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Abstract 

This study evaluated the impact of unequal reliability on test equating methods in the 

nonequivalent groups with anchor test (NEAT) design. Classical true score-based models were 

compared in terms of their assumptions about how reliability impacts test scores. These models 

were related to treatment of population ability differences by different NEAT equating methods. 

A score model was then developed based on the most important features of the reviewed score 

models and used to study reliability in a simulation study across a total of 45 measurement 

conditions (= 5 test and anchor reliability combinations × 3 population ability difference 

conditions × 3 sample sizes). Ten equating methods were considered: chained linear, chained 

equipercentile with raw and smoothed frequencies, Tucker, frequency estimation equipercentile 

with raw and smoothed frequencies, Levine observed using Angoff-estimated and the “correct” 

reliabilities based on the data generation model used in this study, and Levine true using Angoff-

estimated and correct reliabilities. The results were consistent with what is known about equating 

functions and their variability. Unequal and/or low reliability inflates equating function 

variability and alters equating functions when population abilities differ. 

Key words: Reliability, NEAT equating design, classical true-score model, classical congeneric 

model, generalizability theory model, chained methods, conditioning methods, Levine equating 

method 
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Introduction 

Reliability is often regarded as an important aspect of acceptable test equating. One of the 

basic requirements of test equating is that the test forms to be equated be equally reliable (Allen 

& Yen, 1979; Angoff, 1971; Dorans & Holland, 2000; Kolen & Brennan, 2004; Lord, 1980; 

Petersen, Kolen, & Hoover, 1989). High reliability is also desirable, though not usually described 

as a specific requirement of equating. 

The focus of this paper is the impact of reliability on equating for the nonequivalent 

groups with anchor test (NEAT) design. Reliability has particularly important implications for 

NEAT equating, where the objective is to separately identify the contributions of examinee 

ability and test form difficulty on test scores in order to adjust test scores for form difficulty 

differences. Reliability is first described in terms of its assumed role in different test score 

models. Next, the score models are described in terms of which equating model appropriately 

accounts for the score models’ population ability differences. Finally, reliability’s effects on 

equating functions are illustrated in a series of simulations. 

The Impact of Reliability on Scores 

There are many models of test scores, and reliability is given different roles in each 

model. This section compares two classical true score-based score models in terms of the roles 

they assign to reliability. The simplifying assumption that the tests’ and anchors’ true scores are 

perfectly related is made throughout this discussion and the paper. 

Classical True Score Theory 

In classical true score theory, observed scores are modeled as the sum of “truth” and 

“error,” 

X = T + E. (1) 

In (1), the expected score equals the true score, ε(X) = μX = T, and T and E are independent so 

that their covariance, σ(T,E), is zero. The independence assumption allows observed score 

variance to be expressed as the sum of true score and error variance, 

σ2(X) = σ2(T) + σ2(E).  (2) 

Reliability is defined as the ratio of true score variance to observed score variance, 
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2 2

( )
( ) ( )X

Trel
T E
σ

σ σ
=

+
. (3) 

The two models reviewed next retain the main characteristics of classical true score theory 

(ε(X) = T and σ(T,E) = 0). The unique and reliability-relevant aspects of these models are in how 

they structure T and E to specify test form difficulty and examinee ability effects (Table 1). 

Table 1 

Summary of Score Models and the Roles These Models Give to Reliability and Examinee 

Ability 

Model Test score  = [Test difficulty]  + [Examinee ability]  + [Error (unreliability)]

Classical 

congeneric model 
X       = [   δX       ]      + [  ( )

( )X
Xrel
T

σ
σ

T  ]  + [   EX         ] 

Generalizability 

theory 
X       = [   ∑iυi      ]    + [     ni t       ]           + [   ∑ iυti        ] 

Classical Congeneric Models 

Classical congeneric models (Brennan, 1990; Feldt & Brennan, 1989) specify the 

contributions of difficulty, ability, and reliability on congeneric test and anchor scores. Tests (X) 

and anchors (A) are modeled as 

X = (TX) + (EX) = (λXT + δX) + (EX), 

A = (TA) + (EA) = (λAT + δA) + (EA). (4) 

The λ terms are defined as effective test lengths (Brennan, 1990) for which this paper’s 

discussion makes use of a definition of effective test length as a reliability-dependent true score 

standard deviation (Angoff, 1953, 1971, pp. 114–115; Kolen & Brennan, 2004, pp. 112–113), 

2 2
2 2 2
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so that ( )
( )

=X X
Xrel
T

σλ
σ

. T is the test taker true score and underlies the tests’ and anchors’ true 

scores. The test and anchor are congeneric, meaning that their true scores, TX = ( )
( )X
Xrel
T

σ
σ

T + 

δX and TA = ( )
( )A
Arel
T

σ
σ

T + δA, are perfectly related. The δ terms in (4) are constants that 

determine the difficulty or ease of the test and anchor. The E terms have expectations of zero and 

are independent of T. Test and anchor reliabilities in the classical congeneric model are 

2
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rel T
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A rel A E T Erel T E
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σ σσ
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. (5) 

The classical part of classical congeneric theory is the assumption that error variances are 

proportional to effective test length:  

σ2(EX) = λXσ2(E) = 2( ) ( )
( )X
Xrel E
T

σ σ
σ

, 

σ2(EA) = λAσ2(E) = 2 ( )
( )Arel E
T

( )Aσ σ
σ

. (6) 

The classical congeneric model has two important implications for scores and equating. 

First, the proportionality of the error variances across the tests and anchors in (6) allows 

reliability and the test and anchor error variances to be estimated from the observed variances 

and correlations of the test and anchor scores (Angoff, 1953). Second, while the mean observed 

scores (μX) are equal to mean true scores (μTX), the population ability effect (μT) on mean 

observed scores is directly influenced by reliability, 
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μX = μTX = ( )
( )

+X T X
Xrel
T

σ μ δ
σ

, 

μA = μTA = ( )
( )

+A Trel
T A
Aσ μ δ

σ
. (7) 

For classical congeneric models, the role of unreliability on test scores is not only to 

influence the proportion of true score to observed score variance. Unreliability also biases the 

extent to which overall test taker abilities are visible on observed scores. 

Generalizability Theory 

Generalizability theory extends classical true score theory by using analysis of variance 

models to separately identify different sources of the error left undifferentiated by classical true 

score theory (Brennan, 2001; Cronbach, Gleser, Nanda, & Rajaratnam, 1972). One of the 

simplest designs is sufficient for identifying the role of reliability on scores of test takers (t) 

sampled from some population of interest-taking items (i) sampled from a universe of admissible 

items. The score on item i for test taker t (Xti) is modeled as 

Xti = t + νi + νti. (8) 

The t reflects test taker t’s ability and has expectation ε(t) = μt = ( )t i tiXε ε . The effect νi is 

interpretable as the influence of an easier or more difficult item, which introduces absolute error 

when decisions are made based on the absolute values of observed scores (e.g., classifications 

with respect to a cut-score). The effect νti is the interaction of test takers with items that is 

confounded with all other sources of error, which introduces relative error for decisions based on 

the relative standing of test takers on their observed scores. 

The error effects have zero expectations, 

εi(νi) = εt(νti) = εi(νti) = 0, (9) 

and are assumed to be uncorrelated with the other terms in the model and the effects of other 

items (i’ ≠ i), 

σ(tνti) = σ(νiνti) = σ(tνi) = σ(νiνi’) = σ(νtiνti’) = 0. (10) 
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To emphasize how the generalizability theory model in (8) relates to the classical 

congeneric model in (4), (8) can be used to express test takers’ scores (i.e., the sums of their ni 

item scores) on tests (Xt.) and anchors (At.) that are based on items (not necessarily the same) 

sampled from a common universe: 

, , , ,

. , , , ,
, , , ,

( ) ( )
i X i X i X i Xn n n n

t ti i X ti X i X i X ti X
i X i X i X i X

X X t n t ,ν ν ν= = + + = + +∑ ∑ ∑ ∑ν

,

n n n n

, 

, , , ,

. , , , ,
, , , ,

( ) ( )
i A i A i A i A

t ti i A ti A i A i A ti A
i A i A i A i A

A A t n tν ν ν= = + + = + +∑ ∑ ∑ ∑ν . (11) 

From (11), examinees take both X and A, so that test taker variance (i.e., true score 

variance) contributes to the observed variances of both X and A. Because the items on X and A 

are parallel, item effects for items in X ( ,i Xν  and ,ti Xν ) and A ( ,i Aν  and ,ti Aν ) both have variances 

 and . Observed score variances for the scores in (11) are therefore defined as 2 ( )iσ 2 ( )tiσ

σ2( .tX ) = 
,

2 2
2 2

, ,

( ) ( )( )
i X

i X i X

i tin t
n n
σ σσ

⎛ ⎞
+ +⎜ ⎟⎝ ⎠

, 

σ2( .tA ) = 
,

2 2

, ,

( ) ( )( )
i A

i A i A

i tin t
n n
σ σσ

⎛ ⎞
+ +⎜⎝ ⎠

2 2

⎟ . (12) 

Test and anchor reliabilities are defined as 

2

2
2

,

( )
( )( )

X

i X

trel
tit

n

σ
σσ

=
+

, 

2 ( )tσ
2

2

,

( )( )
A

i A

rel
tit

n
σσ

=
+

. (13) 

The reliability coefficients in (13) are identical to coefficient alpha and, for dichotomously-

scored items, the KR-20 reliability coefficient. Classical definitions of reliability focus 

5  



exclusively on relative error (νti) rather than absolute error (νi) for defining error variance. 

Reliabilities across congeneric tests and anchors differ only with respect to test and anchor 

lengths, a fundamental assumption that follows from the test taker population and item universe 

that is used in the decision studies that typically accompany generalizability analyses. 

Comparing the Classical Congeneric and Generalizability Theory Models 

Important distinctions exist between the classical congeneric and generalizability theory 

models that are relevant for equating. First, the source of test form difficulty differences is 

different for each model. For generalizability theory models, test form difficulty differences are 

assumed to be due to random samples of items that do not always have mean difficulties that 

converge to their expected value of zero (i.e., while εi(νi) = 0, 
in

i
i

ν∑  may not equal zero for every 

sample of items and therefore  is not necessarily equal to zero). In classical congeneric 

models, test form difficulty differences are described as systematic difficulty effects rather than 

as sampling effects (i.e., the δ terms are defined as constants rather than as random variables). In 

addition, reliability across tests and anchors composed of parallel items in generalizability 

models does not directly affect the scores’ extent of ability effects (changes in  and  

do not necessarily affect ε

2 ( )iσ

2 ( )tσ 2 ( )tiσ

t(Xt.) = ni,Xμt), while in classical congeneric models, reliability has a 

direct effect on a score’s extent of ability effects (μX = μTX = ( )
( )

+X T X
Xrel
T

σ μ δ
σ

). 

The Impact of Reliability on Equating 

The purpose of equating is to adjust the scores of test forms that are intended to be 

parallel for unintended differences in difficulty. NEAT equating matches nonequivalent 

administration groups on their ability, where ability differences are estimated from mean anchor 

score differences. When one of two test forms (X or Y) is given to an independent sample of one 

of two populations (P or Q) along with an anchor test (A), XP is equated to test YQ, and the 

anchor scores (AP and AQ) are used to account for ability differences in the populations. The 

following presentation focuses on contrasting the major equating methods’ treatment of 

population ability differences when scores are unreliable and follow either the classical 

congeneric model or the generalizability theory model. Some previous works have compared the 

equating methods that directly informed this section (Holland, 2004; Kolen & Brennan, 2004), 
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and other works have informed this section’s relating of the classical congeneric model to Levine 

equating (Brennan, 1990; Hanson, 1991). 

Four common linear equating methods in the NEAT design (Tucker, chained linear, 

Levine observed, and Levine true) all incorporate ability differences between populations P and 

Q in the XP–to-YQ equating function. Ability difference information is expressed as  

( )
(

( )
Q

ey AP AQ
Q

Y
A

)
σ

γ μ
σ

− μ . (14) 

Here, (14) shows that the population ability difference observed in P and Q’s anchor means is 

standardized according to AQ’s variability and scaled to YQ’s variability. The eyγ  is a term that is 

specific to each equating method and describes the unique way an equating method scales mean 

anchor score differences to YQ. 

Here, (14) is part of the chained linear equating function, 

( ) ( )
( ) ( )

( ) ( )
Q P

Y P P XP YQ
Q P

Y A
cl X X

A X
σ σ

μ μ
σ σ

= − + + Q
AP AQ

Q

σ(Y )
(μ - μ )

σ(A ) , (15) 

and the Levine true equating function, 

( ) ( )
( ) ( )

( ) ( )
YQ Q AP P

Y P P XP YQ
Q PAQ XP

rel Y rel A
lt X X

A Xrel rel

σ σ
μ μ

σ σ
= − + + YQ Q

AP AQ
QAQ

rel σ(Y )
(μ - μ )

σ(A )rel . (16) 

Also, (14) is used to estimate the mean of the unobserved YP for the Levine observed method 

YP YQμ μ= + YQ Q
AP AQ

QAQ

rel σ(Y )
w (μ - μ )

σ(A )rel .  (17) 

Finally, (14) is used to estimate the mean of the unobserved YwP+(1-w)Q for the Tucker method, 

expressed here with a YQ AQ correlation ( YQAQρ ) based on the assumption of congeneric tests and 

anchors ( YQAQ YQ AQrel relρ = ) 
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(1 )YwP w Q YQμ μ+ − = + Q
YQ AQ AP AQ

Q

σ(Y )
w rel rel (μ - μ )

σ(A ) . (18) 

Scaling Population Ability Differences in Terms of Observed Scores 

The chained linear method utilizes an observed score scaling of the population ability 

differences in (14) by setting eyγ =1 in (15). The chained method’s use of observed score variance 

rather than true score variance has the advantage of simplicity and of dealing with directly 

observable variances. When data follow a generalizability theory model, the observed score 

scaling is defensible because the observed score means are equal to average true ability 

( =μ(t i tiXε ε ) t in (8)). Observed score scaling of the difference in mean AP ( =AP iA tPnμ μ ) and mean 

AQ ( =AQ iA tQnμ μ ) can be expressed as 

2 2
2

2 2
2

( ) ( )( )
( )

( ) (1) (
( ) ( ) ( )( )

iY
iY iYQ

ey AP AQ iA tP iA tQ
Q

iA
iA iA

iY tQiYn tQ
n nY

n n
A iA tQiAn tQ

n n

σ σσ
σ

)γ μ μ μ μ
σ σ σσ

⎛ ⎞
+ +⎜ ⎟⎝ ⎠

− = −
⎛ ⎞

+ +⎜ ⎟⎝ ⎠

. (19) 

When data follow a classical congeneric model, the chained linear method’s eyγ =1 results in 

( ) ( ) ( )( )
( ) (1) (

( ) ( ) ( ) ( )
⎛ ⎞

− = + − −⎜ ⎟
⎝ ⎠

Q Q QP
ey AP AQ AP TP A AQ TQ A

Q Q P Q

Y Y AA
rel rel

A A T T
σ σ σσ

)γ μ μ μ δ μ δ
σ σ σ σ , 

( ) ( )( )
(

( ) ( ) ( )
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

Q P )Q
AP TP AQ

Q P Q

Y AA
rel rel

A T T
σ σσ

TQμ μ
σ σ σ . (20) 

If the anchor scores are very unreliable in a classical congeneric model, chained linear method’s 

observed score scaling of ability differences will reflect a biased estimate of true population 

ability differences, 
( ) ( )( ) ( )

( ) ( ) ( ) ( )
⎡ ⎤ ⎡

− ≤ −⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

Q QP P
AP TP AQ TQ TP TQ

P Q P

A AA A
rel rel

T T T T
σ σσ σ

μ μ μ
σ σ σ σ

⎤
⎥
⎥⎦Q

μ . 
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Scaling Population Ability Differences in Terms of True Scores 

The Levine true and observed methods utilize a true score scaling of the population 

ability differences in (14), meaning that they set eyγ  equal to the ratio of YQ and AQ’s root 

reliabilities, YQ

AQ

rel

rel
 in (16) and (17). The true score scaling of ability differences is especially 

defensible when the data follow a classical congeneric model. True score scaling of ability 

differences can be justified when the data follow a generalizability theory model under limited 

conditions. 

When the data follow a classical congeneric model, true score scaling in (14) results in 

( ) ( )( )
( )

( ) ( ) ( )

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

YQ Q QP
AP TP AQ TQ

Q P QAQ

rel Y AA
rel rel

A T Trel

σ σσ
μ

σ σ σ
μ . (21) 

When =  and APrel AQrel ( )PAσ = ( )QAσ , (21) can be written directly in terms of YQ’s true score 

variance as  

( )( )
( ) ( )

− TQTP
YQ Q

P Q

rel Y
T T

μμ
σ

σ σ . (22) 

When the data follow a generalizability theory model, true score standard deviations are 

the product of test length and the test taker variance component ( ( )iYn tQσ  and ( )iAn tQσ , as in (12), 

so that true score scaling essentially involves the lengths of AQ ( ) and YiAn Q ( ), iYn

2

2 2 2
2 2

2 2 2
2

2
2

( )
( ) ( ) ( )( ) ( )

( )
( ) (

( ) ( ) ( ) ( )( )
( )( )

+ + +⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ + +

+

iY
YQ Q iY iY iY

AP AQ iA tP iA tQ
QAQ

iA
iA iA

iA

tQ
tQi i tQitQ n tQrel Y n n n

n n
Arel tQ i tQin tQ

n ntQitQ
n

σ
σ σ σσ σ

σ
)μ μ μ

σ σ σ σσ
σσ

μ . (23) 

When  and  are large and/or  is relatively small (i.e., items and forms are long and/or 

do not differ widely in difficulty), 

iAn iYn 2 ( )iσ

2 2 2
2 2( ) ( ) ( )( ) ( )+ + ≈ +

i i i

i tit
n n n

σ σ σ
σ σ

tit , so that (23) becomes 
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( )
( ) (

( )
= − =iY

iA tP iA tQ iY tP tQ
iA

n tQ
n n n

n tQ
σ

)−μ μ μ
σ

μ . 

When scaling according to true score variance in generalizability theory, the ability difference is 

scaled using the ratios of the actual lengths of YQ and AQ ( iY

iA

n
n

). 

When scaling according to true score variance in classical congeneric theory, the ability 

difference is scaled using the ratios of the effective lengths of YQ and AQ (
( )

( )
YQ Q

AQ Q

rel Y

rel A

σ

σ
). For both 

score models, the average true score differences between the populations are potentially scalable 

according to how each theory defines the true score scale of YQ. 

Using Population Ability Differences in an Observed-Score Regression 

Tucker equating assumes that the linear regressions of observed test scores on observed 

anchor scores are test- and anchor-specific rather than population-dependent. Assumptions about 

true scores and errors do not directly inform the linear regression used by the Tucker method, 

though some correspondence to true score theory can be observed by noting that the correlation 

between congeneric tests and anchors is expressible in terms of test and anchor reliabilities. An 

estimate of the mean of YwP+(1-w)Q, (1 )YwP w Qμ + − , can be obtained, as in (18), by applying the 

synthetic population-weighted YQ|AQ regression at score μAP. When unreliability weakens the 

YQ|AQ regression, it essentially discounts the extent to which anchor score mean differences are 

incorporated in the Tucker equating function. This discounting is very different from the way the 

chained linear and Levine methods utilize the mean ability difference information in (14), and it 

is inconsistent with how reliability is assumed to affect scores generated from classical 

congeneric and generalizability theory models. 

Unreliability and Equating Bias 

From the previous section’s discussion, the impact of unreliability on equating bias can 

be understood as a misinterpretation of the anchor score information (i.e., using an equating 

method that incorrectly scales μAP-μAQ), as in (14). For example, if reliability’s effect was only 

on true score and error variances and not on ability effects, the Levine method would assume that 

true ability differences were bigger than the observed μAP-μAQ and overmatch on the ability 
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difference by setting YQ
ey

AQ

rel

rel
γ = . In contrast to the Levine method, the Tucker method would 

incorrectly discount the observed μAP-μAQ and undermatch for μAP-μAQ by applying a regression 

and setting ey YQ AQw rel relγ = . 

If reliability’s effect was to bias the true ability difference information observed in μAP-

μAQ (as in classical congeneric models), then the chained linear and Tucker methods would 

undermatch on the true ability in μAP-μAQ. The Tucker method would undermatch more so than 

the chained linear method because the former’s setting ey YQ AQw rel relγ =  would incorrectly 

reduce the observed ability difference more than the chained linear method’s setting 1eyγ = . If the 

observed test and anchor scores followed population-invariant linear regression models, Tucker 

would correctly utilize the regressions, and the chained linear and Levine methods would 

incorrectly overmatch on μAP-μAQ, the Levine method more so than the chained linear one 

because the Levine method’s incorrect setting YQ
ey

AQ

rel

rel
γ =  will likely magnify μAP-μAQ while the 

chained linear method’s setting 1eyγ =  will be closer to the Tucker method’s ey YQ AQw rel relγ = . 

Unreliability and Equating Standard Errors 

The impact of reliability on equating variability can also be understood in terms of the 

different equating methods’ versions of (14). Specifically, μAP-μAQ has a sampling variance that 

will impact equating standard errors. The Tucker method’s tendency to downweight μAP-μAQ 

based on the test-anchor correlation would also reduce equating standard errors. The Levine 

method’s tendencies to magnify μAP-μAQ based on the ratio of test and anchor root reliabilities 

would magnify equating standard errors. These statements correspond to previous findings of the 

relative ordering of equating function standard errors, where approaches that use the anchor as a 

conditioning variable (Tucker and frequency estimation equipercentile) are less variable than 

approaches that use the anchor to form a chain of links between two test forms (chained linear 

and chained equipercentile), which are in turn less variable than the Levine approaches (von 

Davier, Holland, & Thayer, 2004; von Davier & Kong, 2005; Kolen & Brennan, 2004; Wang, 

Lee, Brennan, & Kolen, 2006). To the extent that unreliability makes equating functions more 
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variable, it should do so more for the Levine and chained approaches than for the conditioning 

approaches. 

Method 

The issues of reliability on test equating results were explored in a simulation study. A 

data generation model was developed to reflect the following main features of classical true 

score theory, classical congeneric models, and generalizability theory applied to congeneric tests 

and anchors: 

• Observed scores are the sum of test-taker truth plus error. 

• The expected value of the observed scores is the true score. 

• The true scores are independent of error. 

• The correlation of the test and anchor true scores is 1. 

The data generation model was also developed in order to manipulate reliability 

independently of other test score features, including observed score variances, true population 

ability differences, observed lengths, and no-test-form difficulty differences. This conception of 

reliability was the basis for studying how equating method averages and standard errors were 

impacted across combinations of sample size, reliability, equating method, and population ability 

difference. 

Data Generation Model 

The XP, AP, AQ, and YQ scores were generated as sums of independently and normally 

distributed truth and error variables 

XP = TXP + EXP, 

AP = TAP + EAP, 

AQ = TAQ + EAQ, 

YQ = TYQ + EYQ. (24) 

In (24), the true scores in population P (TXP and TAP) and in population Q (TAQ and TYQ) were 

perfectly correlated, differing only in their variances ( 2 2
TXP TAPσ σ≠  and 2 2

TYQ TAQσ σ≠ ). The mean 

test and anchor scores were functions of actual lengths, 
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( ( ) ( )= =P XP XP PX T nε ε μ , ( ) ( )= =P AP AP PA T nε ε μ , ( ) ( )= =Q YQ YQY T n Qε ε μ , and 

( ) ( )= =Q AQ AQA T n Qε ε μ ). The test lengths (  and ) were set equal to 100 and the anchor 

lengths (  and 

XPn YQn

APn AQn ) were set equal to 30. The anchors were external to the tests. The variances 

of the true scores and error scores in (24) were manipulated to produce test and anchor scores of 

desired reliability levels (e.g., 
2

2 2

( )
( ) ( )

=
+

XP
XP

XP X

T
rel

T E
σ

σ σ P

2

, Equation 3), while achieving desired 

observed score variances (e.g., σ2(XP) = σ2(TXP) + σ2(EXP), Equation 2). The observed score 

variances were kept equal for the tests ( 2
XP YQσ σ= ) and the anchors ( 2 2

AP AQσ σ= ). To also 

consider equipercentile methods, the final scores were rounded to integer units and truncated into 

desired score ranges. The means and variances of the XP, AP, AQ, and YQ scores in (24) are 

summarized in Table 2. 

There are several implications of the data generation model in (24): 

• The standardized difference in anchor score means was equal to the standardized 

difference in the test means throughout the study. The equality of test and anchor 

standardized mean differences was an operationalized definition of no difficulty 

differences across test forms X and Y. In other words, no systematic difficulty effects 

were built into (24) and no standardized mean differences on test forms X and Y were 

present that could not also be observed in the standardized mean differences on the 

anchor. 

• The data generation model corresponded to the chained linear method’s observed 

score focus. Note that the expression of the chained linear equating function (15) 

based on this study’s data generation model’s constraints resulted in the identity 

equating function, the equating function that would be appropriate when test forms 

have no true difficulty differences: 

( ) ( )( )
( ) ( ) ( -

( ) ( ) ( )
Q QP

Y P P XP YQ AP AQ
Q P Q

Y YA
cl X X

A X A
)

σ σσ
μ μ μ μ

σ σ σ
= − + + , 

( )
( ) ( -

( )
Q )P XP YQ AP AQ
Q

Y
X

A
σ

μ μ μ μ
σ

= − + + , 
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because the test variances were kept equal and the anchor variances were also kept equal, and  

( )
( -

( )
Q )P YQ XP AP AQ
Q

Y
X

A
σ

μ μ μ μ
σ

= + − + , 

PX= , because ( ) ( )
YQ XP AQ AP

Q QY A
μ μ μ μ
σ σ
− −

= . 

Table 2 

Data Collection Design (Nonequivalent Groups With an Anchor Test Design), Equation 24, 

Where Score = T + E 

Population Score N μ ( = ε(T)/n) Score mean (= nμ) Score SDa

Population standardized ability difference = 0 

P X 100 .5000 50.000 18.0 

P A   30 .5000 15.000   5.4 

Q A   30 .5000 15.000   5.4 

Q Y 100 .5000 50.000 18.0 

Population standardized ability difference = .15 

P X 100 .5135 51.350 18.0 

P A   30 .5135 15.405   5.4 

Q A   30 .4865 14.595   5.4 

Q Y 100 .4865 48.650 18.0 

Population standardized ability difference = .30 

P X 100 .5270 52.700 18.0 

P A   30 .5270 15.810   5.4 

Q A   30 .4730 14.190   5.4 

Q Y 100 .4730 47.300 18.0 

a The score standard deviation is determined as 2 2( ) ( )Tσ σ+ E , where  and  are 

determined to obtain a desired reliability and observed score standard deviation. 

2 ( )Tσ 2 ( )Eσ
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The manipulation of test and anchor reliabilities, which are independent of test and 

anchor lengths, and of observed score variances was inconsistent with the assumptions of 

generalizability theory and the classical congeneric models. This inconsistency was deliberately 

created to set up situations where the Levine equating method using the classical congeneric-

based Angoff (1953) reliability estimates could be studied when the Angoff reliability estimates 

were incorrect. 

Population Standardized Ability Differences 

Three population standardized ability difference conditions were defined as standardized 

mean differences on the anchor scores for the P and Q. This study considered population 

standardized mean differences of 0, .15, and .30. For nonzero population standardized mean 

differences, P was more able than Q. 

Reliability 

Five combinations of test and anchor reliabilities are presented in Table 3, where 

reliabilities ranged from high (.9 and .8), medium (.7 and .6), to very low (.5 and .4). The 

reliabilities of anchors AP and AQ were always equal and always less than the reliabilities of tests 

XP and YQ. Two reliability combinations were such that the reliabilities of XP and YQ were 

unequal (reliability combinations of _ _ _XP AP AQ Yrel rel rel rel Q =.9_.5_.5_.7 and .7_.5_.5_.9). 

Unequal reliabilities among total tests mean that, technically, equating cannot be done. This 

study’s references to equating method results when the tests have unequal reliabilities are 

intended as descriptions for the performance of the equating methods under conditions where 

adequate equating is impossible. Holding the observed standard deviations for the test and 

anchors constant but varying reliability produced a situation where the Angoff (1953) reliability 

estimates were not accurate. Their extent of inaccuracy for the reliability conditions and 

observed score standard deviations in this simulation is shown in Table 4. 

Sample Size 

Three sample size conditions were considered for P and Q: NP = NQ = 500, 1,000, and 5,000. 

Equating Methods 

Ten NEAT equating methods were considered for equating XP to YQ through anchors AP 

to AQ. These are the linear methods described in the introduction (chained linear, Tucker, Levine 
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observed and Levine true) and the equipercentile counterparts of the linear methods (chained 

equipercentile with raw and smoothed frequencies and frequency estimation equipercentile with 

raw and smoothed frequencies). Loglinear smoothing (Holland & Thayer, 1987, 2000) was used 

with the equipercentile methods to preserve four moments on the test and anchor distributions 

and one cross-product moment between the tests and anchors. The Levine observed and true 

equating methods were considered using Angoff (1953) reliability estimates for a test and an 

external anchor and also using the correct reliabilities (i.e., the reliabilities by which the data 

were actually generated). 

Table 3 

Reliability Levels in Two Test Scores and Two Anchor Scores  

Combination XP AP AQ YQ

1 .9 .8 .8 .9 

2 .9 .6 .6 .9 

3 .7 .4 .4 .7 

4 .9 .5 .5 .7 

5 .7 .5 .5 .9 

Table 4 

Correct and Angoff-Estimated Reliabilities for the Conditions of This Study 

Combination XP AP AQ YQ

1 .9 (.93) .8 (.78) .8 (.78) .9 (.93) 

2 .9 (.87) .6 (.62) .6 (.62) .9 (.87) 

3 .7 (.74) .4 (.38) .4 (.38) .7 (.74) 

4 .9 (.83) .5 (.54) .5 (.45) .7 (78) 

5 .7 (.78) .5 (.45) .5 (.54) .9 (.83) 

Simulation 

For the simulation, 200 random datasets of XP, AP, AQ, and YQ scores were generated for 

particular combinations of sample size, reliability, and population standardized ability 

differences. The 10 equating methods were used to equate XP to YQ in each of these 200 datasets. 
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For each possible score on XP (0–100), averages and standard deviations of the 200 equated 

scores were computed for each equating method. These equating method averages and standard 

deviations (i.e., empirical standard errors) were then analyzed across equating method, sample 

size, reliability combination, and population standardized ability difference. 

Evaluation of Results 

Analysis of variances (ANOVAs) and source mean squares were used to identify the 

strongest influences on equating method averages and standard errors. Specifically, the equating 

method averages and standard errors of converted scores at an XP score of 50 were analyzed in 

15-factor ANOVAs composed of the 4 main effects (i.e., the 10 equating methods, 3 sample 

sizes, 5 reliability combinations, and 3 population standardized ability differences); 6 two-way 

interactions; 4 three-way interactions; and 1 four-way interaction. The percentages of total 

variance in these 15 effects gave a general indication of how each manipulated variable 

contributed to the variation in equating method averages and standard errors. The ANOVA 

results, like ANOVA results from any controlled study, directly reflect the levels of the variables 

considered in the study (which were selected because they spanned a range of situations 

encountered by this study’s authors in their equating work). Additional follow-up analyses for 

the equating method averages and standard errors were also conducted to describe the results not 

adequately captured by the ANOVA analyses. 

Results 

Equating Method Averages 

Table 5 presents the mean squares from the ANOVA of the 15 effects for the equating 

method averages for score XP = 50. These mean squares are ranked in terms of their proportion 

of variance explained on equating method averages. Over 99% of the variation in equating 

method averages is attributable to the main and interaction effects of equating method and 

population standardized ability differences and the interaction of these two effects with reliability 

combinations (equating, equating × ability, equating ×reliability, and equating × ability × 

reliability). The sample size effect on equating method averages was negligible. 
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Table 5 

Ranked Mean Squares and Their Percentage of Total Variation in Equating Method Averages  

Source DF Mean 
square 

% of total 
variance 

Cumulative 
% variance 

Equating 9 18.92 72 72 

Equating × ability 18 6.36 24 96 

Equating × reliability 36 0.62 2 98 

Equating × ability × reliability 72 0.21 1 99 

Ability 2 0.15 1 100 

Reliability 4 0.03 0 100 

Ability × reliability 8 0.03 0 100 

Ability × sample size 4 0.02 0 100 

Ability × reliability × sample size 16 0.01 0 100 

Reliability × sample size 8 0.01 0 100 

Sample size 2 0.00 0 100 

Equating × sample size 18 0.00 0 100 

Equating × reliability × sample size 72 0.00 0 100 

Equating × ability × reliability × 
sample size 

144 0.00 
0 100 

Equating × ability × sample size 36 0.00 0 100 

Total 449 26.35 100  

Note. XP = 50. 

The influences of population standardized ability differences and reliability combination 

are illustrated in Table 6 (population standardized ability difference = 0), Table 7 (population 

standardized ability difference = .15), and Table 8 (population standardized ability difference = 

.30), which give the equating method averages for each equating method across the five 

reliability combinations averaged across all of the sample sizes. The equating method averages 

are essentially equal to the criterion equated score of 50 across reliability conditions when 
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population abilities do not differ (Table 6). When abilities differ (Tables 7 and 8), the equating 

method averages become more dependent on equating method and also on reliability levels, so 

that the conditioning methods (Tucker, raw and smoothed frequency estimation equipercentile) 

give progressively lower equating method averages as reliability declines, the chained methods 

(chained linear, raw and smoothed chained equipercentile) change only slightly, and the Levine 

methods give progressively higher equating method averages as reliability declines. 

Table 6 

Equating Method Averages Across Reliability Combinations When P and Q Abilities Were 

Equal and Population Standardized Ability Difference = 0 

Reliability combination Equating method 

.9_.8_.8_.9 .9_.6_.6_.9 .7_.4_.4_.7 .9_.5_.5_.7 .7_.5_.5_.9 

Tucker 50.02 50.02 49.99 50.04 50.05 

Raw frequency 
estimation equipercentile 

50.02 50.03 49.96 50.06 50.06 

Smoothed frequency 
estimation equipercentile 

50.01 50.02 49.99 50.04 50.05 

Chained linear 50.01 50.02 50.00 50.05 50.05 

Raw chained 
equipercentile 

50.03 50.00 49.94 50.12 50.09 

Smoothed chained 
equipercentile 

50.00 50.00 49.99 50.08 50.04 

Levine observed-correct 
reliabilities 

50.01 50.02 50.00 50.06 50.05 

Levine observed-Angoff 
reliabilities 

50.01 50.02 50.00 50.06 50.05 

Levine true-correct 
reliabilities 

50.01 50.01 50.00 50.06 50.04 

Levine true-Angoff 
reliabilities 

50.01 50.02 50.00 50.06 50.05 

Note. XP = 50. 
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Table 7 

Equating Method Averages Across Reliability Combinations When P and Q Abilities Were 

Unequal and Population Standardized Ability Difference = .15 

Reliability combination Equating method 

.9_.8_.8_.9 .9_.6_.6_.9 .7_.4_.4_.7 .9_.5_.5_.7 .7_.5_.5_.9 

Tucker 49.60 49.27 48.75 48.98 49.00 

Raw frequency estimation 
equipercentile 

49.62 49.29 48.75 48.96 48.99 

Smoothed frequency 
estimation equipercentile 

49.63 49.28 48.80 48.99 49.04 

Chained linear 50.00 49.99 49.96 49.95 49.99 

Raw chained 
equipercentile 

50.01 50.00 49.98 49.97 49.97 

Smoothed chained 
equipercentile 

50.02 49.96 49.99 49.93 49.99 

Levine observed-correct 
reliabilities 

50.16 50.59 50.80 50.64 50.69 

Levine observed-Angoff 
reliabilities 

50.25 50.47 50.99 50.68 50.74 

Levine true-correct 
reliabilities 

50.16 50.59 50.78 50.58 50.71 

Levine true-Angoff 
reliabilities 

50.25 50.47 50.99 50.70 50.71 

Note. XP = 50. 

20  



Table 8  

Equating Method Averages Across Reliability Combinations When P and Q Abilities Were 

Unequal and Population Standardized Ability Difference = .30 

Reliability combination Equating method 

.9_.8_.8_.9 .9_.6_.6_.9 .7_.4_.4_.7 .9_.5_.5_.7 .7_.5_.5_.9 

Tucker 49.17 48.58 47.44 48.00 48.02 

Raw frequency estimation 
equipercentile 

49.19 48.58 47.49 48.00 48.04 

Smoothed frequency 
estimation equipercentile 

49.20 48.61 47.51 48.06 48.08 

Chained linear 49.99 50.02 49.96 49.97 50.00 

Raw chained 
equipercentile 

50.00 49.97 49.99 49.95 50.00 

Smoothed chained 
equipercentile 

49.98 49.99 49.96 49.95 49.99 

Levine observed-correct 
reliabilities 

50.32 51.24 51.68 51.37 51.41 

Levine observed-Angoff 
reliabilities 

50.49 51.00 52.08 51.47 51.50 

Levine true-correct 
reliabilities 

50.30 51.21 51.67 51.25 51.44 

Levine true-Angoff 
reliabilities 

50.49 51.00 52.09 51.51 51.45 

Note. XP = 50. 

Two additionally important findings could not be observed in the variability of the 

equating method averages at XP scores of 50. The averages for the Levine true equating method 

were substantially influenced by an interaction between the reliability estimation method and 

reliability levels. Figure 1 plots the difference in the Levine true correct equating method 

averages from the identity function for the population standardized ability difference of 0 and the 

two reliability combinations that featured different test reliabilities. The slope for the Levine true 
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with correct reliabilities equating method changed considerably, decreasing when YQ’s reliability 

was smaller than XP’s reliability (e.g., reliability combination .9_.5_.5_.7) but increasing when 

YQ’s reliability was larger than XP’s reliability (e.g., reliability combination .7_.5_.5_.9). Figure 2 

plots the difference in the averages of the Levine true with Angoff reliabilities equating method 

from the identity function. The slopes of the equating functions shown in Figure 2 were opposite 

and of relatively smaller magnitude than those of Figure 1.  
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Figure 1. Levine true with correct reliabilities equating method averages, identity 

population standardized ability difference = 0.  
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Figure 2. Levine true with Angoff reliabilities equating method averages, identity 

population standardized ability difference = 0. 
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Equating Method Standard Errors 

Table 9 presents the mean squares from the ANOVA of the 15 effects for the equating 

method standard errors for score XP = 50. These mean squares are ranked in terms of their 

proportion of variance explained by equating method standard errors. The strongest effects are 

sample size (90%), followed by reliability (7%), and equating method (2%). These three effects 

accounted for more than 99% of the total variance in equating method standard errors. Figures 3-

32 plot the standard errors conditional on scores across the five reliability combinations for each 

equating method and sample size condition when population standardized ability differences = 0. 

From these plots, the increase in equating method standard errors as sample sizes decrease is 

shown, as is the relatively smaller increase in equating method standard errors as reliabilities 

decrease. The conditioning methods (Tucker, raw, and smoothed frequency estimation 

equipercentile) in Figures 3–11 had equating method standard errors that were smaller and less 

responsive to reliability changes than the chained methods (Figures 12–20). The Levine methods 

in Figures 21–32 had relatively large equating method standard errors that were strongly 

influenced by reliability changes. The series of equating method standard errors are U-shaped for 

the linear methods and dog bone shaped for the equipercentile methods. Finally, the figures also 

show an interactive effect of reliability and sample size, which accounted for about 1% of the 

variation in equating method standard errors. The reliability × sample size interaction is that 

reliability had a much more visible effect on equating method standard errors for smaller sample 

sizes than for larger sample sizes. 

Discussion 

The purpose of this study was to evaluate the impact of reliability on test equating 

methods used in the NEAT design. An essential part of this evaluation was a description of 

reliability’s interaction with the influence of population ability differences on anchor means. 

Two test score models were summarized and compared in terms of their assumptions about the 

contribution of reliability and examinee ability on observed scores. The implicit assumptions of 

different equating methods for addressing reliability and ability differences were related to the 

assumptions made by different test score models, so any equating method might be inaccurate 

when test scores are not perfectly reliable, populations differ in ability, and the equating method 

incorrectly specifies the reliability-ability difference interaction. A simulation was conducted to 
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illustrate the influence of reliability on several equating methods across levels of population 

ability difference, anchor and test reliability levels, and sample size. 

Table 9 

Ranked Mean Squares and Their Percentage of Total Variation in Equating Method Standard 

Errors  

Source DF Mean 
square 

% of total 
variance 

Cumulative % 
variance 

Sample size 2 21.17 90 90 

Reliability 4 1.62 7 96 

Equating 9 0.55 2 99 

Reliability × sample size 8 0.17 1 99 

Equating × sample size 18 0.06 0 100 

Ability × reliability × sample size 16 0.02 0 100 

Ability × sample size 4 0.02 0 100 

Ability × reliability 8 0.02 0 100 

Equating × reliability 36 0.01 0 100 

Ability 2 0.01 0 100 

Equating × reliability × sample size 72 0.00 0 100 

Equating × ability × reliability 72 0.00 0 100 

Equating × ability × reliability × sample 
size 

144 0.00 
0 100 

Equating × ability 18 0.00 0 100 

Equating × ability × sample size 36 0.00 0 100 

Total 449 23.64 100  

Note. XP = 50. 
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Figure 3. Tucker equating method standard errors, population standardized ability 

difference = 0, NP = NQ = 500.  
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Figure 4. Tucker equating method standard errors, population standardized ability 

difference = 0, NP = NQ = 1,000. 
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Figure 5. Tucker equating method standard errors, population standardized ability 

difference = 0, NP = NQ = 5,000. 
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Figure 6. Raw frequency estimation equipercentile equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 
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Figure 7. Raw frequency estimation equipercentile equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 8. Raw frequency estimation equipercentile equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 9. Smoothed frequency estimation equipercentile equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100
Xp

SE
E(
x

5

)

rel_9_8_8_9 rel_9_6_6_9 rel_7_4_4_7
rel_9_5_5_7 rel_7_5_5_9

 

Figure 10. Smoothed frequency estimation equipercentile equating method standard 

errors, population standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 11. Smoothed frequency estimation equipercentile equating method standard 

errors, population standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 12. Chained linear equating method standard errors, population standardized 

ability difference = 0, NP = NQ = 500. 
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Figure 13. Chained linear equating method standard errors, population standardized 

ability difference = 0, NP = NQ = 1,000. 
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Figure 14. Chained linear equating method standard errors, population standardized 

ability difference = 0, NP = NQ = 5,000. 
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Figure 15. Raw chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 500. 
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Figure 16. Raw chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 17. Raw chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 18. Smoothed chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 500. 
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Figure 19. Smoothed chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 20. Smoothed chained equipercentile equating method standard errors, population 

standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 21. Levine observed with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 
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Figure 22. Levine observed with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 23. Levine observed with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 24. Levine observed with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 
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Figure 25. Levine observed with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 26. Levine observed with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 5,000. 
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Figure 27. Levine true with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 
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Figure 28. Levine true with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 1,000. 
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Figure 29. Levine true with correct reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 5,000.  
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Figure 30. Levine true with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 500. 
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Figure 31. Levine true with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 1,000.  
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Figure 32. Levine true with Angoff reliabilities equating method standard errors, 

population standardized ability difference = 0, NP = NQ = 5,000. 
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The results of the simulation are consistent extensions of what is known about the 

performance of equating methods. When reliabilities become lower and abilities differ, the 

chained, conditioning, and Levine methods disagree more with each other. In terms of their 

average performance and the data generation model used in this study, Levine true and observed 

overmatched on ability differences relative to the chained methods, while the conditioning 

methods undermatched on ability differences (also described in Holland, 2004; Livingston, 2004; 

MacCann, 1990). The use of a different data generation model would not be expected to change 

the relative ordering of equated methods’ equated scores, though it would change each method’s 

accuracy (see Wang et al., 2006, for a comparison based on an item response theory (IRT) data 

generation model where, like this study’s results, the conditioning methods were more biased 

and less variable than the chained methods). 

Changes in reliability had a visible effect on equating method standard errors that was 

relatively small when compared to the effect of changes in sample size. In general, the equating 

methods that use the anchor as a conditioning variable tend to exhibit smaller standard errors 

than do chained and Levine methods (von Davier et al., 2004; von Davier & Kong, 2005; Kolen 

& Brennan, 2004). The results of this study’s simulations showed that the standard errors of the 

conditioning methods are less influenced by levels of reliability compared to the chained and 

Levine methods. The equipercentile equating functions (e.g., raw and smoothed frequency 

estimation equipercentile and chained equipercentile) are more variable than their linear 

counterparts (e.g., Tucker and chained linear), but they exhibit responses to reliability changes 

that are similar to their linear counterparts. 

Levine Results 

There were subtle, but understandable, results noted for the Levine methods from the 

simulation. Levine true’s slope varied much more than the slopes of other equating methods 

when the test reliabilities differed because it was the only considered equating method that built 

reliability into its slope (16). As test reliabilities differed but observed score variances remained 

constant, scaling in terms of true score variability was very different from scaling in terms of 

observed score variability. Varying reliabilities while holding observed score variances constant 

is an unrealistic feature of this study’s generation model, however it is a potential explanation for 

the large difference in the Levine true method’s slope relative to other equating methods’ slopes 

(a phenomenon that is often observed and mulled over in equating practice). The more 
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sophisticated description for this difference is that true score methods such as the Levine true 

method are built to satisfy requirements such as second-order equity (i.e., the error variances of 

ey(x) and Y are equal at given true scores), and these methods can produce very different results 

from observed score methods that are built to match observed score variances (Tong & Kolen, 

2005). 

The incorporation of Angoff (1953) reliability estimates with the Levine methods had 

important effects on the slope for the Levine true method. Angoff reliability estimates are based 

on the classical congeneric model’s assumptions of perfectly correlated anchor and test true 

scores and effective test lengths. The assumptions about variances being proportional to 

reliability were not closely followed in this study, where observed score variances were held 

constant as reliabilities were altered. Table 4 shows this study’s generated (correct) reliabilities 

and Angoff estimates for the five reliability combinations. When a more reliable (XP=.9) test is 

equated to a less reliable (YQ=.7) test and the test and anchor observed score standard deviations 

of this study are used (Table 2), the Levine true function’s slope (from 17) is 

. .7(18) .5(5.4) . .7(18) . .7 .88
.5(5.4) .9(18) .9(18) .9

= = =  using correct reliabilities (Figure 1) and 

. .78(18) .54(5.4) .78 .54 1.06
.45(5.4) .83(18) .45 .83

= =  using Angoff reliabilities (Figure 2). The reversed and 

smaller magnitude slopes of the Levine true method with Angoff reliabilities rather than correct 

reliabilities is directly attributable to the extent of inaccuracy in the Angoff reliabilities. 

Equating method standard errors were affected by whether correct reliabilities were over 

or underestimated by the Angoff (1953) reliabilities (Table 4). Levine observed’s equating 

functions were generally more variable with Angoff reliabilities than with correct reliabilities, 

except when both total tests’ reliabilities were underestimated (the reliability combination of 

.9_.6_.6_.9). the Levine true method’s equating functions became more variable when the 

Angoff reliability estimates were used and they overestimated YQ’s reliability (reliability 

combinations of .9_.8_.8_.9, .7_.4_.4_.7, and .9_.5_.5_.7) and became less variable when 

Angoff estimates underestimated YQ’s reliability (reliability combinations of .9_.6_.6_.9, and 

.7_.5_.5_.9). The reliability estimation method influences the variability of Levine equating 

functions through the extent of magnification in μAP-μAQ , setting YQ
ey

AQ

rel

rel
γ =  in (14) for (16) and 
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(17). An underestimated YQ reliability and/or an overestimated AQ reliability resulted in less 

magnification of μAP-μAQ and its sampling variability on the final Levine functions, whereas an 

overestimated YQ reliability and/or an underestimated AQ reliability resulted in more 

magnification of μAP-μAQ and its sampling variability on the final Levine functions. 

Implications 

There are important implications for studying reliability as a relationship between score 

models and equating methods. When data are unreliable, the effect of population ability 

differences on test scores depends on the assumed score model, and different score models are 

compatible with some equating methods but not others. In unreliable data, an equating 

practitioner may have to make a nonempirical choice among models based on how reliability 

impacts the test scores, whether unreliability reduces (the Tucker and frequency estimation 

methods), magnifies (the Levine method) or does not affect (the chained linear method) the 

extent to which examinee ability influences test scores. The major basis for this choice may be 

some interpretative evaluation of the quality of the anchor scores for estimating ability effects on 

test scores. 

Relationships between equating methods and score models not considered in this paper 

can potentially be understood in terms of this paper’s discussion. Manipulating reliability in the 

classical congeneric model has a somewhat analogous effect in terms of manipulating reliability 

in a two-parameter IRT model, essentially that reliability reductions reduce the extent to which 

examinee ability is visible on observed scores. For example, if reliability were reduced in a two-

parameter logistic model through reducing the αi parameter in 

exp[ ( )]( 1| , , )
1 exp[ ( )]

i t i
it t i i

i t i

P X α θ β
θ β α

α θ β
−

= =
+ −

, (25) 

where tθ , iβ , and iα  have their usual meanings as test-taker trait level and item difficulty and 

discrimination parameters, the result would be that the difference between test taker ability and 

item difficulty would be less visible in the IRT-based observed item and test characteristic 

curves. Levine’s magnification of anchor score mean differences may therefore be somewhat 

appropriate for IRT-generated data in the same way that Levine is appropriate for classical 

congeneric models. This suggestion has some support from results showing that IRT and Levine 
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equating methods cluster together when there are population ability differences (Livingston, 

Dorans, & Wright, 1990), and other IRT-simulated results (Wang et al., 2006) show the same 

bias orderings between chained linear and conditioning equating methods described in the 

introduction. 

Another implication of this study is that more complicated interactions of reliability with 

test score characteristics can potentially be studied with respect to test equating through the use 

of more complex versions of the score models considered in this paper. This paper was 

concerned with the very simple case of tests and anchors with perfectly correlated true scores 

and examinee populations with no systematic subpopulations. In actual data, low and/or unequal 

reliability coincides with lack of population invariance (Dorans & Holland, 2000; Flanagan, 

1951; Holland, Liu, & Thayer, 2005; Kolen, 2004) and imperfectly correlated true scores. Group 

effects and construct differences could be built into many different score models, and then these 

effects could be studied in terms of their implications for equating. Such effects violate equating 

requirements other than the requirement of equal test reliabilities. The study of equating 

methods’ behavior with respect to combinations of equating requirement violations is an 

important way of relating degrees of equating violations to degrees of equating inadequacy. 
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