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Abstract 

The purpose of this study was to empirically evaluate the impact of loglinear presmoothing 

accuracy on equating bias and variability across chained and post-stratification equating 

methods, kernel and percentile-rank continuization methods, and sample sizes. The results of 

evaluating presmoothing on equating accuracy generally agreed with those of previous 

presmoothing studies, suggesting that less parameterized presmoothing models are more biased 

and less variable than highly parameterized presmoothing models and raw data. Estimates of 

standard errors of equating were most accurate when based on large sample sizes and score-level 

data that were not sparse. The accuracy of standard error estimates was not influenced by the 

correctness of the presmoothing model. The accuracy of estimates of the standard errors of 

equating differences was also evaluated. The study concludes with some detailed comparisons of 

how the kernel and traditional equipercentile continuization methods interacted with data that 

were presmoothed to different degrees. 
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Introduction 

The equating literature has considered the implications of loglinear presmoothing 

(Holland & Thayer, 1987, 2000) on the accuracy of equipercentile equating functions (i.e., the 

bias and variability of equated scores) and the accuracy of estimated standard errors of equating 

(SEE). Prior evaluations of presmoothing have been across equating designs, equating methods, 

and continuization methods for estimating “in-between” scores in discrete distributions; and in 

reference to particular population distributions. These prior studies, reviewed next, have focused 

on either equating function accuracy or on SEE accuracy. This study extends previous 

considerations of presmoothing on equating function and SEE accuracy in the nonequivalent 

groups with anchor test (NEAT) equating design (i.e., where one of two test forms, X and Y, and 

an anchor test, A, are given to independent samples of one of two different populations, P and Q, 

and XP is equated to test YQ using anchor scores AP and AQ to account for ability differences in 

the populations). 

Presmoothing and Equating Function Accuracy 

Prior studies of loglinear presmoothing on equating function accuracy are distinguished 

in terms of the equating designs they considered and their defined criterion equating function. 

Livingston (1993) evaluated presmoothing and NEAT chained equipercentile equating where the 

criterion equating function was an available single-group equipercentile function based on 

unsmoothed test data. Hanson, Zeng, and Colton (1994) evaluated presmoothing on equivalent 

groups equipercentile equating functions where the criterion equivalent-groups functions were 

based on presmoothed distributions from known loglinear or beta-binomial models, or on 

unsmoothed data. Hanson (1991) evaluated bivariate presmoothing for frequency estimation 

equipercentile equating where the criterion equating functions were frequency estimation 

functions based on presmoothed distributions from loglinear and beta-binomial models. In these 

studies, the traditional equipercentile method based on the percentile-rank continuization method 

(Kolen & Brennan, 2004) was exclusively considered. The general result in these studies was 

that highly parameterized loglinear presmoothing models produced less biased and more variable 

equating functions than did less parameterized models. 
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Presmoothing and SEE Accuracy 

Prior studies of loglinear presmoothing on SEE accuracy have focused on comparing 

SEEs based on raw and smoothed data across small and large sample sizes. Liou and Cheng 

(1995) compared SEEs based on raw and smoothed data for chained, frequency estimation, and 

single-group equipercentile equating functions across small (100 and 200) and large (1,000 and 

2,000) sample sizes, where the smoothed SEEs were estimated using the population loglinear 

models used to generate the sample data. Liou, Cheng, and Johnson (1997) compared SEEs 

based on raw and smoothed data for frequency estimation and chained equipercentile functions 

across percentile-rank and kernel (Holland & Thayer, 1989; von Davier, Holland, & Thayer, 

2004) continuization methods and small (100) and large (1,000) sample sizes. Liou et al. (1997) 

considered population distributions from known loglinear models and also from three-parameter 

IRT models. The results of these studies were that SEE accuracy was strongly affected by sample 

size and was always higher for smoothed data than for raw data, regardless of whether the 

presmoothing model was correct. 

This Study 

The focus of this study is on the impact of the loglinear presmoothing model on equating 

function accuracy and SEE accuracy. This evaluation is across sample size, NEAT equating method 

(chained and post-stratification/frequency estimation equipercentile) and continuization method 

(kernel and percentile-rank). This study builds on the results of prior studies in several ways: 

• The previous studies suggest that the correctness of the presmoothing model affects 

equating function bias but not SEE accuracy. This suggestion is a direct focus of the 

current study. 

• This study evaluates a possible interaction between the kernel continuization method 

and the degree of presmoothing. Liou et al. (1997) considered the kernel continuization 

method but did so using fixed kernel bandwidths (i.e., degrees of continuization). The 

more current proposal for implementing kernel equating (von Davier et al., 2004) is to 

use kernel bandwidths that vary according to the sample data, meaning that the kernel 

continuization functions like a post-smoothing method when presmoothed data are 

rough. It is likely that sample-dependent kernel bandwidths have implications for the 

accuracy of equating functions and SEEs that depend on whether the data are strongly 
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or weakly presmoothed. In addition, the implications of kernel bandwidths across 

degrees of presmoothing should differ from the implications of using the sample-

independent percentile-rank continuization method. 

• The two major NEAT equating methods, chained and post-stratification, may respond 

differently to varied degrees of presmoothing. Each method utilizes presmoothed data in 

different ways. Where chained equating focuses solely on the univariate smoothing 

results (i.e., the marginal XP, AP, AQ, and YQ distributions), post-stratification equating 

focuses on the bivariate smoothing results (i.e., the XA distribution in P and the YA 

distribution in Q). It is possible that the equating methods’ different uses of presmoothing 

may result in unique implications for equating function accuracy and SEE accuracy. 

This study’s consideration of chained and post-stratification equating methods is 

very different from the consideration of which equating method is more biased and 

variable with respect to a true equating function (e.g., Sinharay & Holland, 2006; 

Wang, Lee, Brennan, & Kolen, 2006). The concern of this study is the statistical bias 

from incorrectly estimating the population loglinear presmoothing model, rather than 

the equating method bias from dealing incorrectly with the missing data in the NEAT 

design. To directly evaluate the impact of the correctness of the loglinear presmoothing 

model across equating methods, the presmoothing model was varied while treating the 

equating methods’ assumptions about the unobservable test data as if they were true. 

• This study evaluates the effect of presmoothing on the estimation of equated score 

differences and the standard errors of equated score differences (SEEDs) between 

chained and post-stratification equating functions. These evaluations, not considered 

in previous presmoothing and equating studies, are of interest because assessments of 

chained and post-stratification differences and their variability are important 

considerations for informing the selection of the chained or post-stratification 

equating function. 

Method 

This simulation study used a population data set and known population equating 

functions for equating test X to a more difficult test Y through an external anchor (A), where X 

and A were taken by population P, and Y and A were taken by a less able examinee population, 
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Q. Four degrees of presmoothing and three sample sizes were considered. The biases and 

empirical variabilities of the chained kernel, chained equipercentile, post-stratification kernel and 

post-stratification equipercentile equating methods were evaluated with respect to their 

population equating functions. (A single criterion equating function was not used in this study.) 

The accuracies of the SEE and SEED estimates for the four equating methods and their 

differences were also evaluated. The four equating functions’ biases and their SEE estimates 

were computed from the 4 x 3 = 12 presmoothing and sample size combinations based on 500 

random samples from the population data. 

Sample sizes. The P and Q data sets were each generated with equal sample sizes of 100, 

200, and 1,000. Each sample size combination (NP = NQ = 100, NP = NQ = 200, and NP = NQ = 

1,000) was replicated 500 times. 

Degree of presmoothing. The frequencies from the data sets were used in their raw form 

and also presmoothed with three different loglinear presmoothing models (Holland & Thayer, 

1987, 2000). The simplest loglinear model (M221, with 2 + 2 + 1 parameters) preserved the 

means and variances of the tests’ and anchors’ univariate distributions and the correlation 

between the test and anchor. Another loglinear model preserved the first six moments of the 

tests’ and anchors’ univariate distributions, along with the correlation between the test and 

anchor (M661, with 6 + 6 + 1 parameters). The third model was the actual population model 

fitted to the samples of data (MP). This 22-parameter model preserved the first four moments of 

the tests’ and anchors’ distributions, lumps at scores of zero for the tests and anchors, the 

frequencies and first three moments of the teeth scores (frequencies that were systematically 

lower than the overall distributions at every fifth score due to the use of the rounded formula 

scoring method), and four bivariate moments between the tests and anchors (von Davier et al., 

2004, pp.159–167). 

Population distributions. The population distributions were based on a smoothed version 

of test data that came from the large-volume administration of a verbal assessment (von Davier 

et al., 2004). The descriptive statistics from these populations, based on 10,634 examinees in P 

and 11,321 examinees in Q, are given in Tables 1 and 2. Figures 1–4 plot the marginal 

distributions from the two 22-parameter smoothing models. The modeled frequencies from the 

22-parameter models fit the original raw data very well, with likelihood ratio χ2 statistics of 

1,966.9 (population P) and 1,896.0 (population Q) on 2,821 degrees of freedom. 
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Practical Issues 

The sample generation from the P and Q population distributions used the following 

process. First bivariate cumulative probabilities were computed for each XA and YA score 

combination. Then a desired number of random uniform (0, 1) numbers were generated for the P 

and Q samples. For each of these random numbers, the XA and YA score combinations with the 

largest cumulative probabilities that were smaller than the random numbers were assigned. The 

resulting distributions were generally reflective of the populations’ characteristics, but with 

random noise. 

Table 1 

Summary Statistics for XA in Population P 

 X A 

Mean 39.25 17.05 

SD 17.23 8.33 

Skewness – .11 – .01 

Kurtosis 2.23 2.15 

Min. 0 0 

Max. 78 35 

Note. Correlation = .88. 

Table 2 

Summary Statistics for YA in Population Q  

 Y A 

Mean 32.69 14.39 

SD 16.73 8.21 

Skewness .24 .26 

Kurtosis 2.31 2.25 

Min. 0 0 

Max. 78 35 

Note. Correlation = .87. 
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Figure 1. XP’s true marginal probability distribution. 

 

Figure 2. AP’s true marginal probability distribution. 

 

Figure 3. YQ’s true marginal probability distribution. 
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Figure 4. AQ’s true marginal probability distribution. 

Post-stratification weights. Post-stratification equating is based on the direct equating of 

test X to test Y in a targeted synthetic population that is a mixture of populations P and Q, T = 

wP + (1 – w)Q. All post-stratification analyses in this study were conducted by setting w = .5. 

Loglinear presmoothing. The 22-parameter models did not always converge in the study. 

To increase the convergence rates, the loglinear models used orthogonal polynomial score 

functions rather than the power functions that are typically described (Holland & Thayer, 1987, 

2000). The use of orthogonal polynomials resulted in high convergence rates. The loglinear 

models converged for all 500 samples of size 1,000. For the samples of size 200, 9 out of the 500 

did not converge. For the samples of size 100, 32 out of the 500 did not converge. The results for 

the samples of 200 are therefore based on the 491 converging P and Q models. The results for 

the samples of 100 are based on the 468 converging P and Q models. 

Bandwidth selection. For the four observed distributions used in chained kernel equating 

and the two synthetic distributions used in post-stratification kernel equating, bandwidths were 

needed for estimating the Gaussian continuized cumulative density functions. These bandwidths 

were selected for each replication, degree of presmoothing and sample size. The bandwidth 

selection rule minimized the sum of two penalty functions (von Davier et al., 2004, pp. 61–64). 

The first penalty function was the sum of the squared differences between the continuized and 

discrete score probabilities. The second penalty function was used to minimize the number of 

scores (xj) where the continuized distribution was U-shaped from xj - 1/2 to xj + 1/2. Bandwidths 

that minimized the sum of these two penalty functions resulted in density functions that were 

close reflections of the discrete distributions with very few modes. A parabolic interpolation 
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procedure known as Brent’s method (Press, Teukolsky, Vetterling, & Flannery, 1992) was used 

to find the bandwidth that minimized the sum of the two penalty functions. When this procedure 

was used in the six population distributions, the selected bandwidths were 2.014 for XP, 2.131 for 

YQ, 2.010 for AP, 1.356 for AQ, 1.895 for XP + Q, and 1.977 for YP + Q. To provide meaningful 

bases for interpreting the values of the selected bandwidths, note that the bandwidth selected by 

minimizing the two penalty functions for an extremely smooth distribution tends to be 

approximately .5 or .6 (von Davier et al., 2004, pp. 106 & 124), while the bandwidth of a 

continuized distribution that retains only the mean and variance of the discrete distribution needs 

to be large (i.e., greater than 10 times the standard deviation of the distribution). 

Analysis Strategy 

The accuracies of the equating functions were evaluated as biases and variabilities from 

criterion equating functions. For bias, the average equated scores from the four equating methods 

(chained and post-stratification for both kernel and traditional equipercentile equating) for a 

particular combination of presmoothing and sample size were compared to the equated scores 

from that method using the population distributions. Weighted averages of the differences 

between average and population-equated scores were computed for the population probabilities 

of XP. For example, the measure of overall bias in the chained equipercentile method using the 

M661 loglinear model and sample size NP = NQ = 200 was computed as: 

491 ( ), 661, 200,
( ), 22 , , 22 ,1

( )
( ) ( )

491
Y ECE M N iteration j

Y ECE M P population j P M P population jj iteration

e x
e x P X

=
− =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

∑ ∑ x   (1) 

(Note that the sample equating functions for sample sizes of NP = NQ = 200 were averaged over 

the 491 data sets where the loglinear models converged.) 

Empirical variabilities were computed as weighted averages of the standard deviations of 

an equating method’s and continuization method’s equated scores for a particular combination of 

presmoothing and sample size across the population probabilities of XP: 

( )[ ]( ), 661, 200 , 22 ,( ) ( )=∑ Y ECE M N j P M P population j
j

e x P Xσ x
. (2) 
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Tables 4–7 give the descriptive statistics for the selected kernel bandwidths for the six 

distributions, the four presmoothing conditions, and sample size combination NP = NQ = 1,000. 

In these four tables, the columns labeled Population value (MP) show the bandwidths selected in 

the population data based on the MP loglinear model. The bandwidths selected from data that 

were presmoothed with the M221 (Table 4) and M661 (Table 5) models are much smaller than 

the population values and also smaller than the bandwidths selected from data presmoothed with 

the MP model (Table 6) and the bandwidths selected in the raw data (Table 7). The small size of 

the M221 and M661 selected bandwidths is due to the strongly presmoothed marginal 

distributions; only very local kernel continuizations were needed to produce sufficiently smooth 

continuized distributions that were close reflections of the discrete distributions.  

Evaluating the Selected Bandwidths 

Table 3 gives the statistics of the population model’s (MP) likelihood ratio chi-square 

statistics for each sample size of the P and Q distributions. The first row gives the statistics for 

500 sums of 2,821 random chi-square deviates (what the likelihood ratio chi-square statistics 

estimate when the population MP model is fit to the sample data). The fit statistics from the 

actual data sets are much smaller than the simulated chi-square statistics and smallest when 

based on sample sizes of 100. The variability and ranges of the likelihood ratio chi-square 

statistics are also smaller than those of the simulated chi-square statistics. 

Evaluating the Smoothing 

The delta method SEEs and SEEDs for each equating method, presmoothing, and sample 

size combination were also assessed for accuracy. The criterion for the SEEs and SEEDs were 

the standard deviations of all of the equated scores and equated score differences in the same 

conditions of equating method, presmoothing, and sample size: 

 

( )491 ( ), 661, 200,

( ), 661, 200 , 22 ,1

( )
( ) ( )

491
Y ECE M N iteration j

Y ECE M N

9 

j P M P population jiteration
j

SEE x
e x P X x

=
− =

⎡⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ σ

Results 

. (3) 



 

Table 3 

Likelihood Ratio Chi-Square Statistics for the Fits of the True, MP Models  

 N Replications Mean Median SD Skew Min. Max. 
Simulated  500 2,812.239 2,813.547 77.698   0.069 2,597.163 3,022.066 
XPAP  1,000 500 1,306.326 1,304.823 44.035   0.096 1,147.037 1,449.872 
YQAQ  1,000 500 1,281.748 1,279.675 43.800   0.022 1,126.264 1,439.312 
XPAP    200 491    696.691    696.861 23.223   0.056 634.903    774.560 
YQAQ    200 491    687.334    688.273 22.958 –0.192 618.860    749.749 
XPAP    100 468    460.337    460.706 17.076 –0.053 407.190    509.899 
YQAQ    100 468    456.520    456.864 16.269 –0.106 399.064    505.585 

Note. Df = 2,821. 
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Table 4 

Bandwidth Statistics, M221 

Distribution Population 
value (MP) 

n Mean Median SD Skew Min. Max. 

XP 2.014 500 0.608 0.608 0.006 0.117 0.592 0.629 
YQ 2.131 500 0.594 0.593 0.006 0.100 0.575 0.613 
AP 2.010 500 0.563 0.563 0.006 -0.104 0.547 0.580 
AQ 1.356 500 0.542 0.542 0.005 -0.199 0.521 0.556 
XP+Q 1.895 500 0.606 0.606 0.005 0.079 0.590 0.626 
YP+Q 1.977 500 0.601 0.601 0.005 0.172 0.584 0.620 

Note. N = 1,000. 

 



 

Table 5 

Bandwidth Statistics, M661 

Distribution Population 
value (MP) 

n Mean Median SD Skew Min. Max. 

XP 2.014 500 1.299 0.165 1.455 2.181 0.576 8.158 
YQ 2.131 500 0.629 0.591 0.160 6.237 0.557 2.570 
AP 2.010 500 1.411 0.916 1.002 0.842 0.533 4.319 
AQ 1.356 500 0.703 0.544 0.232 1.281 0.512 1.853 
XP+Q 1.895 500 1.137 0.605 1.220 2.559 0.561 6.897 
YP+Q 1.977 500 0.783 0.601 0.698 4.577 0.569 5.735 

Note. N = 1,000. 
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Table 6 

Bandwidth Statistics, MP 

Distribution Population 
value (MP) 

n Mean Median SD Skew Min. Max. 

XP 2.014 500 1.907 1.914 0.308 0.532 0.868 4.349 
YQ 2.131 500 1.849 1.871 0238 -0.564 0.958 2.377 
AP 2.010 500 1.849 1.824 0.350 1.243 0.952 3.745 
AQ 1.356 500 1.367 1.363 0.244 0.169 0.701 2.246 
XP+Q 1.895 500 1.987 2.013 0.298 -0.253 1.134 2.744 
YP+Q 1.977 500 1.944 1.963 0.246 -0.334 1.054 2.625 

Note. N = 1,000. 
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Distribution Population 

value (MP) 

n Mean Median SD Skew Min. Max. 

XP 2.014 500 4.084 3.925 1.052 0.845 2.009 7.788 

YQ 2.131 500 3.580 3.529 0.808 0.695 1.850 6.775 

AP 2.010 500 2.275 2.151 0.547 0.802 1.172 4.122 

AQ 1.356 500 1.796 1.742 0.360 0.816 1.066 3.408 

XP+Q 1.895 500 4.262 4.090 1.114 0.654 2.229 7.519 

YP+Q 1.977 500 4.081 4.020 0.917 0.605 2.300 7.264 

Bandwidth Statistics, Raw 

Note. N = 1,000. 

Table 7 



 

The bandwidths selected from the MP models (Table 6) are closer to the population 

values than those of the raw data and the M221 and M661 models. The bandwidths selected from 

the raw data (Table 7) are substantially larger than those from the population bandwidths, 

suggesting that the part of the bandwidth selection rule that limits the number of modes in the 

continuized distribution was actually smoothing out some of the roughness of the raw data. 

Bias and Empirical Variability of the Equating Functions 

Tables 8–11 give the bias and the empirical variability of the equating functions across 

sample sizes and presmoothing models. Figures 5–8 plot the equating functions’ bias series 

across presmoothing models for the sample size combination NP = NQ = 200. The biases are 

small relative to variability and were as expected for the four smoothing conditions. The 

equating functions based on the raw data and on the data that were presmoothed based on the 

population MP model exhibited the smallest biases. The M221 model created the most bias 

across the equating functions and sample sizes out of all of the presmoothing conditions. From 

Figures 5–8, the M221 model can be seen to have created both over- and under-estimation 

problems with respect to all four of the population-equating functions. The raw data created 

some overestimation problems for the most extreme scores of the chained equipercentile function 

(Figure 5) but underestimation problems for the highest scores of the chained kernel function 

(Figure 7). The chained kernel’s bias (Figure 7) in the high end of the score range shows 

underestimation of approximately one score point for all of the presmoothed and raw data 

conditions, which is slightly greater and more consistent tail-bias than was present with the other 

equating methods. The bias series for the traditional equipercentile functions exhibited small and 

abrupt shifts corresponding to the teeth structures in the original data (Figures 5–6), while those 

for the kernel functions did not (Figures 7–8). 

In terms of empirical variability, the equating functions were most variable when based 

on the raw data, followed by M661, then by MP, and then by M221 (Tables 8–11). The high 

variability of the M661 equating functions relative to the MP equating functions is interesting. 

M661 is simpler than MP by 22 – 13 = 9 total parameters but is actually over-parameterized by 

two moments in each of the four marginal distributions. These fifth and sixth moments did not 

exist in the population distributions, and preserving them in the sample data sets apparently 

resulted in more noise being added to the equating functions. Comparing equating functions’ 

empirical variabilities, the kernel equating functions are less variable than the traditional 
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equipercentile functions. The kernel and equipercentile post-stratification equating functions are 

less variable than the chained equating functions.  

Table 8 

Bias and Empirical Variability for Chained Equipercentile  

NP = NQ = NP = NQ = 
Bias 

1,000 200 100 
Empirical 
variability 1,000 200 100 

M221 –0.035 –0.058 –0.001 M221 0.495 1.182 1.639 
M661 –0.005 –0.030   0.039 M661 0.722 1.709 2.382 
MP –0.006 –0.031   0.027 MP 0.660 1.574 2.162 
Raw –0.003   0.010   0.159 Raw 0.905 2.086 2.842 

Note. All XP. 

Table 9 

Bias and Empirical Variability for Post-Stratification Equipercentile  

NP = NQ = NP = NQ = 
Bias 

1,000 200 100 
Empirical 
variability 1,000 200 100 

M221 –0.021 –0.043 0.020 M221 0.479 1.143 1.578 
M661 –0.006 –0.032 0.036 M661 0.646 1.540 2.159 
MP –0.006 –0.033 0.028 MP 0.599 1.435 1.997 
Raw –0.009 –0.021 0.018 Raw 0.778 1.820 2.599 

Note. All XP. 

Table 10 

Bias and Empirical Variability for Chained Kernel  

NP = NQ = NP = NQ = 
Bias 

1,000 200 100 
Empirical 
variability 1,000 200 100 

M221 –0.037 –0.060 –0.003 M221 0.496 1.183 1.640 
M661 –0.005 –0.031   0.021 M661 0.718 1.629 2.159 
MP –0.007 –0.032   0.022 MP 0.633 1.484 1.992 
Raw –0.005 –0.028   0.033 Raw 0.696 1.506 1.994 

Note. All XP. 
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Table 11 

Bias and Empirical Variability for Post-Stratification Kernel  

NP = NQ = NP = NQ = Bias 

1,000 200 100 

Empirical 

variability 1,000 200 100 

M221 –0.024 –0.045   0.017 M221 0.479 1.143 1.578 

M661 –0.008 –0.033   0.029 M661 0.636 1.463 1.950 

MP –0.007 –0.035   0.027 MP 0.588 1.385 1.902 

Raw –0.007 –0.040 –0.009 Raw 0.623 1.412 2.027 

Note. All XP.

 

Figure 5. Chained equipercentile bias.  

Note. Np = Nq = 200. 

 

Figure 6. Post-stratification equipercentile bias.  

Note. Np = Nq = 200. 
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Figure 7. Chained kernel bias.  

Note. Np = Nq = 200. 

 

Figure 8. Post-stratification kernel bias. 

Note. Np = Nq = 200. 

Accuracy of the SEEs 

Tables 12–15 describe how well the SEEs estimated the actual variability in the equating 

functions across sample sizes and presmoothing models. Figures 9–24 plot the average SEEs and 

the actual equating function standard deviations across presmoothing models for sample size 

combinations NP = NQ = 200 and NP = NQ = 1,000. For samples of 100 and 200, the post-

stratification SEEs consistently underestimated actual variability (Tables 13 and 15). The M661 

model created substantial estimation problems for the chained kernel method (Table 14). The 
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source of M661’s estimation problems was the sparseness of data on YQ at the high end of the 

score range, which resulted in divisions by very small numbers in the standard error formulas 

and very large SEEs for the highest XP scores (Figure 18). 

The average MP SEEs at the XP score of 0 (4.09) for the chained equipercentile method 

overestimated actual variability (1.87) for sample sizes of 200 (Figure 11). The source of this 

overestimation was nine extremely large (> 30) SEEs. Further inspections of the raw data of 

these particular replications showed that at least two of the four marginal distributions had no 

observations at scores of zero, where the lumps that truly existed in the populations were 

incorporated in the MP models and the extremely small smoothed values were then used as 

denominators for the standard error formulas. When the average SEE at XP = 0 was computed 

without the extreme SEEs of these nine replications, it was much closer to the actual standard 

deviation of the corresponding chained equating function (1.74 vs. 1.87). 

Table 12 

Accuracy of the Delta Method Standard Errors for Chained Equipercentile 

NP = NQ = SEEs 
1,000 200 100 

M221 0.024 –0.025 –0.006 
M661 0.024 –0.047 –0.035 
MP 0.010 –0.066   0.058 
Raw 0.012 –0.006   0.188 

Note. All XP. 

Table 13 

Accuracy of the Delta Method Standard Errors for Post-Stratification Equipercentile  

NP = NQ = SEEs 
1,000 200 100 

M221   0.013 –0.047 –0.031 
M661   0.012 –0.077 –0.099 
MP   0.006 –0.084 –0.083 
Raw –0.009 –0.205 –0.618 

Note. All XP. 
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Table 14 

Accuracy of the Delta Method Standard Errors for Chained Kernel 

NP = NQ = 
SEEs 

1,000 200 100 

M221 0.024 –0.026 –0.006 

M661 8.29 X 10100 7.56 X 10105 1.61 X 1099

MP 0.007 –0.072 –0.034 

Raw 0.002 –0.070 –0.052 

Note. All XP. 

Table 15 

Accuracy of the Delta Method Standard Errors for Post-Stratification Kernel 

NP = NQ = 
SEEs 

1,000 200 100 

M221   0.013 –0.047 –0.031 

M661   0.017 –0.046 –0.015 

MP   0.007 –0.071 –0.064 

Raw –0.004 –0.197 –0.591 

Note. All XP.

 

Figure 9. Chained equipercentile SEE, M221. 
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Figure 10. Chained equipercentile SEE, M661. 

 

Figure 11. Chained equipercentile SEE, MP. 

 

Figure 12. Chained equipercentile SEE, raw. 
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Figure 13. Post-stratification equipercentile SEE, M221. 

 

Figure 14. Post-stratification equipercentile SEE, M661. 

 

Figure 15. Post-stratification equipercentile SEE, MP. 
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Figure 16. Post-stratification equipercentile SEE, raw. 

 

Figure 17. Chained kernel SEE, M221. 

 

Figure 18. Chained kernel SEE, M661. 
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Figure 19. Chained kernel SEE, MP. 

 

Figure 20. Chained kernel SEE, raw. 

 

Figure 21. Post-stratification kernel SEE, M221. 
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Figure 22. Post-stratification kernel SEE, M661. 

 

Figure 23. Post-stratification kernel SEE, MP. 

 

Figure 24. Post-stratification kernel SEE, raw. 
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Figures 9–24 show that SEEs (shown as squares and triangles) are generally close 

approximations to actual variability (shown as solid lines) for most of the score range. The less 

accurate SEEs are at the tails of the score ranges and at the smaller sample sizes. Similar to the 

series of bias figures (Figures 5–8), the SEE series for the equipercentile functions based on raw 

data and the MP model exhibit small and abrupt shifts corresponding to the teeth structures in the 

original data (Figures 11, 12, 15, and 16) while the raw and MP SEEs of the kernel functions do 

not (Figures 19, 20, 23, and 24). The SEEs based on any of the presmoothing models and sample 

sizes could be characterized as sufficiently accurate for practical use, so long as the variability 

estimates in the tails are not taken too seriously. 

Bias and Empirical Variability of Equating Function Differences 

The biases and empirical variabilities of the chained and post-stratification differences 

are summarized across all sample size combinations and presmoothing models in Tables 16–17. 

Figures 25 and 26 plot the bias series of the kernel and equipercentile chained and post-

stratification differences across presmoothing models for the sample size combination NP = NQ = 

200. MP produced the smallest biases, and M221 produced the largest biases. In terms of 

empirical variability, the most to least variable differences were based on raw data, M661, MP, 

and finally M221. The variabilities of equating function differences were of smaller magnitude 

than the individual equating functions’ variabilities. 

Table 16 

Bias and Variability for Equipercentile Chained and Post-Stratification Differences 

NP = NQ = NP = NQ = Bias 

1,000 200 100 

Empirical 

variability 1,000 200 100 

M221 –0.014 –0.015 –0.021 M221 0.157 0.377 0.543 

M661   0.001   0.002   0.003 M661 0.350 0.808 1.192 

MP   0.000   0.001 –0.001 MP 0.298 0.694 1.014 

Raw   0.006   0.031   0.141 Raw 0.535 1.390 2.201 

Note. All XP. 
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Table 17 

Bias and Variability for Kernel Chained and Post-Stratification Differences  

NP = NQ = NP = NQ = Bias 

1,000 200 100 

Empirical 

variability 1,000 200 100 

M221 –0.013 –0.014 –0.020 M221 0.157 0.378 0.543 

M661   0.003   0.003 –0.008 M661 0.367 0.764 1.028 

MP   0.000   0.003 –0.005 MP 0.248 0.568 0.814 

Raw   0.002   0.012   0.042 Raw 0.354 0.782 1.188 

Note. All XP. 

 

Figure 25. Chained and post-stratification kernel bias. 

Note. Np = Nq = 200. 

 

Figure 26. Chained and post-stratification equipercentile bias. 

Note. Np = Nq = 200. 
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Accuracy of the SEEDs 

The accuracies of the equipercentile and kernel chained and post-stratification SEEDs are 

summarized across all sample size combinations and presmoothing models in Tables 18–19. 

Figures 27–34 summarize the chained post-stratification SEED accuracy for the equipercentile 

and kernel functions for sample size combinations NP = NQ = 200 and NP = NQ = 1,000. Most of 

the features of these SEEDs have been described in the SEE descriptions presented earlier. The 

unique result is that the raw chained and post-stratification SEEDs that are based on 

equipercentile equating functions greatly overestimate the actual variabilities of the equating 

function differences (Figure 30). Some follow-up analyses that focused on approaches to 

continuization were performed to explain the relatively poor performance of the raw 

equipercentile SEEDs. These analyses are described in the discussion section. 

Table 18 

Accuracy of the Delta Method Standard Errors for Equipercentile Chained and Post-

Stratification SEED  

NP = NQ = 
SEEs 

1,000 200 100 

M221 0.012 –0.001 –0.008 

M661 0.001 –0.008 –0.030 

MP 0.017   0.086   0.269 

Raw 0.993   1.792   1.829 

Note. All XP. 

Table 19 

Accuracy of the Delta Method Standard Errors for Kernel Chained and Post-Stratification SEED  

NP = NQ = 
SEEs 

1,000 200 100 

M221   0.011 –0.002 –0.010 

M661 8.3 X 10100 7.6 X 10105 1.6 X 1099

MP –0.005 –0.019 –0.028 

Raw –0.018   0.026   0.044 

Note. All XP.
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Figure 27. Chained and post-stratification equipercentile SEED, M221. 

Note. Np = Nq = 200. 

 

Figure 28. Chained and post-stratification equipercentile SEED, M661. 

 

 

Figure 29. Chained and post-stratification equipercentile SEED, MP. 
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Figure 30. Chained and post-stratification equipercentile SEED, raw. 

 

Figure 31. Chained and post-stratification kernel SEED, M221. 

 

Figure 32. Chained and post-stratification kernel SEED, M661. 
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Figure 33. Chained and post-stratification kernel SEED, MP. 

 

Figure 34. Chained and post-stratification kernel SEED, raw. 

Discussion 

The purpose of this study was to evaluate the impact of the correctness of the loglinear 

presmoothing model on equating function and SEE accuracy for NEAT equating. Prior studies of 

loglinear presmoothing have focused on either equating function accuracy (Hanson, 1991; 

Hanson et al., 1994; Livingston, 1993; Skaggs, 2004) or on SEE accuracy (Liou & Cheng, 1995; 

Liou et al., 1997), suggesting that the correctness of the presmoothing model is important for 

equating function accuracy but possibly not important for SEE accuracy. The evaluation in this 

study was across sample sizes, NEAT equating methods (chained and post-stratification), and 

continuization methods (percentile-rank and kernel). In addition, the accuracy of equating 

function differences and SEEDs for chained and post-stratification differences was also 

evaluated. 
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The results of this study on equating function accuracy replicated previous findings of a 

bias-variability tradeoff for given degrees of presmoothing. This tradeoff was most clearly seen 

in terms of two incorrect presmoothing models. All of the simulated data were generated from an 

extremely complex 22-parameter model. In terms of this population model, the M221 model was 

underparameterized, and the M661 model was overparameterized in the marginal distributions. 

The equating functions based on the M221 model were the least variable and most biased of all 

the equating functions. The equating functions based on the M661 model were less biased than 

those from the M221 model but more variable than those from the population MP model. Both 

the M221 and M661 models ignored the teeth and lumps at score zero and could be regarded as 

models that ‘ground down the teeth’ in the presmoothing step of equating (von Davier et al., 

2004, p. 64). The bias and variability problems of the M221 and M661 models reiterate the von 

Davier et al. recommendation to get a correct smoothing model in the presmoothing step and 

then select a kernel bandwidth that eliminates the teeth in the continuization step. The use of raw 

data did not have any bias advantages over the two reasonable smoothing models (M661 and 

MP). The implications of less- and more- parameterized presmoothing models on equating 

function accuracy directly apply to the estimation accuracies of chained and post-stratification 

equating function differences. 

The evaluation of the accuracies of the SEEs and SEEDs produced results that were 

similar to those of previous studies of equating error estimation (Jarjoura & Kolen, 1985; Liou et 

al., 1997; Liou & Cheng, 1995; Lord, 1982). Unlike equating function accuracy, SEE and SEED 

accuracy is not very dependent on the accuracy of the presmoothing model: Stronger smoothing 

models that were incorrect (M221) resulted in low and extremely accurate variability estimates, 

while the accuracies of the raw SEEs were subject to small-sample and/or sparse data problems. 

Theoretical standard errors based on the delta method are fairly accurate except in conditions 

where overall samples are small and the data at parts of the score ranges are sparse. The tendency 

of raw post-stratification SEEs to underestimate actual variability has been found in previous 

studies (Jarjoura & Kolen, 1985; Liou & Cheng, 1995). The evaluation of the accuracy of the 

SEEDs has not been previously considered, and the results show that SEED accuracies are 

generally high and similar to SEE accuracies. 

The implications of presmoothing correctness for equating function and SEE accuracy 

were very similar for the chained and post-stratification methods. The extremely simple M221 
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model’s relatively large bias and small variability were visible in both equating methods. 

Similarly, the over-parameterized M661 model’s small bias and large variability was also visible 

in both equating methods. The chained kernel method with the M661 presmoothing model had 

more marked tail-bias than other methods and also had more unrealistically large SEE estimates. 

These problems were likely due to this method’s use of the extreme and sparse scores of the four 

(over-parameterized) marginal distributions, combined with the kernel method’s tendency to 

make overly fine distinctions in the extreme and sparse parts of the score distribution. 

Comparisons of Kernel and Traditional Equipercentile Continuizations 

One of the focuses of this study was investigating a likely interaction between a given 

presmoothing model and the traditional percentile-rank and kernel continuization methods. 

(Formal discussions of each continuization method are included in Holland & Thayer, 1989, and 

von Davier et al., 2004.) This section compares how these methods addressed data that had been 

presmoothed in particular ways, as well as their final equating variability estimates. 

Continuization score distributions. Figures 35–38 illustrate how the M221, M661, MP, 

and raw distributions of the AQ distribution generated in the first replication of the N = 200 

samples were continuized with the kernel and percentile-rank methods. When data have been 

strongly presmoothed, such as with the M221 or M661 models (Figures 35 and 36), the 

differences in the continuization methods are barely visible in the plots, except at the most abrupt 

changes in the distributions. The selected kernel bandwidths (.539 and 1.018) are relatively 

small, resulting in kernel continuizations that mostly utilize the nearest scores’ data, as does the 

percentile-rank continuization method. As the teeth are incorporated into the smoothing models 

(MP, Figure 37) and as the raw data are considered (Figure 38), the differences in the percentile-

rank and kernel continuization methods become much more visible. The discrete and piece-wise 

nature of the fixed-interval percentile-rank method is clearly visible. The kernel continuization 

methods are based on larger bandwidths (1.542 and 2.694) that utilize much wider score intervals 

than the data that were presmoothed with a stronger model. Unlike the percentile-rank 

continuizations, the resulting kernel continuizations are always extremely smooth, staying very 

close to the majority of nearby score probabilities as the discrete distributions fluctuated. 
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Figure 35. Discrete and continuized probabilities, M221.  

Note. Data = AQ, H = 0.5392103959. 

 

Figure 36. Discrete and continuized probabilities, M661. 

Note. Data = AQ, H = 1.0176032685. 

 

Figure 37. Discrete and continuized probabilities, MP. 

Note. Data = AQ, H = 1.5418304658. 
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Figure 38. Discrete and continuized probabilities, raw. 

Note. Data = AQ, H = 2.6936097909. 

Raw continuization and variability. Using the kernel and percentile-rank continuizations 

with given degrees of presmoothing have different implications for the accuracies of the equating 

functions and the SEE estimates. The kernel continuization method utilized a continuization 

bandwidth that was based on the extent of roughness in the presmoothed data. Simpler 

presmoothing models resulted in the selection of smaller continuization bandwidths, while 

complicated presmoothing and raw data resulted in the selection of larger continuization 

bandwidths (Tables 4-7). The roughness in the data due to the teeth, the lumps at zero, and raw 

fluctuation was smoothed out to a greater extent when the kernel continuization method was used 

than when the percentile-rank continuization method was used. The result was that kernel SEEs 

were smaller than traditional equipercentile SEEs, supporting previous work (Liou et al., 1997). 

The differences in the standard errors are shown in one individual replication of the 

chained (Figure 39) and post-stratification (Figure 40) equating functions for sample size 

combination NP = NQ = 200. The series of raw equipercentile standard errors for single 

replications fluctuate greatly while the raw kernel standard errors are stable. It is clear that when 

applied to raw data, the kernel continuization functions as a kind of post-smoother for SEE series 

that makes the series of raw equipercentile standard errors more reasonable (Harris & Kolen, 

1986). 

Raw continuization and SEEDs. An interesting aspect of this study’s results that can be 

used to further compare the kernel and uniform continuization approaches is the failure of the 

average raw equipercentile chained post-stratification SEED to accurately approximate the actual 
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variability of equated score differences (Figure 30). The difference in degree of raw 

continuization for the kernel and traditional equipercentile functions is one potential explanation 

for the raw equipercentile SEEDs in Figure 30. 

 

Figure 39. Raw chained SEEs. 

Note. Np = Nq = 200. 

 

Figure 40. Raw post-stratification SEEs. 

Note. Np = Nq = 200. 
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Two follow-up analyses were conducted on raw kernel and equipercentile SEEDs. One 

question evaluated was whether the kernel SEED could be made to overestimate actual 

variability when its degree of continuization was made to be more similar to that of the 

traditional equipercentile method. Figure 41 plots the kernel SEEDs and actual standard 

deviations of differences where the raw kernel functions were based on very small continuization 

bandwidths (.3 for N = 1,000 and .4 for N = 200). In comparison to the raw kernel SEEDs based 

on larger bandwidths (Figure 34), Figure 41 shows that some overestimation resulted from the 

smaller bandwidths, particularly for the tails of the NP = NQ = 200 SEEDs. The overestimation, 

although not of the same magnitude as the overestimation of raw equipercentile SEEDs (Figure 

30), is clearly a function of the extent to which the raw data are strongly or weakly continuized. 

A second question was whether the raw equipercentile SEEDs’ overestimation problems 

could be controlled by utilizing wider ranges of the score distribution data. To evaluate this 

question, the procedure used in this study for dealing with scores with zero frequencies in raw 

equipercentile equating was to average the score frequencies that were less than one (Moses & 

Holland, 2007). For this follow-up, the data from scores with less than 1.5% (15 for N = 1,000 

and 3 for N = 200) were averaged together. This stronger degree of frequency averaging resulted 

in the raw equipercentile SEED plot displayed in Figure 42, which shows more accurate SEEDs 

than those in Figure 30. 

 

Figure 41. Chained and post-stratification kernel SEED, raw. 

Note. Low bandwidths (.3 for N = 1,000; .4 for N = 200). 
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Figure 42. Chained and post-stratification equipercentile SEED, raw. 

Note. High frequency averaging (minimum frequency = 15 for N = 1,000 and 3 for N = 200). 

Conclusion 

Two of the most important conclusions from the results of this study’s varying the degree 

of loglinear presmoothing on NEAT equating results concern equating bias and the interaction of 

presmoothing and continuization. In regard to the former, the degree of presmoothing has a 

direct relationship to equating bias, but one such that only the simplest models produce bias 

levels that would have practical effects on equating functions. Reasonably complex models (ones 

preserving at least three moments in the marginal distributions, which is probably warranted in 

the majority of presmoothing situations) probably produce negligibly biased equating functions 

across many equating situations. In addition, extensive model-search evaluations (e.g., Holland 

& Thayer, 2000; von Davier et al., 2004) to obtain the closest possible reflection of an infinitely 

complex population distribution may not be needed to produce a negligibly biased equating 

function that is less variable than when estimated using raw data. 

The results from comparing how degrees of presmoothing work with continuization 

methods show that the kernel continuization method has some potentially important advantages 

over the percentile-rank method. In terms of raw, unsmoothed data, the kernel method can 

continuize even when there are scores with zero frequencies, while the percentile-rank method 

requires additional procedures to handle such scores (Kolen & Brennan, 2004). When the 

roughness of rounded formula-scored distributions is preserved in the smoothing model, the 

kernel method’s data-adaptive use of larger continuization bandwidths avoids some small 
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perturbations in the bias and SEE series that are inherent when the percentile-rank method is 

used. The tradeoff for the kernel method’s flexibility is that the method can introduce some bias, 

such as was found for the chained equating method. Across all of the degrees of presmoothing 

and sample sizes considered in this study, the kernel method’s bias appears to be small in 

relation to its flexibility, making the method especially well suited for considering how equating 

results are affected across degrees of presmoothing. 
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