit statistics for the real

data example.

between the estimated discrimination parameters and the χ2
G statistic, there is a negative

correlation between the estimated difficulty parameters and the values of the χ2
G statistic,

and also between the estimated guessing parameters and the values of the χ2
G statistic. The

last two of these three correlations are statistically significant at the 1% level. Negative

17

Figure 1 lot of item parameter estimates versus item fit statistics for the real data

example.

A Closer Look at the Statistics Used by Dodeen

Why is the χ2
G statistic affected by the average slope parameters, while the S − χ2 statistic is

not?

The null distribution of the χ2
G statistic used in Dodeen (2004) is not χ2, even asymptotically,

as assumed in that paper (p. 264). Dodeen found the Type I error rates at the 1% level of χ2
G to
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lie between 9 to 28%. This paper (see Table 3) also found the rate to be much higher than the

nominal level, especially for short tests. Stone and Zhang (2003) computed the Type I error rate

for the χ2
B statistic, which is similar to the χ2

G statistic, for a variety of situations under the 3PL

model—the rates are extremely high (sometimes 100%, i.e., every item is labeled as misfitting) for

10 items and 20 items; the rate is much larger than the nominal level even for 40 items and 1,000

or 2,000 examinees (respectively, 0.11 and 0.32 at the 5% level). Orlando and Thissen (2000, 2003)

and Glas and Suarez-Falcon (2003), using detailed simulations, found the Q1 statistic (Yen, 1981),

which is also similar to χ2
G, to have a Type I error rate considerably higher than the nominal level.

The main reasons for the poor behavior of the χ2
G statistic is that it uses point estimates

of ability and ignores the uncertainty in the ability estimates while computing the p-value

(see, e.g., Stone, 2000, p. 59). Besides, Chernoff and Lehmann (1953) showed that a χ2 test

statistic computed from numbers of individuals falling into specified cells (the ability groups in

this context) does not have a limiting χ2 distribution when estimates of parameters from the

original observations (the item response data in this context) are used. Instead, such a statistic is

stochastically larger than what is obtained under χ2 theory; the departure may be significant for

a small number of cells. This is another reason why the χ2
G statistic is not expected to follow a χ2

distribution.

In fact, Ansley and Bae (1989) found the Q1 statistic to have an approximate noncentral χ2

distribution for the 3PL model in a simulation study—the noncentrality parameter should depend

on the parameters of the model in a complicated manner. We anticipate that the χ2
G statistic

behaves like the Q1 statistic, and the simulations in Dodeen (2004) might have captured some

level of the dependence.

On the other hand, detailed simulations under a variety of conditions in this paper and the

references mentioned earlier suggest that when data come from a 3PL model, the Type I error

level of S − χ2 approaches the nominal level irrespective of any other factors (including item

parameters). Thus, there is no reason to expect any relationships for S − χ2, as observed for χ2
G

by Dodeen (2004).

Discussion and Recommendations

Dodeen (2004) found some linear relationships between item parameters and item fit statistics

in a simulation study. This paper replicates Dodeen’s simulations and performs further simulations
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using test statistics (S − χ2, S −G2, χ2∗, and G2∗) that differ in significant ways from those used

in Dodeen: (a) these were suggested recently, and (b) each of these statistics has often been found

to have a Type I error rate very close to the nominal level. This paper demonstrates that if one

uses the S − χ2 and S −G2 statistics, there is no reason to worry about any linear relationships

between the item parameters and item fit statistics when data come from the hypothesized model.

This finding will come as a relief to practitioners using these statistics. Interestingly, some linear

relationships were found between the item parameters and the χ2∗ and G2∗ item fit statistics

when data come from the 3PL model; besides, the Type I error rate for the χ2∗ and G2∗ were

found to be rather high for several test conditions.

Given these findings, a wise option for practitioners will be to use the S − χ2 and S − G2

statistics. The first principle in statistical hypothesis testing is that a hypothesis is “innocent

until proven guilty,” and test statistics with Type I error rates higher than the nominal level

violate the first principle. Further, the power of the S − χ2 and S −G2 statistics have been found

to be respectably high in several studies. An IRT practitioner using item fit statistics with poor

Type I error properties (like χ2
G and zj) must be prepared for consequences like those found

in Dodeen (2004). For example, our real data example shows a negative correlation between

estimated difficulty parameters and χ2
G values, and also between estimated guessing parameters

and χ2
G values. (Note that these correlations were positive in Dodeen’s study.) It is entirely

possible that another data set could reveal a relationship that is totally different from what we

have shown in this paper. Thus, the poor Type I error rate property of χ2
G may manifest itself in

different ways in different applications. It is true that Dodeen found a factor (item parameters)

explaining high Type I error rates for these statistics; however, the levels of correlations found in

Dodeen are quite low (the maximum is 0.42) and not enough to describe exactly when the χ2
G and

zj statistics wrongly show misfit. There is no obvious method for using the findings in Dodeen in

some way to obtain a corrected version of χ2
G whose Type I error rate is close to the nominal level.

One advantage of the statistics considered in Dodeen (2004) is that they are available in a

number of standard statistical software packages. However, the GOODFIT software (Orlando,

1997) for computing the S − χ2 and S −G2 statistics is available for free from Orlando.

Two issues regarding item fit are not covered in this paper and are possible topics for future

research. First, this study, as in Dodeen (2004), examines only the linear relationships between

item parameters and item fit statistics; a thorough study of the nonlinear relationships between
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them would be of interest. Also, this study simulated, as in Dodeen, items that should not show

any misfit because data were generated under the 3PL model. It would be interesting to perform

simulations for cases in which items are supposed to show misfit because they are generated from

a model inconsistent with the 3PL model. It may be possible to find interesting relationships

between type of item misfit and the values of item fit statistics.

The average values of the statistics used in this paper may not be comparable over test

conditions because the degrees of freedom for these statistics are often different over items

and replications. We still reported the averages to make our results comparable to those of

Dodeen (2004). It is possible to divide the values of the item fit statistics by the corresponding

degrees of freedom before averaging to produce an average per degree of freedom value of the

fit statistics, and then compare those quantities over test conditions. In such a comparison, the

results for χ2
G and S−χ2 were found to be the same as those reported earlier (i.e., the average per

degree of freedom value increased with an increase in average discrimination parameter for χ2
G and

did not change with an increase in average discrimination parameter for S − χ2). The results for

χ2∗ were different from those reported earlier (i.e., the average per degree of freedom value of χ2∗

did not increase with an increase in average discrimination parameter; instead, it often decreased).

It is also possible to use a different design than the one used in this study. In particular, using

predetermined generating item parameters (e.g., as in Section 6 of Sinharay, 2006) may provide

further insight, especially about any possible nonlinear relationship between item parameters and

item fit statistics.

Though the message of this paper is that item parameters are not linearly associated with

the values of certain item fit statistics studied, IRT practitioners would like to know what

factors influence item fit statistics. Finding the particular type of content and/or other item

characteristics that are likely to result in item misfit will benefit test developers substantially.

Such knowledge may be obtained by performing detailed item fit analyses of real data sets, in the

same way DIF analyses are performed on real test data to explore factors affecting DIF (see., e.g.,

Schmitt et al., 1993, and the references therein).
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Notes

1 Dodeen (2004) mentions (p. 264) that he used the statistic χ2
B =

∑n
j=1

Nj(Oj−Ej)
2

Ej(1−Ej)
(Bock, 1972),

but also mentions (pp. 264, 266) that BILOG 3.11 (Mislevy & Bock, 1990) was used to compute

the statistic. Because BILOG 3.11 computes χ2
G and not χ2

B, we assume that Dodeen actually

reported results for χ2
G.
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