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Abstract

Well-known numerical integration methods are applied to item response theory (IRT) with special

emphasis on the estimation of the latent regression model of NAEP. An argument is made that

the Gauss-Hermite rule enhanced with Cholesky decomposition and normal approximation of

the response likelihood is a fast, precise, and reliable alternative for the numerical integration in

NAEP and in IRT in general.

Key words: Gauss-Hermite quadrature, adaptive integration, latent regression, item reponse

theory, EM algorithm
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1 Introduction

Marginal item response theory (IRT) inherently involves integration. The goal in this study

is to obtain fast and accurate computation of integrals appearing in any normal population IRT

model. The log-likelihood of these models takes the form

L =
N∑

i=1

log
∫

RK

P (yi | θ, β)ϕ(θ;µ,Σ)dKθ, (1)

where

Li(θ) := P (yi | θ, β) =
J∏

j=1

P (yij |θ, βj) (2)

is the likelihood of the response yi of student i = 1, . . . , N given the ability θ and item parameters

βj for item j = i, . . . , J . Also, y assumes the value of 1 for a correct response and 0 otherwise.

Moreover, the population distribution is multivariate normal by our main underlying assumption:

ϕ(θ;µ,Σ) =
1

(2π)k/2
√

det(Σ)
e−

1
2
〈〈θ−µ Σ−1 θ−µ〉〉. (3)

Here, µ is the common population mean and Σ is the common population covariance of the

subscales.

The estimation of this model will include, independently of the estimation method chosen, the

computation of integrals in the form

E(g) =
∫

RK

g(θ)P (yi | θ, β)ϕ(θ;µ,Σ)dKθ, (4)

where g is any smooth function.

Since the integrand has a special Gaussian factor, Gauss-Hermite methods for numerical

integration lend themselves naturally for the computation of the integral in (4). The applicability

of these methods are actively investigated and well-documented (Genz & Kass, 1998); in statistical

practice, however, they are seldom used (Genz & Kass, 1997).

The most frequently used method for numerical integration—even in widely used IRT

programs such as Parscale (Muraki & Bock, 1999)—employs a trivial rectangle rule with a fixed

number of quadrature points over a fixed ability range. Apart from being the least sophisticated

numerical integration tool, there are several obvious drawbacks to the usual implementations of

the method. Often, the number of quadrature points and the range of the integration is fixed.

This, in general, prohibits evaluation of the convergence of the numerical integral. In addition, the
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sampling of the function based on a fixed grid can become insufficient when the essential mass of

the function is concentrated over a region that is commensurate with the size of the grid. A region

of essential mass is a set E so that the difference between
∫

R f(x)dx and
∫
E f(x)dx is negligible.1

The choice of the integration domain can easily jeopardize computational precision as well. If a

sizable nonzero mass of the function lies outside the area of integration, the rectangle rule will

loose significant contribution. In IRT estimations, it is not always transparent how to set up the

parameters of the numerical integration to avoid the above mentioned problems. By performing

a sequence of runs on the same data sets with different integration parameters, one may gain a

good understanding of the efficiency of the numerical integration. This time-consuming process is

seldom applied in practice, however. Many testing programs run on a tight time line, and they

rarely find the time to do dozens of runs just to confirm that the numerical integration is adequate.

Even a well-respected testing program such as the National Assessment of Educational

Progress (NAEP) carries the burden of the rectangle rule (Allen, Donoghue, & Schoeps, 2001).

To complicate matters further, in NAEP it is not unusual to have K = 5 subscales, resulting in

five-dimensional numerical integrals. With the midpoint rule, the computations quickly become

unfeasible. The current practice is to apply the rectangle rule only in Dimensions 1 and 2 and to

resort to Laplace approximation for higher dimensional computations (Thomas, 1993). The main

drawback of the Laplace approximation is that its precision cannot be easily adjusted. In NAEP,

the second order Laplace approximation is hard-coded into to existing software and even that

already contains Order 4 derivatives of the response likelihood. Due to the size of the data sets

in NAEP, a sequence of runs to evaluate the precision of numerical integration does not appear

feasible even in low dimensions.

There are, of course, drawbacks to the Gauss-Hermite rules as well. They are also prone to

any imprecision caused by fixed number of quadrature points. This can be avoided, however,

by performing an extra analysis of the integrand, especially by finding the location of any sharp

peak, as can be done with any other method. The main property of the Gauss-Hermite rule of

being exact on the whole of RK for polynomials up to a certain degree makes it the ideal choice

for numerical integration for many problems where polynomial approximation is suitable.
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2 Numerical Integration

In normal population marginal IRT, the implemented numerical integration procedures aim

to compute multidimensional integrals of the form

I :=
∫

RK

f(x)e−〈〈x x〉〉dKx, (5)

where f is a smooth function. The rectangle rule approximates the integral by

I ∼=
∑

q∈QP
f(q)e−〈〈q q〉〉∆q, (6)

where QP = {q1, . . . , qQ}K with qi = qmin + qmax−qmin

Q−1 (i−1), (i = 1, . . . , Q). ∆q =
(

qmax−qmin

Q−1

)K
.

An example would be [−4, 4] or [−5, 5] with Q = 41.

Gaussian quadrature (Stoer & Bulirsch, 2002, pp. 171–180) provides a tool that makes it

possible to compute higher dimensional integrals without compromising computational precision.

With the Rth Gauss-Hermite quadrature, the integral is approximated as

I ∼=
∑

q∈QPK
GHR

f(q)wq, (7)

where QPGHR
is the set of the zeros of the Rth Hermite polynomial HR and QPK

GHR
is the Kth

Cartesian power of QPGHR
. The weights are given by wq = wq1wq2 . . . wqK , where

wqi =
2R−1R!

√
π

R2HR−1(qi)2
. (8)

Table 1 contains the minimal Gauss-Hermite quadrature point for some choice of R. It seems

that the choice R = 12 would result in coverage approximately the same as the usual [−4, 4] used

in IRT. This comparison could be misguided, though, since the Gauss-Hermite approximation of

I is exact on the whole of RK if f is a polynomial with degree at most 2R − 1. That is, with

R = 12 as long as the approximation of f with a Degree 23 polynomial is reasonable the integral

is well-approximated by the Gauss-Hermite quadrature on the whole of RK .

2.1 Gauss-Hermite Integration With Cholesky Decomposition

To be precise, it has to be noted that the functions to be integrated assume a form slightly

different from (5), since the integration weight is not e−〈〈x x〉〉 but the multivariate normal density

1
(2π)k/2

√
det(Σ)

e−1/2〈〈x−µ Σ−1 x−µ〉〉.
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Table 1

Minimal Gauss-Hermite Quadrature Points and Weights

R qmin wqmin

6 -2.35 4 · 10−3

8 -2.93 2 · 10−4

10 -3.44 7 · 10−6

12 -3.89 3 · 10−7

14 -4.30 9 · 10−9

16 -4.69 3 · 10−10

The simplest approach uses the factorization

e−1/2〈〈x−µ Σ−1 x−µ〉〉 = e−1/2〈〈x−µ Σ−1 x−µ〉〉+〈〈x x〉〉e−〈〈x x〉〉

and applies the Gauss-Hermite quadrature for f(x)e−1/2〈〈x−µ Σ−1 x−µ)+〈〈x x〉〉. Another way

would be to perform a change of integration variable by first finding a decomposition 2Σ = TT t

and introducing z = T−1(x− µ). Then, for the integral,∫
RK

f(x) det(Σ)−1/2e−1/2〈〈x−µ Σ−1 x−µ〉〉dKx =
∫

RK

f(Tz + µ)e−〈〈z z〉〉dKz. (9)

For the positive definite symmetric matrix 2Σ, many decompositions of the form 2Σ = TT t exist.

Any such T can be used here. The special case, when T is upper triangular, the decomposition is

called Cholesky decomposition (Stoer & Bulirsch, 2002, p. 204).

2.2 Using Normal Approximation to Response Likelihood

If the number of items is relatively large, it is possible that the response likelihood P (yi | θ, β)

has a sharp peak at a location depending on the item parameters β and the item responses yi. An

integration technique based on finite number of function evaluations can then fail to sufficiently

capture the behavior of the response likelihood. While this is very uncommon in NAEP, for which

the number of items per subscale rarely exceeds 10, this issue is addressed here for the sake of

completeness.2 A method more cognizant of the actual behavior of the response likelihood may be

computationally more efficient even for tamer response likelihoods.

4



One way of taking the peak of the response likelihood into consideration first finds the modal

multivariate normal approximation

P (yi | θ, β) ∼= ϕ(θ; θm
i ,Σm

i ), (10)

where θm
i is the mode of P (yi | θ, β) and Σm

i is the modal covariance matrix of P (yi | θ, β). More

precisely, θm
i is obtained as the solution of

∂P (yi | θ, β)
∂θ

= 0, (θ =?), (11)

and the modal covariance is defined by

Σm
i =

(
−∂2 log P (yi | θ, β)

∂θ2

)−1
∣∣∣∣∣
θ=θm

i

. (12)

For an arbitrary smooth function g(θ), the integration proceeds as follows:

E(g)i =
∫

RK

g(θ)
P (yi | θ, β)

E(Li)
ϕ(θ; Γxi,Σ)dKθ

=
∫

RK

g(θ)
P (yi | θ, β)

E(Li)ϕ(θ, θm
i ,Σm

i )
ϕ(θ; θm

i ,Σm
i )ϕ(θ; Γxi,Σ)dKθ

=
∫

RK

g(θ)
P (yi | θ, β)

E(Li)ϕ(θ; θm
i ,Σm

i )
Ciϕ(θ; θp

i ,Σ
p
i )d

Kθ,

where

Σp
i =

(
Σ−1 + (Σm

i )−1
)−1

, (13)

θp
i = Σp

i (Σ
−1Γxi + (Σm

i )−1θm
i ), (14)

and

Ci =

√
|Σp

i |
(2π)K/2

√
|Σm

i ||Σ|
. (15)

Then, one finds the Cholesky decomposition TiT
t
i = 2Σp

i and performs the change of variables

zi = T−1
i (θ − θp

i ), θ = Tizi + θp
i (16)

to obtain the Gauss-Hermite rule

E(g)i
∼= Ci

∑
q∈QPK

GHR

g(Tiq + θp
i )

P (yi|Tiq + θp
i , β)

E(Li)ϕ(Tiq + θp
i , θ

m
i ,Σm

i )
wq. (17)

When the approximation (10) is good, then the function P (yi | θ,β)
ϕ(θ;θm

i ,Σm
i ) is approximately constant in

the range for which the normal integration weight ϕ(θ; θp
i ,Σ

p
i ) is not negligible.
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Because this computation uses additional information about the integrand, that is, the

method adapts itself to the integrand, the technique is sometimes referred to as adaptive numerical

integration.

3 Results

3.1 Latent Regression

The above described integration methods are compared using the framework of NAEP’s latent

regression model (Allen et al., 2001; Mislevy, 1984). In short, the goal of the latent regression

estimation is to find regression coefficient matrix Γ̂ and scale covariance matrix Σ̂ so that

L =
N∑

i=1

log
∫

RK

P (yi | θ, β)ϕ(θ; Γxi,Σ)dKθ, (18)

is maximized. The subtle difference between (18) and (1) is that the latent regression model uses

group means Γxi instead of the common population mean µ of (1). Here, xi ∈ RM is the vector

of known background variables and Γ ∈ MK,N (R) is the matrix of regression coefficients. The

implemented estimation method is the EM-algorithm. Again, interested readers are referred to

Mislevy (1984) for the exact definition of the latent regression model and for the derivation of the

estimation procedure.

The efficacy of numerical integration is very important here, because the integrations have to

be carried out in higher dimensions for hundreds of thousands of response patterns. Finally, the

list of the three functions for which numerical intergations should be computed is given as follows:

g1(θ) = 1, g2(θ) = θ, g3(θ) = θlθm, (1 ≤ l, m ≤ K). (19)

3.2 QP41 Versus Gauss-Hermite

Table A3 provides a comparison of the two approaches to the Gauss-Hermite method (with

and without Cholesky decomposition, but without normal approximation) and the current NAEP

practice in terms of running time and precision. This comparison uses a 20-item, two-subscale test

(10 items each) with 20 background variables and 500 students. The two-parameter logistic IRT

model was utilized. More precisely,

P (yij |θ, βj = (aj , bj)) =
1

1 + e(1−2yij)aj(θ−bj)
. (20)
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In accordance with current NAEP practice, item parameters were kept constant throughout the

estimation; in this case, they were kept at their true value.

The listed running time is in seconds, but running times can only be used as relative to

one another at best because they depend on the given computing environment. Precision is

measured as the distance of the given covariance matrix estimate from the most precise estimate

obtained here. This was assumed to be the one obtained from the Cholesky decomposition with

16 quadrature points and 200 EM cycles. Note that this comparison is not performed to decide

which method is more precise because that is clear from their construction. The main reason for

the comparison is to identify the magnitude of the running time and precision differences.

There are several observations concerning Table A1:

• The two Gauss-Hermite methods (factorization and Cholesky-decomposition-based) are very

close to one another in terms of both running time and precision. The only sizable difference

can be observed when only a few quadrature points are used because then the precision of

the factorization method suffers significantly.

• The current NAEP practice (QP41) achieves the same precision as the most precise Gauss-

Hermite, but this comes with a serious running time penalty— 24.7% more time is needed to

obtain the results of comparable precision.

• There is a significant difference between the current NAEP estimates with quadrature range

[−4, 4] and [−5, 5].

• To keep the presentation transparent, the threshold (the distance between estimates in con-

secutive iteration steps) is omitted from Table A3. In both the Gauss-Hermite and QP41

schemes, it is almost independent of the number of quadrature points and the method used.

The dependence on the number of EM cycles is as follows: t10 = 3.5 · 10−3, t30 = 2.5 · 10−4,

t60 = 6.2 · 10−6, t200 = 5.0 · 10−13. Using a not so unusual convergence criterion (t = 0.005),

all of the parameter estimates could have been kept. This may appear to be a too optimistic

approach, keeping in mind that the estimates after 10 EM cycles are still 0.024 away from

the best estimate.

While it is always useful to have numerical evidence behind any statements, it is worthwhile

to emphasize the obvious pitfalls of the QP41 approach with fixed quadrature range. The main
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effects of the fixed quadrature range are that, first, it cuts out sizable contributions from the item

likelihood when the range is not large enough. Second, the rectangle rule essentially redefines the

response likelihoods to be step functions. The estimated parameters reflect convergence of the

model with respect to these new response function alternatives. That is, without changing the

number of quadrature points, there is no chance of improving the estimates.

The Gauss-Hermite rule replaces the response likelihoods with their polynomial

approximations of appropriate degree (based on the given number of function evaluations), which,

while able to produce much better approximations, may not always be desirable, either.

It is this understanding of the effect of the redefinition of the response likelihood that explains

why the quality of convergence does not depend on the chosen numerical integration method.

From the point of view of the convergence of the EM algorithm, it is almost irrelevant which

approximation is chosen: The method will converge to a solution relative to the given response

likelihood. This response likelihood is determined by the subtle interaction of the logistic IRT

model and the numerical integration method. The numerical integration method is deemed better

when this approximation is more appropriate.

3.3 Normal Approximation With Cholesky Method

Table A2 compares the two Cholesky-decomposition-based Gauss-Hermite methods (with or

without normal approximation) in terms of their running time and precision. The distance again

is defined as the distance of the given covariance matrix from the best estimate obtained, which

in this case was the normal-approximation-based estimate obtained after 200 EM cycles with 16

quadrature points. The normal approximation method requires fewer quadrature points to reach

convergence than its standard counterpart. However, due to the increased number of function

evaluations, each step requires more time. This comparison shows that the two methods reaches

the same level of precision in about the same time. The convergence thresholds are independent

of both the method and number of quadrature points used; they depend only on the number

of EM cycles similar to what was observed before. The running time comparison is relatively

weak because there were no steps taken to optimize the underlying algorithms. There will be

a significant cut in running time when the above described algorithms are implemented with

optimization.

Next, to test the efficacy of the normal approximation model, the number of items were
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increased. This change makes the peak of the response likelihoods sharper and the normal

approximation more favorable.

Table A3 displays results from a run where the data is similar to the one used before, with

the only exception being the number of items, which is now changed to 80. This setup speeds up

the convergence, and the orders of the thresholds are t10 = 10−3, t30 = 10−7, t60 = 10−13, and

t200 = 10−16.

The presence of sharp peaks in the likelihood makes the estimation intuitively more dependent

on the number of quadrature points. To capture this dependence better, computations with

a larger number of quadrature points (18-24) were performed as well. Since the convergence

was considerably faster in this case, only 60 EM cycles were run when the number of

quadrature points was large. Accordingly, to compute precision, the normal approximation and

Cholesky-decomposition-based run with 24 quadrature points and 60 EM cycles were chosen as a

reference.

Table A3 shows the following:

• The normal approximation performs well even with four quadrature points.

• Without the normal approximation, one has to increase the number of quadrature points to

reach reasonable convergence.

• Monitoring the convergence threshold does not provide sufficient information about the pre-

cision because this latter is independent of the integration method, which determines the

precision along with the number of EM cycles.

4 Conclusion

Numerical integration is an important but sometimes neglected part in IRT estimation.

Numerical precision and running time carry equal importance when evaluating the merits of

any numerical integration method. This paper showed that the least sophisticated rectangle

method is favored undeservedly and its drawbacks can be easily identified. It also showed that the

normal-approximation-based Gauss-Hermite rule coupled with Cholesky decomposition (NGHC)

can be successfully applied in IRT computations. Some issues, however, call for discussion. First,

the normal approximation method requires finding the mode of the response likelihood. The

mode, however, does not always exist. The probability of a flat response likelihood increases as
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the number of items decreases. One may replace the modal normal approximation with a generic

normal approximation for a flat response likelihood, however, without losing precision. To justify

this, it is important to note that the method does not replace the response likelihood with its

modal normal approximation. The modal normal approximation is only used to tame the response

likelihood without actually changing the integrand in question.

Second, while the NGHC is capable of capturing the behavior of the response likelihood,

when the number of quadrature points is fixed, it is still necessary to assess the convergence of the

numerical integrals. One operationally feasible way would be to draw a small sample of responses

that is representative of the whole assessment prior to the full analysis and to closely analyze the

convergence of the typical integrals of the estimation using this sample. Assuming that students

in one assessment respond to fairly comparable set of items (otherwise, the assessment would have

other, more serious problems), this sampling should provide, very quickly, sufficient information

about the necessary number of quadrature points needed to reach accuracy and precision targets.
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Notes

1 The precision goal of the specific computation can always serve as a guideline to make the

definition of negligible more precise. Note that the notion of essential mass is closely related to

that of the confidence region.
2 Note that, in general, the more items, the sharper the peak.
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Appendix

Table A1

Running Time and Precision of the EM-Algorithm With 10, 30, 60, and 200 Cycles

Time Distance
QP F Chol F Chol

10 EM cycles
4 18 17 2.5 · 10-1 3.0 · 10-2

6 30 28 5.4 · 10-2 2.7 · 10-2

8 46 43 2.0 · 10-2 2.4 · 10-2

10 68 63 2.3 · 10-2 2.4 · 10-2

12 94 88 2.4 · 10-2 2.4 · 10-2

14 124 116 2.4 · 10-2 2.4 · 10-2

16 160 150 2.4 · 10-2 2.4 · 10-2

41a 1673 2.2 · 10-2

41b 1645 2.4 · 10-2

30 EM cycles
4 52 52 2.5 · 10-1 1.1 · 10-2

6 85 88 6.2 · 10-2 7.2 · 10-3

8 132 131 1.1 · 10-2 2.5 · 10-3

10 189 190 1.8 · 10-3 1.9 · 10-3

12 261 263 1.8 · 10-3 2.0 · 10-3

14 346 345 1.9 · 10-3 2.0 · 10-3

16 444 450 2.0 · 10-3 2.0 · 10-3

41a 4998 3.1 · 10-3

41b 4913 2.0 · 10-3

60 EM cycles
4 103 104 2.5 · 10-1 9.5 · 10-3

6 167 170 6.2 · 10-2 5.6 · 10-3

8 256 262 1.2 · 10-2 9.4 · 10-4

10 373 382 2.0 · 10-3 1.0 · 10-4

12 514 527 2.9 · 10-4 6.3 · 10-5

14 680 699 5.0 · 10-5 6.2 · 10-5

16 873 898 5.4 · 10-5 5.8 · 10-5

41a 9999 3.8 · 10-3

41b 9833 5.2 · 10-5

200 EM cycles
4 339 349 2.5 · 10-1 9.4 · 10-3

6 550 568 6.2 · 10-2 5.6 · 10-3

8 848 879 1.2 · 10-2 9.1 · 10-4

10 1227 1275 2.0 · 10-3 1.1 · 10-4

12 1693 1764 3.2 · 10-4 1.8 · 10-5

14 2238 2334 4.8 · 10-5 5.7 · 10-6

16 2873 2994 7.9 · 10-6 N/A
41a 33418 3.8 · 10-3

41b 37768 5.7 · 10-5

Note. Time is in seconds. F = factorization, Chol = Cholesky decomposition.
a On [−4, 4]. b On [−5, 5].
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Table A2

Running Time and Precision of the EM-Algorithm

With 10, 30, 60, and 200 Cycles

Precision Time

EM 10 30 60 200 200

QP Ch NCh Ch NCh Ch NCh Ch NCh Ch NCh

4 8.1 · 10−2 6.3 · 10−2 1.6 · 10−2 5.4 · 10−3 1.1 · 10−2 3.7 · 10−3 1.1 · 10−2 3.7 · 10−3 447 832

6 6.6 · 10−2 6.3 · 10−2 9.3 · 10−3 4.2 · 10−3 7.7 · 10−3 2.0 · 10−4 7.7 · 10−3 2.3 · 10−4 665 1551

8 6.4 · 10−2 6.4 · 10−2 5.5 · 10−3 4.3 · 10−3 1.9 · 10−3 9.4 · 10−5 1.9 · 10−3 3.3 · 10−5 994 2565

10 6.4 · 10−2 6.4 · 10−2 4.6 · 10−3 4.3 · 10−3 1.0 · 10−3 9.7 · 10−5 9.7 · 10−4 6.7 · 10−6 1414 3849

12 6.4 · 10−2 6.4 · 10−2 4.3 · 10−3 4.3 · 10−3 1.9 · 10−4 9.8 · 10−5 1.6 · 10−4 1.2 · 10−6 1929 5428

14 6.4 · 10−2 6.4 · 10−2 4.3 · 10−3 4.3 · 10−3 9.5 · 10−5 9.8 · 10−5 5.4 · 10−6 1.8 · 10−7 2535 7306

16 6.4 · 10−2 6.4 · 10−2 4.3 · 10−3 4.3 · 10−3 1.0 · 10−4 9.8 · 10−5 7.1 · 10−6 N/A 3298 9479

Note. Time is in seconds. Ch = Cholesky, NCh = Normal Approximation with Cholesky.

Number of items = 20.

Table A3

Running Time and Precision of the EM-Algorithm

With 10, 30, 60, and 200 Cycles and 80 Items

Precision Time

EM 10 30 60 200 200

QP Ch NCh Ch NCh Ch NCh Ch NCh Ch NCh

4 1.4 · 10−1 3.9 · 10−3 1.4 · 10−1 2.4 · 10−3 1.4 · 10−1 2.4 · 10−3 1.4 · 10−1 2.4 · 10−3 835 1222

6 4.0 · 10−2 2.9 · 10−3 4.0 · 10−2 1.1 · 10−3 4.0 · 10−2 1.1 · 10−3 4.0 · 10−2 1.1 · 10−3 1363 2227

8 2.1 · 10−2 2.6 · 10−3 2.1 · 10−2 5.1 · 10−4 2.1 · 10−2 5.1 · 10−4 2.1 · 10−2 5.1 · 10−4 2106 3631

10 9.1 · 10−3 2.5 · 10−3 8.9 · 10−3 2.3 · 10−4 8.9 · 10−3 2.3 · 10−4 8.9 · 10−3 2.3 · 10−4 3066 5443

12 1.9 · 10−3 2.4 · 10−3 9.9 · 10−4 1.1 · 10−4 9.9 · 10−4 1.1 · 10−4 9.9 · 10−4 1.1 · 10−4 4259 7673

14 3.4 · 10−3 2.4 · 10−3 2.7 · 10−3 4.7 · 10−5 2.7 · 10−3 4.7 · 10−5 2.7 · 10−3 4.7 · 10−5 5658 10302

16 2.6 · 10−3 2.4 · 10−3 1.4 · 10−3 2.0 · 10−5 1.4 · 10−3 2.0 · 10−5 1.4 · 10−3 2.0 · 10−5 7285 13345

18 2.3 · 10−3 2.4 · 10−3 2.2 · 10−4 8.5 · 10−6 2.2 · 10−4 8.4 · 10−6 18176 33513

20 2.5 · 10−3 2.4 · 10−3 7.5 · 10−4 3.4 · 10−6 7.5 · 10−4 3.3 · 10−6 22293 41146

22 2.5 · 10−3 2.4 · 10−3 8.0 · 10−4 1.1 · 10−6 8.0 · 10−4 1.0 · 10−6 26787 49626

24 2.5 · 10−3 2.4 · 10−3 6.0 · 10−4 3.1 · 10−7 6.0 · 10−4 N/A 31751 58863

Note. Time is in seconds. Ch = Cholesky, NCh = normal approximation with Cholesky. Number

of items = 80.
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