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Abstract 

The past several decades have seen numerous approaches toward automated diagnosis and 

instructional support of students engaged in mathematics problem-solving. These approaches 

typically involve detailed analysis of potential solution paths for problems, formal 

representations of correct and incorrect answers, and support in the form of feedback or 

explanations to students during the process of solving a problem. The approaches of each of a 

number of representative systems (ACED, ALEKS, Cognitive Tutors, Andes, and Assistments) 

will be described through a critical evaluation of how they represent content knowledge, their 

approaches to diagnosis, and their approaches to instructional support. Finally, recommendations 

are made for new approaches to automated diagnosis and instructional support of mathematics 

problem-solving. 

Key words: Mathematics education, intelligent tutoring systems, automated diagnosis, feedback, 

student modeling, proficiency representation  
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The purpose of this review is to identify existing approaches to the automated diagnosis 

of mathematics problem solving. In the 2005 fiscal year, a group of reviewers (listed in the 

Acknowledgments section) reviewed 14 papers and systems that focus on the automated 

diagnosis and instruction of problem solving in mathematics. A subset of these systems was 

chosen for this review, including ACED, ALEKS, Andes,1 Assistments, and Cognitive Tutors 

(see Table 1), because they are working systems and have been used by the target audience as 

well as evaluated. The review ends with recommendations for future development of a diagnostic 

capability in support of learning.  

Table 1 

Representative Automated Diagnosis and Instructional Support Systems 

System Reference Content area 

Adaptive Content for 

Evidence-based 

Diagnosis (ACED) 

Shute, Graf, & Hansen, 2005 Algebra (sequences 

as patterns) 

Assessment and 

Learning in Knowledge 

Spaces (ALEKS) 

Falmagne, Cosyn, Doignon, & Thiery, 2004 Algebra, arithmetic 

Andes1 & Andes2 VanLehn, Lynch, Schulze, Shapiro, Shelby, 

Taylor, et al., 2005 

Physics (equations, 

derivations, & 

solutions) 

Assistments Razzaq, Feng, Nuzzo-Jones, Heffernan, 

Koedinger, Junker, et al., 2005 

Algebra  

Cognitive tutors Anderson, Corbett, Koedinger, & Pelletier, 

1995 

Algebra, geometry, 

LISP programming, 

other areas 

It is difficult to separate the diagnosis from the instructional support that these systems 

perform; they work hand-in-hand. Thus, it is useful to describe both diagnosis as well as 

instructional support in this review. 
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The past several decades have seen numerous approaches toward automated diagnosis 

and instructional support of students engaged in problem solving. These approaches, which are 

represented by the reviewed systems, typically involve detailed analysis of potential solution 

paths for problems, formal representations of correct and incorrect answers, and support in the 

form of feedback or explanations to students during the process of solving a problem. The 

approaches of each of the representative systems will be described by looking at how they 

represent content knowledge, their approaches to diagnosis, and their approaches to instructional 

support, using examples from the reviewed systems for clarity (see Table 2). These categories 

are more fully described and explored in the sections that follow. 

To talk about approaches to diagnosis and instructional support, it is necessary to first 

describe how the systems represent the knowledge, skills, and abilities (KSA) that the systems 

leverage to carry out diagnosis and instructional support.  

1. Representing KSAs 

ACED has a proficiency model that structures KSAs in terms of general-to-specific 

relations. For example, understands sequences as patterns is the most general KSA that ACED 

has in its proficiency model and can extend a geometric sequence is at the most specific level. 

The general-to-specific relation is defined by part-of links—for example, can extend a geometric 

sequence is part of its parent KSA, solves problems using geometric sequences. This structure 

allows the system to make inferences about student knowledge of more general KSAs based on 

performance on items on more specific KSAs. That is, if a student can extend a number of 

geometric sequences, the system can say with some confidence that this student knows 

something about sequences as patterns in general.  

ALEKS uses a precedence network to structure its KSAs. ALEKS characterizes item 

types with short labels (e.g., word problems on proportions). To create the precedence model, 

experts were asked to determine the answers to the following two questions. A precedence 

structure is created based on the answers.  

Q1. Suppose that a student is not capable of solving problem p. Could this student 

nevertheless solve problem p'? 

Q2. Suppose that a student has not mastered problems p1, p2, . . ., pn. Could this student 

nevertheless solve problem p'?  



Table 2 

Approaches to KSA Representation, Diagnosis, and Instructional Support for All Reviewed Systems 

  Diagnosis Instructional support 

System KSA 
representation 

KSA proficiency 
determination 

Common 
errors 

Item selection Explanations Persistent 
student 
model 

Provides 
answer 

ACED General to 
specific part-of 
links between 
KSAs 

Bayesian inference 
network, 
probabilistic 
determination 

yes Weight of evidence 
algorithm to 
adaptively select an 
item 

Common error 
feedback or hint 

yes yes 

ALEKS Precedence 
network of 
KSAs 

Initial adaptive test, 
knowledge state, 
probabilistic 
determination 

yes Set selected after 
initial assessment, 
easier problems 
selected during 
learning mode 

Solution steps, 
common error feedback 

yes yes 

Andes1 Links between 
items and KSAs 
only 

Bayesian 
procedures, 
probabilistic 
determination 

yes Student selects new 
items. Andes1 uses 
Bayesian analysis 
to determine which 
step within an item 
to help a student 

Right/wrong feedback 
after each step, hints, 
common error feedback 

yes yes 

Andes2 Links between 
items and KSAs 
only 

None yes Student selects new 
items 

Right/wrong feedback 
after each step, hints, 
common error feedback 

no yes 
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Table 2 (continued) 

  Diagnosis Instructional support 

System KSA 
representation 

KSA proficiency 
determination 

Common 
errors 

Item selection Explanations Persistent 
student 
model 

Provides 
answer 

Assistments Links 
between items 
and KSAs 
only 

Uses amount & 
nature of assistance 
to judge limitations 

yes Predetermined 
order 

Scaffolded questions 
about solution steps, 
on-demand hints, 
common error  
feedback 

yes yes 

Cognitive 
tutors 

Links 
between items 
and KSAs 
only 

Bayesian 
procedures, 
probabilistic 
determination 

yes Tasks are selected 
to target deficient 
skills 

Common error 
feedback, next step 
with explanation, 
context-specific help 

yes yes 

 

 



Falmagne et al. (2004) showed an example from the resulting precedence network where 

“word problems on proportions” precedes “multiplication of monomials,” which in turn precedes 

“graphing a line through a given point with a given slope.” While the two questions imply a 

direct prerequisite relation from one item type to another, the resulting precedence model seems 

to be more general than a prerequisite relation, in that, as Falmagne et al. pointed out, some 

concepts are taught in a particular order even though there may be no logical or pedagogical 

reason to do so (p. 4). That is, the experts answered the questions, and hence, ALEKS bases its 

KSA relations based on the order they are generally taught (chronological).  

In Andes1 and Andes2, the author of the problem creates a graphical description of the 

steps to solve the problem, and the Andes engine automatically generates the problem solution 

space. These contain the concepts and equations (KSAs) that are needed to solve the problem 

and are defined for each problem. There are no links between the KSAs. Assistments have links 

from items to KSAs, but there are no connections between any of the KSAs. The links between 

items and KSAs are defined by experts. 

The Cognitive Tutors use a production system to model knowledge. Each rule in the 

production system represents a skill that can be used to solve a problem or make progress in 

solving a problem. Each problem has links to the skills necessary to solve that problem, but there 

are no links between the KSAs themselves. 

2. Performing Diagnosis 

Diagnosis is performed differently for different purposes. These purposes include 

determining overall KSA proficiency, identifying errors that are commonly made, and selecting 

the next task or item. 

2.1 KSA Proficiency and Student Modeling 

ACED performs KSA proficiency diagnosis. It uses a Bayesian inference network to 

compute probabilistic estimates of a student’s proficiency based on his performance on each task 

and through all sessions. At any point, the system has a snapshot of the student’s estimated 

proficiency for all KSAs. 

ALEKS starts a session with a student by administering an adaptive assessment. This 

initial assessment is adaptive in that the choice of each new question is based on an aggregate of 

responses to all previous questions. Using its knowledge structure and the initial assessment, 
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ALEKS probabilistically determines the KSAs the student has mastered and a set of problem 

types he is ready to learn. It maintains a persistent student model that keeps track of performance 

on KSAs through all sessions with a student.  

Andes1 uses a Bayesian student model that keeps track of the proficiency of students for 

different tasks and concepts. While this information can be used to decide which problem a 

student should do next, they discontinued use of this feature of Andes1 in developing Andes2 

because the developers determined that keeping track of a student model is only useful when 

students have a choice in the order in which they learn things, or at the pace at which they learn 

them. 

In Assistments, information about KSA performance is collected while the student is 

solving a problem. The amount and nature of the assistance that students receive is used to judge 

student KSA strengths and weaknesses. During the weekly sessions students have with 

Assistments, the system maintains a persistent student model to keep track of students’ abilities 

with the goal of providing increasingly accurate predictions of how students will perform on a 

particular standardized mathematics test.  

The Cognitive Tutors estimate students’ mastery of the mathematics skills in its rule base 

by using a Bayesian procedure that computes the probability the student has learned each of the 

KSAs.  

2.2 Common Errors 

Common errors are those which many students tend to make while solving a problem. All 

the systems (ACED, ALEKS, Andes, Assistments, Cognitive Tutors) identify common errors 

either during or after problem solving. In ACED and Assistments, expert opinion was used to 

determine commonly found errors and to create relevant feedback when they are encountered, 

but there is not a lot of information about how common errors are determined in the other three 

systems. Typically, when a common error is detected in a student’s answer, the tutor provides 

hints or explanations with that context in mind. A recent evaluation of ACED, for instance, has 

demonstrated positive results in terms of student learning by taking this approach to diagnosis 

and instructional support (see Shute, Hansen, & Almond, in press).  
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2.3 Item Selection as Diagnosis 

Item selection may be accomplished by predetermining a set of items to present to 

students or through adaptive means by an intelligent system. According to Shute and Zapata-

Rivera (in press), researchers often distinguish between macroadaptation and microadaptation. 

For instance, Snow (1992) described two different levels of adaptive interaction. 

Macroadaptation typically occurs at the outset of instruction, based on results from some 

analysis of incoming skills, abilities, or disabilities, and students are assigned to different 

instructional paths from the start, as is done by ALEKS’s initial assessment. In microadaptation, 

students’ specific needs are diagnosed during the course of instruction, and the next assessment 

question is selected based on these diagnoses.  

ACED uses a weight of evidence algorithm to adaptively select an item that will provide 

the most new information about a student (microadaptation).  

Using its knowledge structure and an initial assessment, ALEKS probabilistically 

determines the KSAs the student has mastered and determines a set of problem types he is ready to 

learn (macroadaptation). If a student is unable to solve a problem, ALEKS can switch to a related 

but easier problem, where easier is defined in terms of precedence (microadaptation). If both 

problems require a KSA that the student does not have, ALEKS has no way of identifying it.  

Andes1 and Andes2 do not do adaptive item selection at all. While Andes1 uses a 

Bayesian student model that keeps track of the proficiency of students for different tasks and 

concepts, and could in theory select new items, the Naval Academy students were assigned 

specific problems for homework, so Andes1 does not need, and in fact is not empowered, to 

select homework problems.  

Assistments have a predetermined order in which to present items to students (non-

adaptive). The Cognitive Tutors assign students new problems that target deficient skills 

(microadaptation).  

3. Instructional Support as Diagnosis 

Each of these systems provides instructional support in response to a student entering an 

incorrect answer or incorrect step in solving a problem. These approaches include letting the 

student know whether it was right or wrong, hints about how to produce better work or how to 

proceed, full explanations of how to solve the problem from beginning to end, descriptions of 

potentially useful concepts, help with problem-solving steps, and providing a solution to the 

7 



problem. These instructional approaches in response to diagnoses are also a form of 

microadaptation. 

In ACED, instructional support is provided to the student in the form of a brief 

explanation when a solution to a question is incorrect. It tailors the feedback to address common 

errors or, if the solution is not a common error, gives a general hint about how to proceed. 

Consider a task in which ACED asks the student to find the common difference in the arithmetic 

sequence: 4, 7, 10, 13. Suppose the student types in 16 as the answer. The feedback says, “Nice 

try, but incorrect. You typed the next number in the sequence, but you should have typed in the 

common difference, which is 3.”  

Whenever a student attempts to solve a problem while learning in ALEKS, the system 

responds by saying whether or not the answer is correct and, if it is incorrect, what the student’s 

error may be (by attempting to match it against representations of common errors). For example, 

consider the problem: “Express 98 as a product of prime numbers.” If a student enters “98 = 2 x 

14” ALEKS responds with, “Some of the factors you found are correct, but you also added some 

incorrect ones. Make sure your product is equal to 98.” If a student enters “98 = 2 x 49” ALEKS 

responds with “Make sure all the factors in the expression are prime numbers.” When a student 

asks for an explanation, ALEKS provides an explanation that lists all the solution steps to a 

problem, through to the solution. If a student continually provides incorrect responses, ALEKS 

may suggest that the student look up the definition of a certain word in the dictionary. 

Andes1 tried to determine which correct equation the student intended by using a 

syntactic distance technique (Gertner, Conati, & VanLehn, 1998, as reported in VanLehn et al., 

2005). Despite considerable tuning, they report that this technique never worked well. Even 

when Andes1 identified a correct equation that was what the student intended to enter, its hints 

only pointed out the difference between the two. For instance, if the equation the student 

intended to enter was Fw =mc*g and the student actually entered Fw= −mc*g, then Andes1 

could only say “Sign error: You need to change –mc*g to +mc*g.” When receiving such a hint, 

students rewrote the equation as directed and were mystified about what the new equation meant 

and how Andes1 derived it. That is, because Andes1 used a syntactic, knowledge-free technique 

for analyzing errors, it gave syntactic, knowledge-free hints on how to fix them. They state that 

such hints probably did more harm than good. 
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Andes2, in contrast, gives hints on errors only when the hint is likely to have pedagogical 

value. Toward this end, it has a set of error handlers, each of which recognizes a specific kind of 

error and gives a hint sequence that helps the student learn how to correct it. For errors that are 

likely to be careless mistakes, Andes2 gives unsolicited help, while for errors where some 

learning is possible, Andes2 gives help only when asked. This policy is intended to increase the 

chance that students will repair substantive errors without asking for help. Self-repair may 

produce more robust learning, according to constructivist theories of learning (e.g., Merrill, 

Reiser, Ranney, & Trafton, 1992, as reported in VanLehn et al., 2005). There are two different 

types of help available in Andes2 that generate a sequence of hints: What’s Wrong Help and 

Next Step Help. The teaching hint, “If you are trying to calculate…” states the relevant piece of 

knowledge. These hints are kept as short as possible, because students tend not to read long hints 

(Anderson et al., 1995; Nicaud, Bouhineau, Varlet, & Nguyen-Xuan, 1999, both reported in 

VanLehn et al., 2005). Although teaching hints allow just-in-time learning, real-world students 

are sometimes more concerned about getting their homework done than with learning (Dweck, 

1986, as reported in VanLehn et al., 2005). 

Assistments are built around individual items. When a student answers an item 

incorrectly, students are not allowed to try the item again, but instead must answer a sequence of 

scaffolding questions presented one at a time, creating a path to a correct solution. The student 

works though the scaffolding questions, with the ability to ask for hints. The student can ask for 

a hint up to three times, where successively more detailed hints are given, and the answer is 

presented the third time. If a student provides an incorrect answer, a buggy message is displayed 

in response to that error, similar to feedback from ACED. It also summarizes overall student 

performance and reports it to the teacher.2

In the Cognitive Tutors, no comment is given if the student is correct. If the student 

makes a recognizable error, a buggy production rule fires and a help message is presented to 

guide the student down a path to the correct solution. If the student appears to be floundering 

(e.g., repeats the same type of error three times or makes two mistakes that the tutor does not 

recognize), the tutor will provide a correct next step in a solution, along with an explanation. As 

with Assistments, a student can ask for help up to three times. The help is specific to the context 

that the student is in, and the answer is presented the third time. 
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3.1 Assistance With Solving Multistep Problems 

How can a tutor help students with multistep problems? This section is adapted from an 

interesting review by VanLehn et al. (2005) about tutoring individual steps in multistep problem 

solving. They illustrated three possible (of potentially many) user interfaces that take different 

approaches to entering intermediate steps when solving an equation.  

User Interface A:  

3x + 7 = 25 

3x = __________ 

x = __________ 

User Interface B: 

3x+7 = 25 

_________ = _________ 

_________ = _________ 

_________ = _________ 

x = ____________ 

User Interface C:  

3x+7 = 25 

3x = _________   Justification: ______________ 

x = ____________   Justification: ______________ 

User Interface A encourages a specific strategy, namely subtracting the 7 then dividing 

by 3. However, it also blocks another strategy, namely dividing by 3 then subtracting 7/3. User 

Interface B allows students to enter any expressions they want in the blanks, as long as the 

resulting equations are mathematically equivalent to the first equation. This user interface allows 

students to use many kinds of problem-solving strategies, including inefficient ones. User 

Interface C enforces the same strategy as User Interface A, but in addition requires the student to 

justify each step mathematically, requiring “subtract 7 from both sides” in the first justification 

blank. In the final row, the student must enter “18/3” or “6” in the blank and “divide by 3 on both 

sides” in the justification blank.  

Many tutoring systems have user interfaces that constrain student reasoning, but their 

impacts on learning are mixed. For instance, Singley (1990, as reported in VanLehn et al., 2005) 

found that students’ learning was accelerated when they pursued a goal-directed problem-solving 
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strategy by explicitly entering their intermediate goals. However, a similar manipulation did not 

have the same effect in a geometry tutoring system (Koedinger & Anderson, 1993, as reported in 

VanLehn et al., 2005) and yielded only a mild positive effect with a propositional logic tutoring 

system (Scheines & Sieg, 1994, as reported in VanLehn et al., 2005). Constraining student 

reasoning is probably just as complex a design issue as feedback or hints. There is not yet an 

empirically grounded theory of which constraints are beneficial to whom at what times in their 

learning. 

Andes2 puts little constraint on students’ reasoning and problem solving. Its user 

interface is like User Interface B of Figure 1—students can fill in the blanks any way they want 

as long as their equations and other entries are true statements. The user interface is left 

unconstrained so that it would be similar to pencil and paper because, in general, one gets higher 

transfer from training to testing when the user interfaces are similar (Singley & Anderson, 1989, 

as reported in VanLehn et al., 2005). Although the unconstrained Andes2 user interface might 

reduce the rate of student learning compared to a constrained user interface, transfer literature 

suggests that mastery of physics on the Andes2 user interface should almost guarantee mastery 

on pencil and paper. Moreover, keeping the user interface unconstrained makes Andes2 less 

invasive. 

3.2 Other Support for Learning 

Most homework help systems present a score that is a function of the correctness of the 

student’s answer and the number of hints received (VanLehn et al., 2005). Andes2 similarly 

computes and continually displays an overall score while students use the system. This score is 

not used in any summative way; it is only for the use of the student while solving the problems. 

To compute the score, Andes2 puts little weight on answers. Instead, it measures the proportion 

of entries that were made correctly. VanLehn et al. (2005) found that counting hints negatively in 

the score tends to discourage students, so Andes2 only subtracts points when students ask for 

bottom-out hints. In addition, Andes2 tries to encourage good problem-solving habits by 

awarding points for entering certain information explicitly. Students can also see the subscores 

from which their score was computed. These scores are per problem and are not cumulative. 

Some students seem to be highly motivated by their Andes2 score, even though they understand 

that nothing depends on it. 
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Andes2 includes help that is not sensitive to the current problem-solving state. Such 

unintelligent help consists of text and other passive material where students search for useful 

information. An example is the Andes2 Cheat Sheet, which is a hierarchical menu of all the 

equation-generating concepts known to Andes2. Selecting an equation brings up a short 

explanation or example. 

4. System Evaluations 

Each of the systems has been evaluated in terms of student learning, predictive validity of 

the KSAs, or both. The dependent measures include simply using the system, feedback type, task 

selection, instructional method, and proficiency estimation. All the systems that evaluated 

student learning show various degrees of improvement.  

4.1 ACED 

Shute, Hansen, and Almond (in press) presented the results of an evaluation study done 

with ACED. Three main features of ACED were tested (feedback type, task sequencing, and 

proficiency estimation) with the goals of determining whether such a system works both as an 

assessment and to support learning. The learning questions were (a) For students using the 

ACED assessment, does any learning occur?, (b) What is the contribution of explanatory 

feedback to learning?, and (c) What is the contribution of task sequencing to learning? The main 

assessment question was: How well do the estimated proficiencies, derived from an underlying 

Bayes net, match outcome performance? Two main variables manipulated in the study were 

feedback type (accuracy-only vs. explanatory) and task sequencing (adaptive vs. linear). The 

accuracy-only feedback provided information to the learner about the correctness of her solution 

immediately after a response was entered, while the explanatory feedback described the rationale 

and procedure for the correct solution. There were four conditions in the experiment—three 

representing ACED variants, and one no-treatment control group. The ACED conditions were (a) 

adaptive task sequence and explanatory feedback, (b) adaptive task sequence and accuracy-only 

feedback, and (c) linear sequence and explanatory feedback. The fourth condition was a control 

group (no intervention). The three combined ACED conditions (i.e., not individual comparisons) 

showed significantly greater learning gains compared to the control group. There was also a 

significant difference between the adaptive-explanatory vs. adaptive-accuracy-only conditions, 

where the former group performed better on the posttest than the latter, leading to the conclusion 
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that context-sensitive help (often based on common errors) is effective. There was no effect of 

task sequencing (i.e., no significant difference between adaptive-explanatory and linear-

explanatory conditions). The null finding with task sequencing is likely because the algorithm 

used in ACED focused on maximizing the precision of proficiency estimates and not the 

educational value of selecting the “next task.” 

4.2 ALEKS 

ALEKS’s predictive validity is respectable: “In the knowledge structure for Beginning 

Algebra, for example, as it is used by students today, the correlation between predicated and 

observed answers hovers between .7 and .8, depending on the sample of students” (Falmagne et 

al., 2004, p.12). They are referring here to the correlation between predicted and observed 

responses to the last question, based on the final knowledge state. This last question of the initial 

assessment is not included in the estimation of the final knowledge state, so it acts like a test.  

The authors report that the precedence graphs have been further refined via data from 

thousands of students (Falmagne et al., 2004). However, no information was found about 

controlled evaluations using ALEKS as a teaching instrument—from (a) the available/posted 

research papers on the ALEKS web site, (b) several Google and Google Scholar searches on the 

topic of evaluations of the system, (c) ERIC and PsychLit searches, or (d) from corresponding by 

e-mail with the ALEKS information site and the first author directly.  

4.3 Andes1 

Several studies were conducted to analyze the effectiveness of Andes1 (VanLehn et al., 

2002; VanLehn & Niu, 2001, as reported in VanLehn, 2005), and it was found that Andes1 

significantly improves student learning. On one evaluation of Andes1, the mean posttest exam 

score of the students who did their homework on Andes1 was approximately one standard 

deviation higher than the mean exam score of students who did the same homework with pencil 

and paper (Schulze, Shelby, Treacy, Wintersgill, VanLehn, & Gertner, 2000, as reported in 

VanLehn et al., 2005). In addition, the Bayesian student modeling technique was found to be a 

highly accurate assessment of student mastery (VanLehn & Niu, 2001).  

13 



4.4 Andes2 

Andes2 was evaluated in an introductory physics class every fall semester from 1999 to 

2003. In general, Andes2 students learned significantly more than non-Andes2 students 

(VanLehn et al., 2005). The overall effect size was somewhat smaller for the final exam (0.25) 

than the interim exams (0.61). This may be partially due to the fact that roughly 30% of the final 

exam addressed material not covered by Andes2.  

4.5 Assistments 

Razzaq et al. (2005) conducted a study that compared two different tutoring strategies 

within Assistments: one in which students were first coached to set up a proportion before 

guiding them through the problem, and the other in which students were just guided through the 

problem. The authors reported a main effect for learning overall, but no difference between the 

two tutoring strategies.  

4.6 Cognitive Tutors 

Early evaluations of the Cognitive Tutors usually, but not always, showed significant 

achievement gains. Best-case evaluations showed that students could achieve at least the same 

level of proficiency as conventional instruction in one third of the time. Empirical studies 

showed that students were learning skills in production-rule units and that the best tutorial 

interaction style was one in which the tutor provides immediate feedback, consisting of short and 

directed error messages (Anderson et al., 1995). The tutors appear to work better if they present 

themselves to students as nonhuman tools to assist learning rather than as emulations of human 

tutors. Students working with these tutors display transfer to other environments to the degree 

that they can map the tutor environment into the test environment. In addition, Anderson et al. 

found that: 

• It’s possible to take a complex competence, break it down into its components, and 

understand the learning and performance of that competence in terms of the 

components. 

• In successive hinting, students are often annoyed with the vague initial messages and 

decide there is no point in using the help facility at all. 

• Students who overuse hints learn little. 
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• It is more meaningful to hold constant the level of mastery required and look at 

differences in time to achieve that level. 

• As students have more opportunities to use a production rule across exercises, their 

performance on the rule improves.  

• Knowledge tracing has substantial impact on student achievement level. 

• It is essential to tell students exactly what to do if necessary to allow them to 

proceed. 

• Achievement gains are higher the second year teachers work with the tutor. 

5. Considering Potential Applications  

In order to consider the different types of diagnosis and instructional support presented in 

the previous sections, it is useful to list some potential uses to be considered (see Table 3). These 

are just preliminary ideas; researchers should determine what their goals are in developing a 

diagnostic system. Is it to provide homework help, thereby creating a completely different 

product than it has done before? To create a diagnostic tool that teachers can use to place and 

group students, to provide remediation for students who need help and to provide challenging 

material for those who are ready? Or is it software or a web-based subscription that parents can 

buy for their children to help them with math, reading, or writing? Table 3 lists some of the 

features to be considered for each of these types of systems, including whether it needs to do 

diagnosis, provide instructional support, be connected to a curriculum, or measure achievement 

of KSAs and if so, to what extent. These features may be able to help determine which 

approaches to take. For example, if no instructional support is needed, should items and KSAs be 

linked to curriculum and standards? 

5.1 Homework Help 

A homework help system would require diagnosis and instructional support. It could be 

linked to a curriculum, since the students will be doing homework for a class, or it could be 

linked to general topics that align with any curriculum. Achievement needs to be gauged for the 

purpose of the student completing the homework problems. 
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5.2 Teacher Use 

In this case, diagnosis needs to be done with an eye toward placement or suggesting 

groups of students that need help in the same areas. No automated instructional support needs to 

be included since the teacher will be providing that. It should be linked to the curriculum and 

state standards so that the teacher can relate the content to what is being taught in class. Again, 

achievement needs to be assessed in terms of levels for the purpose of suggesting groups of 

students for teachers to work with. 

Table 3 

Potential Purposes for the Development of Diagnostic Assessments and Instructional Support, 

With Associated Features to Help Make Decisions for What to Include in the Respective 

Systems 

Purpose Diagnostic Instructional 

support 

Linked to 

curriculum 

Achievement 

measured 

Homework help Yes Yes Not necessary, but 

might add value 

Sufficient to 

complete 

homework 

Teacher use (e.g., 

placement, grouping) 

Yes No Yes Levels of 

performance 

Remediation/ 

challenge for 

individuals 

Yes Yes Not necessary, but 

might add value 

Mastery  

Interim assessments Yes No More important to 

be linked to 

standards and final 

test 

Progress in 

competencies 

5.3 Remediation/Challenge 

This purpose is very close to the homework help idea, but targeted achievement should 

be mastery, since the system has to make decisions on what to teach next. 
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5.4 Interim Assessments 

Many school districts are beginning to use interim assessments for the purpose of 

tracking student progress on the standards that are tested at the end of the year. Teachers want 

more diagnostic information about what students currently know so they can determine what 

they need to focus on.  

These purposes will be referred to in the Discussion section. 

6. Discussion 

While many intelligent tutoring systems have displayed impressive results in laboratory 

studies (Shute & Psotka, 1996), the analyses necessary for these approaches are expensive to 

produce (e.g., Anderson et al., 1995) and therefore not easily scaleable. Most research on 

automated diagnosis and instruction tends to focus on interesting student modeling and 

pedagogical issues, such as how to reliably and accurately record student performance, how to 

identify and provide feedback for common errors, and how and when to deliver hints, feedback, 

and instruction. Related issues are also addressed, such as how to structure a student model, how 

to represent all solution paths, and how to select items. Some are issues of computation and 

scalability, and some are issues of pedagogy and learning. In much of the research presented in 

this review, these questions were not addressed in terms of whether they should be implemented, 

but only how they should be implemented; the researchers assumed that they are good things to 

do. In this section, these topics will be discussed and recommendations will be provided for 

directions to take.  

6.1 Student Models 

Student models have been used to (a) decide which problem a student should do next, (b) 

provide information to a teacher about a student for the purpose of grouping, lesson planning, 

and placement, (c) give the student feedback on problem-solving actions, and (d) predict 

performance on exams. One question that has not been asked is whether the information needed 

for each of these uses can be discerned at a single session, or whether student models need to be 

maintained across sessions.  

While many of the systems in this review maintain a persistent student model across 

problem-solving sessions, the accuracy of student models can degrade as students forget as well 

as learn new things outside the context of the system. Sometimes, a student simply has not 
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learned (in a long-term sense) the KSAs they have worked on during a session. In artificial 

intelligence, this type of situation has been called the frame problem. Charniak and McDermott 

(1987) described it as the problem of inferring whether something that was true before is still 

true now. Brooks (1999) and others have circumvented the frame problem by using the world as 

its own model. If they want to know if a door is still locked, they will check the actual door 

rather than consult an internal model. There are situations in which maintaining a student model 

makes sense, and cases where it would be better to use the student as his own model by simply 

asking the student again. One response to this problem is to keep track of a student model only 

for self-paced courses because students do not have a choice in the order in which they learn 

things, or in the pace at which they learn them (VanLehn et al., 2005). None of the other systems 

reviewed has addressed the knowledge degradation issue. 

Thus, research on student model degradation is an open area of research and could make 

a broad contribution to the field. One approach that ignores degradation, while still being able to 

diagnose difficulties, is to use a student model that keeps track of student performance just for 

the current session to support instruction or item selection, and to not make any assumptions 

about what was previously learned.  

6.2 KSA Representation 

How should the structure of a set of KSAs be defined? The systems reviewed link KSAs 

(a) to individual problems, (b) to each other via precedence relations, and (c) to each other via 

general-to-specific relations.  

As described earlier, ACED uses general-to-specific part-of links to define its KSA 

structure. This allows the system to infer a student’s level of knowledge of one KSA based on 

student performance on KSAs lower in the tree structure. However, this structure does not 

facilitate the diagnosis of more fundamental difficulties that students have. It can say which 

KSAs the student is not performing well on with some level of confidence, and it could present 

the student with tasks that are lower in the part-of hierarchy. As it is currently designed, 

however, only the leaf nodes contain tasks; in theory this can be easily remedied. However, even 

if there were tasks associated with each KSA, the part-of relation does not represent 

prerequisites. To figure out the cause of a student’s difficulty in terms of which KSAs the student 

knows and is ready to learn, prerequisite KSAs would need to be added to the structure. For 

example, the prerequisites needed to extend a geometric sequence are (a) know how to construct 
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a geometric sequence given an initial term and a common ratio and (b) find a common ratio. This 

information is not represented in the ACED KSA structure; in fact, these KSAs are all at the 

same level in the current structure. This means that it cannot reason about where a student’s 

difficulties lie.  

ALEKS bases its conclusion that a student is ready to learn something on a curricular 

chronology of what is taught in class. That is, if the student seems to have mastered something 

typically taught earlier in the curriculum, then he is presumably ready to learn something 

typically taught later in the curriculum. What seems to be missing is that the two pieces may 

have nothing to do with each other; they may be in different strands of the mathematics 

curriculum. While ALEKS has gained statistical strength in its KSA structure through having 

many students use the system, it would be hard to use such a KSA structure to diagnose 

particular problems that a student is having. 

It would be beneficial to consider taking a completely different approach to representing 

KSAs, so that they are scalable and modular (i.e., can be used in any curriculum). Underwood 

and Underwood (2007) proposed a system design that uses a prerequisite representation of 

mathematics concepts and that does not maintain a persistent student model. Where ALEKS 

bases its KSA relations on when they are generally taught in the curriculum (chronological), it 

would be worthwhile to have the structure reflect whether the knowledge of one KSA is required 

in order to learn another (causal). This approach would accurately determine what a student 

knows as well as identify the KSAs that the student is ready to learn, thereby informing both 

diagnosis and instruction. 

6.3 Initial Assessments 

If the purpose of the assessment is solely for diagnostic purposes (e.g., for placement 

without explicit instruction or feedback), then an initial adaptive assessment would be an 

efficient way of getting the appropriate information about KSA performance. If the purpose is to 

provide some instructional support to a broad area (e.g., algebra), then an initial assessment can 

give an indication of where a student is having problems. If a student is using a system for 

problem solving with supporting help (e.g., in a homework help environment), then an initial 

assessment might be less useful and perhaps frustrating for a student who just wants to get the 

homework done. It would be interesting to see if these hypotheses are correct by providing initial 

adaptive assessments for these different purposes.  
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6.4 Instructional Support 

This report has outlined many issues surrounding the design of instructional support, 

including feedback about the veracity of a solution, explanations listing all the solution steps to a 

problem, scaffolding a student through the steps of a problem by asking questions, listing the 

solution, hints related to common errors, and hints about how to proceed. Each has its place in an 

instructional system, and more research needs to be done to determine when and where each is 

most effective. We discuss two of these below. 

Common errors. The systems reviewed have tried to simulate what human tutors and 

teachers do to help students learn. One thing they all have in common is that they try to identify 

the common errors that students make. While this seems like a reasonable approach, there are a 

few problems inherent: (a) If the system is wrong in its identification of an error, it can be 

confusing to the student; (b) If the system is right, it still does not know why the student did the 

wrong thing (i.e., it may give an incorrect explanation of why the student made that error); (c It 

is difficult, if not impossible, to completely specify all the errors students can make when trying 

to solve a problem, let alone all the possible interactions among multiple errors; and (d) The cost 

associated with doing error analyses is very high. Human tutors have the added luxury of being 

able to see students’ reactions to a response. The computer cannot rely on that. However, the 

computer might lose the respect of the student if a diagnosis is incorrect. It would be better to use 

computers to do what they do well—take the time to do a complete diagnosis. The systems 

described in this review all provide “low-stakes” tutoring; that is, the system should be able to 

quickly assess what a student knows without asking too many questions that take a lot of time, 

similar to how teachers assess students’ understanding through homework assignments.  

Additional research is needed about whether and how to provide instructional support 

using an alternate method without identifying common errors, which is expensive, not 

exhaustive, and not always correct. See Underwood & Underwood (2007) for one such approach 

to this type of support. 

Giving the answer. All the systems reviewed eventually give the answer to the student 

during a help sequence. Pedagogically, it can be sound to present the solution to a problem so the 

student can work out how the solution was attained, or when the focus is on the conceptual level 

of solving a problem (e.g., setting up the right equations). However, it can also be abused by the 

less motivated student (Aleven & Koedinger, 2000, as reported in VanLehn et al., 2005). For 
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example, students sometimes click through the other hints quickly in order to reach the bottom-

out hint. More research is needed to determine when it is appropriate to give an answer. 

6.5 Keeping to Known Solutions Paths 

VanLehn et al. (2005) made an interesting distinction between two types of correct 

responses: 

• Correct means that the entry is valid. A valid definition is one that defines a quantity 

that actually exists. A valid statement is one that follows logically from the givens of 

the problem and the principles of the task domain. 

• Correct means that the entry is valid and it appears in a known solution path to the 

problem. 

The advantage of the second definition is that it prevents students from wandering down 

paths that do not lead to a solution and can make their problem solving more efficient. However, 

it also implies that the students will not have the experience of recovering from an error. If all 

their homework is done with immediate feedback that keeps them on known solution paths, 

students might have their first experience coping with recovery on test problems. So, it seems 

that the first definition of correctness might give student more experience with recovery and raise 

their scores on test problems that invite traveling down false paths. However, there appears to be 

no empirical work comparing the two types of feedback (VanLehn et al., 2005).  

It would also be beneficial to research whether predetermining all possible solutions 

paths is tractable; it could be that for a certain set of problems, solution paths can be computed 

on the fly. For example, evaluate whether the next step a student takes can lead to a solution. Or, 

simply evaluate whether the student takes a correct step even if it is not efficient. There are a 

variety of tools—for example, that evaluate the equivalence of mathematics expressions, 

equations, and inequalities—that can be used to evaluate whether a student has entered a correct 

solution step.  

7. Conclusions 

This report has provided an analysis of automated approaches to diagnosis and instructional 

support for mathematics problem solving. At this point, it is worthwhile to ask if there are more 

scaleable approaches to automating diagnosis and instruction. There is a large literature that has 

examined what human tutors do—such as analyzing what they say, how they said it, and when it is 
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best said. For example, Merrill et al. (1992) reviewed research on human tutoring strategies in 

various domains and compared them to an intelligent tutoring approach called “model tracing.” 

Other research on human tutoring strategies tends to focus on such things as grouping students and 

peer tutoring (e.g., Cardona, 2002) and are not explicit about the specific strategies used in those 

settings. In a recent literature review that had a focus on human tutoring strategies, Naidu (2006) 

found that many human tutors have students solve problems while addressing errors as they arise 

and confirming steps when correct. She found that human tutors do not often assess a student’s 

general understanding of the problem solving. This approach is what many researchers are trying 

to automate in creating diagnosis and instructional systems. 

In one case of an intelligent tutoring system design (Sleeman, Ward, Kelly, Martinak, & 

Moore, 1991), the researchers decided to take a procedural approach because that was the 

approach of all the teachers they interviewed—except one, who used a probing approach to figure 

out the sources of her students’ problems. They found this point worth mentioning, but did not 

investigate which approach would be more effective in an automated tutoring environment. It 

could be that probing is more effectively done by a computer even when not commonly done by 

people. 

One approach that has not been taken by any automated tutor is to find out what students 

know, as opposed to how much they know. The latter approach reflects a more traditional, 

summative approach to assessment; or, what they “know” that happens to be incorrect, which 

reflects formative assessments that focus on identifying common errors and providing feedback 

based on those assessments. Underwood and Underwood (2007) described an approach with the 

idea that to build on the KSAs a student has, it is essential to first find out what they are 

(Carpenter, Fennema, & Franke, 1996). Trying to build on KSAs that a student does not have is 

misguided. This approach may prove to be a tractable solution to automating diagnosis and 

instructional support. 

A final recommendation is to do a deeper literature review of human tutoring strategies to 

determine if there are any approaches not previously investigated for automated diagnosis and 

instructional support to mathematics problem solving that would lend itself to automation. Given 

the demand by parents and teachers for more detailed and diagnostic information from 

assessments, finding a tractable automated approach to providing this information is a 

worthwhile endeavor. 
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Notes 
 

1 The Andes systems are being reviewed because their focus is on algebraic-type equations to 

solve physics problems and therefore are relevant to a review on mathematics problem 

solving. Where there is reference to “Andes” it means both Andes1 and Andes2. 

2 For example, Assistments generate reports to answer the following questions about items, 

students, KSAs, and student actions: Which items are my students finding difficult? Which 

items are my students doing worse on compared to the state average? Which students are (a) 

doing the best, (b) spending the most time, and (c) asking for the most hints etc.? On which 

of the approximately 80 KSAs that we are tracking are students doing the best/worst? What 

are the exact actions that a given student took?  
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