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Abstract

In item-response theory, if a latent-structure model has an ability variable, then elementary

information theory may be employed to provide a criterion for evaluation of the information the

test provides concerning ability. This criterion may be considered even in cases in which the

latent-structure model is not valid, although interpretation of the criterion is more complex in

this case. It is also possible to consider reliability results for inferences about the ability variable.

Use of sampling to develop required parameter estimates is straightforward. Applications of the

criterion in zero-, one-, and two-parameter logistic (0PL, 1PL, and 2PL) examples are provided.
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Given an item-response model, information theory can be employed to assess the information

concerning an ability parameter that is provided by the data. The argument is the same as the

argument used to define the information provided by an experiment (Lindley, 1956), although

some care must be taken to treat the issue of false models. In this paper, a random ability

parameter is generated that corresponds to a conventional ability parameter if a model is true

but is shown to be definable and estimable even if the model is not valid. In Section 1, the basic

results from information theory are provided, and suitable estimation procedures are developed. In

addition, the zero-, one-, and two-parameter logistic (0PL, 1PL, and 2PL) models to be examined

are described for the case of a model with a normal ability distribution and for a model with a

multinomial ability distribution. Section 2 summarizes results obtained by analysis of a 45-item

right-scored multiple-choice writing examination from the Praxis
TM

series that has previously been

employed (Haberman, 2005) to illustrate use of latent-structure models. This example is quite

suitable for analysis in that the data are easily shown not to satisfy any standard item response

model, but standard 1PL models appear to provide reasonable approximations of the observed

distribution of item responses for the 8,686 examinees. Section 3 provides some conclusions. The

results on the whole suggest that efforts to estimate ability parameters are surprisingly successful

even when models are not valid.

1 Information Concerning Ability

In this section, information theory is used to examine the information provided concerning

ability variables associated with item-response models. Consider binary random item responses

Xvi by examinee v to item i, 1 ≤ i ≤ I, 1 ≤ v ≤ n, where the number I of items is at least 2

and the number n of examinees is at least 2. For each examinee v, 1 ≤ v ≤ n, and each item i,

1 ≤ i ≤ I, let Xvi have possible integer values 0 or 1, where Xvi is 1 if a correct response is given

to by examinee v to item i and Xvi is 0 otherwise. The responses for examinee v may be described

by Xv, the I-dimensional response vector with coordinates Xvi, 1 ≤ i ≤ I. If X denotes the set

of I-dimensional vectors x with all coordinates 0 or 1, then X is the set of possible values of Xv.

It is assumed in this paper that the probability p(x) that Xv = x is positive for each possible x

in X , and it is assumed that the response vectors Xv, 1 ≤ v ≤ n, are mutually independent and

identically distributed. To simplify notation, the convention is adopted that X1 is denoted by X,

and X1i is denoted by Xi.
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1.1 Latent-Structure Models

This paper is concerned with the use and interpretation of latent ability vectors for item

responses when the models are not necessarily true. In the models under study, a single

latent variable is used; however, generalization to multiple latent variables is straightforward.

Illustrations are based on the 2PL model (Hambleton, Swaminathan, & Rogers, 1991), but the

methods proposed apply much more widely. The methodology proposed can be employed both

with ability variables with a normal distribution or with ability variables with a multinomial

distribution.

For any model under study, it is assumed that some real latent variable θv is associated

with each examinee v. It is assumed in each model under consideration that the pairs (Xv, θv),

1 ≤ v ≤ n, are mutually independent and identically distributed, and the local independence

assumption is made that the responses Xvi, 1 ≤ i ≤ I, of subject v are conditionally independent

given θv. The convention is adopted that θ1 is denoted by θ. Associated with each item i is an

item characteristic curve (ICC) Pi such that Pi(ω) is the probability that Xi = 1 given that θ = ω.

In all models in this paper, the 2PL assumption is made that

Pi(ω) = [1 + exp(−aiω + γi)]−1 (1)

for an unknown positive real ai, the item discrimination of item i, and for a real unknown γi. The

ratio βi = γi/ai is the item difficulty for item i. In the 1PL (Rasch) models under study, each ai is

assumed equal. In the 0PL (binomial) models under study, each ai is assumed equal and each γi is

assumed equal. In the normal latent-variable models under study, θ is assumed to have a standard

normal distribution. In the latent-class models under study, an integer K ≥ 2 and distinct real

numbers τk, 1 ≤ k ≤ K, are specified, θv can only assume the values τk, 1 ≤ k ≤ K, and θv = τk

with an unknown but positive probability.

In any of these latent-variable models, if the model is correct and the model parameters are

known, then Bayes’ theorem may be employed for inferences about the latent variable θv based

on the response vector Xv (Bock & Aitkin, 1981). In practice, maximum-likelihood estimates of

model parameters may be used instead of the model parameters themselves if the sample size is

large.

If the model is not correct, then the meaning of inferences concerning the θv is not obvious.

Indeed, it is not even obvious what the θv are. In this paper, a procedure based on information

2



theory is employed to construct random variables θv with conditional distributions given the

responses Xv that are of the same form as the corresponding conditional distributions obtained

if the model holds. These random variables θv may be constructed by use of a random number

generator capable of providing independently distributed uniform random numbers Uv for

1 ≤ v ≤ n, where the Uv are independent of the observed responses Xiv and have range (0, 1).

Information theory is used to evaluate the strength of the relationship of these θv to the observed

examinee responses Xv of examinee v and to evaluate the reliability of a standard estimate of θv.

Maximum likelihood is readily used to estimate all needed parameters and measures.

1.2 Models and Information Theory

To develop the variables θv, information theory is employed to obtain approximations to the

response probabilities p(x), x in X that are consistent with the latent-variable model under study

(Gilula & Haberman, 1994, 1995; Savage, 1971; Shannon, 1948). To apply information theory,

some preliminary definitions are needed. Let p denote the function on X with value p(x) for x

in X , so that p determines the distribution of each response vector Xv. Let S be the simplex of

nonnegative real functions r on X with sum
∑

x∈X r(x) = 1, so that p is in S and to any r in S

corresponds a random vector Y with values in X such that Y = x with probability r(x) for each

x in X . For the model under study, let T be the set such that p is in T if, and only if, the model

holds. For example, in the case of a normal 2PL model, r is in the set T if, and only if, for each x

in X ,

r(x) =
∫

r(x|ω)φ(ω)dω, (2)

where

r(x|ω) =
I∏

i=1

[Pi(ω)]xi [1− Pi(ω)]1−xi , (3)

φ is the density function of the standard normal distribution, and (1) holds for some real ai > 0

and real γi, 1 ≤ i ≤ I. Observe that if the normal 2PL model holds for pairs (Xv, θv) and r = p,

then it is clear that θv has a standard normal distribution and (1), (2), and (3) hold for some real

ai > 0 and γi, so that p is in T .

On the other hand, if p is in T , then (1), (2), and (3) hold for r = p for some real ai > 0

and real γi. Given the uniform random numbers Uv, 1 ≤ v ≤ n, random variables θv may be

constructed so that the pairs (Xv, θv) are mutually independent and the conditional density of θv
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given Xv = x is

f(ω|x) = [p(x)]−1φ(ω)r(x|ω) (4)

for ω in R. It suffices to define the strictly increasing and continuous distribution function

F (ω|x) =
∫ ω

−∞
f(ν|x)dν (5)

for ω real and to let

F (θv|Xv) = Uv (6)

(Rao, 1973, p. 87). The marginal density of θv is∑
x∈X

f(ω|x)p(x) = φ(ω),

so that θv has a standard normal distribution. Bayes’ theorem implies that the conditional

probability that Xv = x given θv = ω is r(x|ω). Thus the resulting pairs (Xv, θv) satisfy the

normal 2PL model.

Similar arguments apply to other models under study. For example, in the 2PL latent-class

case, r is in T if, and only if, (1) holds for some ai > 0 and real γi,

r(x) =
K∑

k=1

πkr(x|τk)

for πk > 0, 1 ≤ k ≤ K, such that
∑K

k=1 πk = 1, and (3) holds for ω real. If the latent-class 2PL

model holds for pairs (Xv, θv) and r = p, then θv = τk with probability πk > 0, 1 ≤ k ≤ K, where∑K
k=1 πk = 1, and (1), (2), and (3) hold for some real ai > 0 and γi, so that p is in T .

On the other hand, let p be in the set T defined for the latent-class 2PL model. Then (1),

(2), and (3) hold for r = p for some real ai > 0 and real γi and for some πk > 0, 1 ≤ k ≤ K, such

that
∑K

k=1 πk = 1. Construct a random variable θv from the uniform random number Uv such

that the conditional probability that θv = τk given Xv = x is equal to

f(τk|x) = [p(x)]−1πkr(x|τk) (7)

for 1 ≤ k ≤ K. If the τk are increasing in k, then this construction is accomplished by letting

θv = k by use of the distribution function values

F (τk|x) =
k∑

h=1

f(τh|x) (8)
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for 1 ≤ k ≤ K. Let θv = τk for 1 ≤ k ≤ K if Uv ≤ F (τk|Xv) and either k = 1 or Uv > F (τk−1|Xv).

The probability that θv = τk is πk for 1 ≤ k ≤ K, and the conditional probability that Xv = x

given θv = τk is r(x|τk).

To examine the more general case in which the model under study need not be true, consider

probability prediction of Xv by use of a logarithmic penalty function (Gilula & Haberman, 1994,

1995, 2000). If the prediction r in S is employed and if the penalty is − log r(x) for Xv = x in X ,

then the expected penalty per item is

J(r) = −I−1E(log r(X)) = −I−1
∑
x∈X

p(x) log r(x),

where 0 log 0 = 0 (Haberman, 2005). The minimum of J(r)) is achieved if, and only if, r = p, and

H(X) = J(p) = −I−1
∑
x∈X

p(x) log p(x)

is the entropy per item of X. To measure the discrepancy between p and the probability model

that p is in T , consider the minimum H∗(X) of J(r) for r in T . This minimum cannot be less than

H(X), and H∗(X) = H(X) if the model holds. Thus a measure of model error is the minimum

discriminant information D(X) = H∗(X)−H(X) for distinguishing between the true probability

vector p and a probability vector r in T (Haberman, 1982; Kullback, 1968). The measure D(X) is

nonnegative. If D(X) is positive, then the model is not valid. One may regard D(X) as a measure

of the average increase per item in log penalty due to use of the model that p is in T rather than

some model that is correct.

If p∗ in T satisfies J(p∗) = H∗(X), then p∗ is an optimal approximation to p within T

according to the criterion of expected log penalty. If the model holds, then p∗ = p. In general,

p∗ satisfies conditions quite similar to maximum-likelihood equations for log-linear models in the

case of indirect observation (Haberman, 1979, chap. 10) or maximum-likelihood equations for

exponential families in which observation is incomplete (Dempster, Laird, & Rubin, 1977). These

conditions may be described in terms of moments that involve a vector X∗ with the same possible

values as the observed vector X and a random variable θ∗. As required in a latent-structure model,

the coordinates X∗i of X∗ are conditionally independent given θ∗, and X∗ = x with probability

p∗(x). Additional moment restrictions and distribution restrictions are imposed on θ∗ and X∗

by the specific model under consideration. In the case of the normal 2PL model, for each item

i, positive ai and real γi exist such that the conditional probability that X∗i = 1 given θ∗ = ω

5



is Pi(ω), where Pi(ω) satisfies (1). In addition, θ∗ has a standard normal distribution. For each

item i, the moment conditions are added that X∗
i and Xi have the same expected values, and the

expected value E(X∗
i θ∗) is equal to the expected value of E(Xiθ), where θ is a random variable

such that the conditional distribution of θ given X = x is the same as the conditional distribution

of θ∗ given X∗ = x for each x in X .

In the latent-class 2PL model, it remains the case that, for each item i, positive ai and real

γi exist such that the conditional probability that X∗
i = 1 given θ∗ = ω is Pi(ω), where Pi(ω)

satisfies (1); however, θ∗ now assumes only the values τk, 1 ≤ k ≤ K, and, for 1 ≤ k ≤ K, the

probability is positive that θ∗ = τk. It also remains the case that, for each item i, X∗
i and Xi have

the same expected value, and E(X∗
i θ∗) = E(Xiθ), where the conditional distribution of θ given

X = x is the same as the conditional distribution of θ∗ given X∗ = x for each x in X . The added

condition is imposed that θ∗ and θ have the same distribution.

In all cases, the ability variables θv under study will be functions of the uniform random

variable Uv and the observed responses Xv, and the conditional distribution of θv given Xv = x

will be the same as the conditional distribution of θ∗ given X∗ = x. If the proposed model actually

holds, then (θv,Xv) will have the same joint distribution as (θ,X). In the normal 2PL example,

the θv are still obtained by use of (1), (2), (3), (4), (5), and (6). In the latent-class 2PL example,

the θv are still obtained by use of (1), (2), (3), (7), and (8).

1.3 Evaluation of the Ability Variable

The variable θv constructed for each examinee v need not satisfy the local independence

requirement of the latent-structure model if the latent-structure model itself does not hold.

Nonetheless, θv may still be an effective predictor of the response vector Xv. The effectiveness of

θv may be evaluated by use of information theory in conjunction with the latent-structure model.

Given θv, the appropriate probability prediction of Xv is the conditional probability function

p∗(θv) on X with value p∗(x|θv) at x in X . The expected log penalty per item is

H∗(X|θ) = −I−1E(log p∗(X|θ)).

If the model holds, then H∗(X|θ) is the conditional entropy per item H(X|θ) of X given θ. Given

conditional independence of the X∗
i given θ∗,

H∗(X|θ) = I−1
I∑

i=1

H∗(Xi|θ),
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where

H∗(Xi|θ) = −E(Xi log Pi(θ) + (1−Xi) log[1− Pi(θ)]).

If the model holds, then H∗(Xi|θ) is the conditional entropy H(Xi|θ) of response Xi given the

variable θ.

As shown in this section,

H∗(X|θ) < H∗(X). (9)

The difference

∆(X|θ) = H∗(X)−H∗(X|θ) (10)

provides a measure of the information per item on X provided by θ.

1.4 The Latent-Class Case

To verify (9), it is helpful to distinguish between the latent-class models and the normal

models. In the latent-class models, the logarithmic penalty arguments for X can also be applied

to (X, θ) and θ. Let f (τk|x) denote the conditional probability that θ∗ = τk given that X∗ = x, so

that

p∗(x, τk) = p∗(x)f∗(τk|x)

is the joint probability that (X∗, θ∗) = (x, τk) for x in X and 1 ≤ k ≤ K. The expected log penalty

per item for the corresponding probability prediction for (X, θ) is then

H∗(X, θ) = −I−1E(log p∗(X, θ)). (11)

If the model holds, then H∗(X, θ) is just the joint entropy H(X, θ) of X and θ, so that

H∗(X, θ) ≥ H(X, θ), with equality if the model holds.

The probability prediction for θ = τk given that X = x is f∗(τk|x), so that the expected log

penalty for prediction of θ by X is

H∗(θ|X) = −E(log f∗(θ|X)). (12)

In this instance, the definition of θ implies that H∗(θ|X) is also the conditional entropy H(θ|X) of

θ given X. It follows that

H∗(X, θ) = H∗(X) + I−1H(θ|X). (13)
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An alternative decomposition to (13) may be created by use of the marginal distribution of θ

predicted by the model. Let θ∗ = τk with probability π∗k. Then

p∗(x, τk) = π∗kp
∗(x|τk).

Consider the probability prediction of θ = τk by π∗k. Observe that the actual probability that

θ = τk is πk = E(f∗(τk|X)). The expected log penalty is then

H∗(θ) = −E(log π∗θ) = −
K∑

k=1

πk log π∗k, (14)

and the entropy of θ is

H(θ) = −
K∑

k=1

πk log πk.

Thus H∗(θ) ≥ H(θ), with equality if the model holds.

A new decomposition of the joint expected log penalty H∗(X, θ) is now available, for

H∗(X, θ) = H∗(X|θ) + I−1H∗(θ). (15)

By (13) and (15),

∆(X|θ) = I−1∆(θ|X), (16)

where

∆(θ|X) = H∗(θ)−H(θ|X). (17)

Because H∗(θ) ≥ H(θ) and H(θ) ≥ H(θ|X) (Shannon, 1948), it follows that ∆(X|θ) and ∆(θ|X)

are nonnegative. The constraint that ai > 0 and the constraint that each πk > 0 imply that θ and

X are not independent, so that H(θ) > H(θ|X). Thus ∆(X|θ) and ∆(θ|X) are positive.

The measures ∆(X|θ) and ∆(θ|X) indicate the strength of the relationship between θ and X.

The perspectives are a bit different. In the case of ∆(X|θ), one considers the improvement per

item in probability prediction of X achieved by use of θ. In the case of ∆(θ|X), one considers the

improvement in probability prediction of θ by use of the response vector X.

1.5 The Normal Case

Verification of (9) in the normal case is a bit different due to the continuity of θ. Some

penalties based on log probabilities are replaced by log densities (Gilula & Haberman, 2000), and
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penalties are not necessarily nonnegative. The conditional density f∗(ω|x) of θ∗ given X∗ = x is

considered. The product

p∗(x, ω) = p∗(x)f∗(ω|x)

is used for prediction of (X, θ) for x in X and ω real, and the log penalty per item for the

prediction is

H∗(X, θ) = −I−1E(log p∗(X, θ)). (18)

The density prediction for θ given X = x is the function with value f∗(θ|x) at θ real, and

the expected log penalty for prediction of θ by X is still given by (12) and (13) still holds. The

expected log penalty of (12) is also the information of θ given X.

Once again an alternative decomposition to (13) employs the marginal distribution of θ

predicted by the model. For the conditional probability p∗(x|ω) that X∗ = x given that the

standard normal random variable θ∗ = ω, one has the decomposition

p∗(x, ω) = φ(ω)p∗(x|ω).

Consider density prediction of θ by φ. The actual density f of θ satisfies

f(ω) = E(f∗(ω|X)) (19)

for ω real, so that the expected log penalty is

H∗(θ) = −E(log φ(θ)) = −
∫

f(ω) log φ(ω)dω = [log(2π) + E(θ2)]/2, (20)

and the information of θ is

H(θ) = −
∫

f(ω) log f(ω)dω,

so that H∗(θ) ≥ H(θ), with equality if the model holds. Once again, (15) holds, so that (16) and

(17) follow. Essentially the same argument suffices to show that ∆(X|θ) and ∆(θ|X) are positive.

For the normal case, there is some necessary relationship between the measure ∆(θ|X) and

the conditional variance σ(θ|x) of θ given X = x. A standard information inequality implies that

2∆(θ|X) ≥ E(θ2)− 1− E(log σ2(θ2|X))

(Rao, 1973, pp. 162–163). If the model holds, then E(θ2) is 1.
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1.6 Mean Squared Error

Given either the latent class or normal case, the latent variable θ can also be evaluated in

terms of mean squared error of prediction. One can compute the conditional expected value

E(θ|X) of θ given X to obtain the expected a posteriori (EAP) estimate of θ (Bock & Aitkin,

1981). The proportional reduction of mean squared error from prediction of θ by E(θ|X) rather

than by E(θ) is then

ρ2(θ|X) = 1− E(σ2(θ|X))/σ2(θ).

Computations can be simplified in practice by considering the weighted sum

W (x) =
I∑

i=1

aixi

for x in X . In all models, E(θ|x) is a function of W (x). Let

V (ω) =
I∏

i=1

[1 + exp(aiω − γi)]−1.

In the normal case,

E(θ|x) =
∫

θ exp[W (x)ω]V (ω)φ(ω)dω∫
exp(W (x)ω)V (ω)φ(ω)dω

.

Numerical computations can be performed efficiently via adaptive Gauss-Hermite quadrature

(Haberman, 2006) with 9 integration points. In the latent-class case,

E(θ|x) =
∑K

k=1 τk exp[W (x)τk]V (τk)π∗k∑K
k=1 exp[W (x)τk]V (τk)π∗k

.

Similar arguments apply to conditional variances.

1.7 Estimation

In practice, maximum-likelihood estimation may be used to treat the problem that the

distribution of X is not known. Given use of maximum likelihood, estimates âi of ai and γ̂i of γi

are obtained for the appropriate model. In the latent-class case, maximum-likelihood estimates π̂k

of πk are used to estimate π∗k. In all cases, W (x) is approximated by

Ŵ (x) =
I∑

i=1

âixi,

and V (ω) is approximated by

V̂ (ω) =
I∏

i=1

[1 + exp(âiω − γ̂i)]−1.
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The log likelihood is used for estimation of H∗(X). Here the log likelihood function is

`(r) =
n∑

v=1

log r(Xv)

for r in S. For the subset T of S corresponding to the model under study, the standard estimate

of H∗(X) is

Ĥ(X) = (nk)−1`(T ),

where `(T ) is the supremum of `(r) for r in T (Gilula & Haberman, 1994, 1995).

In other calculations, p∗ is normally approximated by a maximum-likelihood estimate p̂ in T

such that `(p̂) = `(T ), and p is approximated by p̄ for p̄(x) equal to the fraction of v, 1 ≤ v ≤ n,

such that Xv = x. One approximates Pi(ω) by

P̂i(ω) = [1 + exp(−âiω + γ̂i)]−1,

so that p∗(x|ω) is approximated by

p̂(x|ω) =
I∏

i=1

[P̂i(ω)]xi [1− P̂i(ω)]1−xi .

In the normal case, p(x) is then approximated by

p̂(x) =
∫

p̂(x|ω)φ(ω)dω,

f∗(ω|x) is approximated by

f̂(ω|x) = p̂(x|ω)φ(ω)/p̂(x),

E(θ|x) is approximated by

Ê(θ|x) =
∫

ω exp[Ŵ (x)ω]V̂ (ω)φ(ω)dω∫
exp[Ŵ (x)ω]V̂ (ω)φ(ω)dω

,

σ2(θ|x) is approximated by

σ̂2(θ|x) =
∫

[ω − Ê(θ|x)]2 exp[Ŵ (x)ω]V̂ (ω)φ(ω)dω∫
exp[Ŵ (x)ω]V̂ (ω)φ(ω)dω

,

H∗(X|θ) is approximated by

Ĥ(X|θ) = −(nI)−1
n∑

v=1

[p∗(Xv)]−1

∫
p̂∗(Xv|ω)[log p̂∗(Xv|ω)]φ(ω)dω,
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and H(θ|X) is approximated by

Ĥ(θ|X) = −n−1
n∑

v=1

∫
f̂(ω|Xv)[log f̂(ω|Xv)]dω.

In the latent-class case, p(x) is approximated by

p̂(x) =
K∑

k=1

p̂(x|τk)π̂k,

f∗(τk|x) is approximated by

f̂(τk|x) = p̂(x|τk)π̂k/p̂(x),

E(θ|x) is approximated by

Ê(θ|x) =
∑K

k=1 τk exp[Ŵ (x)τk]V̂ (τk)π̂k∑K
k=1 exp[Ŵ (x)τk]V̂ (τk)π̂k

,

σ2(θ|x) is approximated by

σ̂2(θ|x) =
∑K

k=1[τk − Ê(θ|x)]2 exp[Ŵ (x)τk]V̂ (τk)π̂k∑K
k=1 exp[Ŵ (x)τk]V̂ (τk)π̂k

,

H∗(X|θ) is approximated by

Ĥ(X|θ) = −(nI)−1
n∑

v=1

[p∗(Xv)]−1
K∑

k=1

p̂∗(Xv|τk)[log p̂∗(Xv|τk)]π̂k,

and H(θ|X) is approximated by

Ĥ(θ|X) = −n−1
n∑

i=1

f̂(τk|Xv)[log f̂(τk|Xv)].

In all cases, ∆(X|θ) has estimate

∆̂(X|θ) = Ĥ(X)− Ĥ(X|θ),

so that ∆(θ|X) has estimate

∆̂(θ|X) = I∆̂(X|θ).

One then estimates H∗(θ) by

Ĥ(θ) = Ĥ(θ|X) + ∆̂(θ|X).

The estimate of E(σ2(θ|X)) is

Ê(σ2(θ|X)) = n−1
n∑

v=1

σ̂2(θ|Xv),
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the estimate of E(θ) is

Ê(θ) = n−1
n∑

v=1

E(θ|Xv),

the estimate of σ2(θ) is

σ̂2(θ) = Ê(σ2(θ|X)) + n−1
n∑

v=1

[Ê(θ|Xv)− Ê(θ)]2,

and the estimate of ρ2(θ|X) is

ρ̂2(θ|X) = 1− Ê(σ2(θ|X))/σ̂2(θ).

2 Empirical Results

Results for the Praxis data described in the introduction are summarized in Table 1. Recall

that there are I = 45 items and n = 8, 686 examinees. Computations employed Fortran 95

programs designed by the author for use in item-response analysis. The column with label KR

is the Kuder-Richardson estimate (Kuder & Richardson, 1937) of the reliability of Ŵ (X) The

latent-variable cases use K = 5 and τk = (k − 3)/21/2, so that θ would have mean 0 and variance

1 if all latent-class probabilities πk were equal.

To illustrate relationships between columns, it is helpful to observe that

∆̂(θ|X) = 45[Ĥ(X)− Ĥ(X|θ)].

For instance, in the normal 2PL case, 0.917 is 45(0.592 − 0.571), except for rounding error. In

the computation of ρ̂2(θ|X), it is helpful to note that the estimated variance σ̂2(θ) of θ in the

Table 1

Results for 0PL, 1PL, and 2PL Models

Model Ĥ(X) Ĥ(X|θ) ∆̂(θ|X) ρ̂2(θ|X) KR

Latent 0PL 0.669 0.652 0.756 0.793 0.816

Normal 0PL 0.669 0.652 0.773 0.786 0.816

Latent 1PL 0.596 0.578 0.828 0.821 0.816

Normal 1PL 0.596 0.578 0.849 0.817 0.816

Latent 2PL 0.591 0.572 0.888 0.846 0.829

Normal 2PL 0.592 0.571 0.917 0.838 0.830
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normal 2PL case is 1.002, a value quite close to the ideal value of 1 obtained if the model is correct

and sampling error is negligible. The estimated conditional variance σ̂2(θ|X) is 0.162, so that

ρ̂2(θ|X) = 1− 0.162/1.002. The similarity between the columns for KR and ρ̂2(θ|X) is typical.

As evident from the values of Ĥ(X) and Ĥ(X|θ), the 0PL model is considerably less successful

than is the 1PL model, and the 1PL model is a bit less successful than is the 2PL model. For the

same basic model, performance of the normal and latent-class cases are quite similar. The normal

cases lead to a bit larger values of ∆̂(θ|X) and a bit smaller values of ρ̂2(θ|X). The variations in

reliability are rather modest, although there is some advantage with use of the 2PL model.

One method to assess the practical effects of results is to consider shortening the test and

examining how the normal 2PL results compare to other reported results for 45 items. For

example, with the first 30 items, ρ̂2(θ|X) is reduced to 0.773, a value a little lower than that

reported for either 0PL model. The value of ∆̂(θ|X) is now 0.746, again a value a bit less than for

the 0PL cases. With the first 35 items, ρ̂2(θ|X) is 0.797, a value slightly larger than for either 0PL

model and somewhat smaller than for either 1PL model, and ∆̂(θ|X) is 0.804, a value somewhat

larger than for either 0PL model and somewhat smaller than for either 1PL model. With the first

40 items, ρ̂2(θ|X) is 0.824, a value a bit larger than for either 1PL model, and ∆̂(θ|X) is 0.877, a

value somewhat larger than for either 1PL model. Thus the results do provide some suggestion

that the gain from a 2PL rather than 1PL model is sufficient to have an appreciable effect on the

length of a test required to achieve comparable precision in prediction of the latent parameter θ

from the observed X.

3 Conclusions

These results are encouraging to the extent that they suggest a method of constructing an

ability parameter that does not depend on model validity. The empirical results for the example

considered suggest that the effects of model error are modest in terms of use of the ability

parameter as a measure of examinee ability. On the other hand, the results also suggest that the

old-fashioned total score gives results rather comparable in terms of reliability to results obtained

by use of the theory of item responses. To the extent that these observations can be confirmed

by analysis of a variety of test results, it may well be the case that the effects of model-based

inference based on wrong models may often be sufficiently small not to cause significant problems

in practice. This conclusion is most likely to hold for well-constructed and relatively long tests in
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which Rasch or two-parameter logistic models are employed, for estimated item discrimination is

likely to vary less, the effects of the latent ability distribution on the posterior ability distribution

are reduced, and the model error is relatively small. One major aid is that the estimation of the

ability parameter still depends on the total score or on a positively weighted sum. Because the

model leads to a posterior distribution of the ability parameter given the responses that is a

smooth function of the total score or weighted total, standard statistical results for functions of

sums of independent variables indicate that it is indeed reasonable to anticipate that results based

on estimation of the ability parameter are quite comparable to those for the total or weighted

total.

It should be noted that the approach used in this paper can be considered for multivariate

ability distributions as well as for univariate ability distributions and it can be applied to

polytomous items. No inherent change in methodology is required.
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