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Abstract 

A multitude of methods has been proposed to estimate the sampling variance of ratio estimates in 

complex samples (Wolter, 1985). Hansen and Tepping (1985) studied some of those variance 

estimators and found that a high coefficient of variation (CV) of the denominator of a ratio 

estimate is indicative of a biased estimate of the standard error of a ratio estimate. Using the 

same populations, Kovar (1985) and Kovar, Rao, and Wu (1988) repeated the research and 

showed that the relation between a high CV and bias in standard errors is weak. In light of these 

conflicting findings, this study uses substantially different populations and design choices taken 

from the National Assessment of Educational Progress (NAEP) to further investigate the 

relationship between bias, the CV, and the number of strata, which has also been found to be an 

indicator of bias (Burke & Rust, 1995). It is found that the CV is a relatively weak indicator of 

bias, showing poor power properties. Suggestions are made to improve upon statistical 

suppression rules related to the CV and number of replicate strata. 

Key words: Complex sample variance estimation, coefficient of variation, jackknife repeated 

replication, National Assessment of Educational Progress 
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Introduction 

The sampling variance of estimators in complex samples can be estimated by several 

approaches (Wolter, 1985; Kovar, Ghangurde, Germain, Lee, & Gray, 1985), often classified 

into two categories: resampling methods and model-based methods. Resampling methods 

include jackknife, bootstrap, and numerous variants thereof (e.g., Efron & Tibshirani, 1993; 

Kovar, 1985; Rao & Wu, 1988). These are widely used in population, economic, and educational 

surveys, balancing the cost of computer-intensive methods against accuracy. Model-based 

methods usually stem from Taylor series approximations in complex samples, although textbook 

formulas based on normal and student t approximations for simple random samples fall into this 

category as well. 

Two decades ago Hansen and Tepping (1985) conducted a simulation study to compare 

variance estimates of ratios using one variant of each method listed above and the complex 

sampling design of the National Assessment of Educational Progress (NAEP) at that time. They 

compared the half jackknife repeated replication (half-JRR) method to a Taylor series 

approximation (Woodruff, 1971). M.H. Hansen and B. Tepping (1985) reported two major 

findings. First, their Taylor series estimator often over- and underestimated the true variance, 

especially compared to their JRR estimator. Second, over- and underestimation occurred most 

often and most severely for estimates where the coefficient of variation (CV) of the denominator 

was relatively large and, therefore, they concluded. “None of the estimators appear to be useful 

for values of the coefficient of variation larger than .2” (p. 3). 

A ratio estimate for two observed variables x and y 

ˆ yR
x

=  (1) 

is often used for estimating totals or means when an auxiliary variable is available (Cochran, 1977, 

p.150). In the case of NAEP and Hansen’s and Tepping’s study (Hansen & Tepping, 1985), a 

weighted mean of some proficiency variable z is estimated, which is a ratio estimate, and, in this 

case, a Horvitz-Thompson estimator (Cochran, 1977, p. 259). The weights are computed as the 

inverse of the probability of a unit being selected into the sample. Hence, a mean, 
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is estimated for i units in the sample with weights w. In NAEP and similar large-scale 

assessments such as the Trends in International Mathematics and Science Study (TIMSS) and the 

National Adult Assessments of Literacy (NAAL), z is a measure of proficiency computed based 

on student responses to cognitive items and conditioned on many background variables such as 

gender and race/ethnicity. The values are computed from an imputation model and are 

distributed as a mixture of normal distributions. A detailed treatment of this method and model 

can be found in Mislevy (1984, 1985). While the imputation model is important in determining 

measurement variation, this study will focus solely on sampling variation, which accounts for 

around 90% to 95% of the variation in NAEP. 

Percent estimates have a similar ratio estimator form as means, using an indicator 

function I instead of z to classify units into the subgroup of interest: 

ˆ
i i

i

i
i

w I
p

w
=
∑
∑

. (3) 

I can indicate a gender or race/ethnicity group, but also whether the average imputed value of a 

student is within a defined level of performance. Subsequently, the percentage of students in the 

sample who perform at or above a certain level can be computed. 

The CV of an observed variable x (Cochran, 1977, p. 162) 

( ) ( )2
2x

Var x
CV

x
=  (4) 

or relative standard error provides an upper bound of the relative bias of the ratio estimator. The 

CV is equal to the relative bias of the ratio estimator if the correlation between the numerator and 

denominator is 1. In most large-scale assessments the correlation between on the one hand the 

weights and on the other hand the product of the weights and a proficiency measure z or 

indicator function I, is close to zero. Hansen and Tepping (1985) derived the relationship 

between the CV and the bias in the standard error of a ratio estimate empirically from two-way 
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plots of the ratio of the variance estimate and the true variance with the CV. In their case, the 

true variance was determined by the mean squared error (MSE) from many samples. 

Subsequently, histograms were constructed placing the bias in bins for large and small CV. 

About 30 populations were used in their study, and the variance across 32 strata as well as the 

correlation (.3, .5, and .8) between the numerator and the denominator were manipulated. Their 

conclusion was based on the fact that 6 of 12 estimates obtained from sampling from populations 

with a CV larger than 20% showed severe bias (up to three times the expected standard error) 

while no substantial bias was found for any of the estimates obtained from sampling from 

populations with a CV smaller than 20%. The limited number of populations chosen for this 

study may have driven this conclusion. Nevertheless, in a large-scale survey such as NAEP, 

results with a CV exceeding 20% are suppressed (reports in 2005) or a warning is issued to the 

reader (reports before 2005). 

Kovar (1985) extended the work of Hansen and Tepping (1985) by including regression 

and correlation estimators and adding more variance estimation methods, such as the bootstrap, 

while using the same populations. An extension of this work also appeared in Kovar et al. 

(1988), where, in addition to samples of size 2 per replicate stratum, samples of size 5 were also 

used and, furthermore, nonlinear statistics such as quantiles were included. In both studies 

comparable results for the JRR and sample-based Taylor series were found, though a model-

based variant of the Taylor series did perform substantially worse. However, in contrast to 

Hansen and Tepping (1985), Kovar et al. (1988, p. 35) limited themselves to cautious statements 

about the relationship between the CV and the variance estimation bias, stating that for higher 

CVs, differences between methods become more pronounced. 

Besides the CV, other characteristics related to the number of primary sampling units 

have also been shown to affect the bias of variance estimates. Burke and Rust (1995) show that 

the relation of sampling error to sample size is far from monotone and rather unpredictable. 

Furthermore, they studied cases where estimates are based on between 2 and 30 primary 

sampling units out of 105 in a real data population. They show that at least 6 units are necessary 

to be able to make valid inferences using the jackknife procedure. The major obstacle resulting in 

a loss of reliability of a variance estimator has to do with to what extent the true degrees of 

freedom is close to the number of primary sampling units and how large it is. However, 

estimating the degrees of freedom is difficult (see also Johnson & Rust, 1993). 
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Complex samples such as NAEP, TIMSS, or NAAL generally use a stratified multistage 

probability sampling design. At the first stage, primary sampling units (PSUs) are sampled 

within strata (based on geographic characteristics) with probability relative to size, and schools 

are sampled within those geographically determined PSUs, also with probability relative to size. 

At the second stage, a simple random sample of students is drawn in each sampled school for the 

appropriate ages or grades of the assessment. A distinction is made between certainty and 

noncertainty schools: Certainty schools are sampled from a PSU that is included in the sample 

with certainty. Noncertainty schools are sampled from a PSU that is sampled from all 

noncertainty PSUs on the sampling frame. A PSU becomes a certainty PSU if there are relatively 

many schools in the PSU on the sampling frame and, therefore, can be considered an essential 

part of the sample. 

A general formula for variance estimation in a stratified sample that is sampled with 

replacement is (e.g. Cochran, 1977, Theorem 5.3): 

2
2 h

stratified h
h h

sV W
n

=∑  (5) 

with Wh the weight of stratum h, nh the sample size in each stratum, and sh the standard deviation 

in each stratum. In the leave-out-many or half-JRR  method, a group of similar units (e.g., 

schools, pair of PSUs) is assigned to a replicate or pseudo stratum r and, subsequently, to one of 

two units in the stratum (i.e., a pair) that will each have approximate size nh/2. One unit is 

selected at random in each replicate stratum. Then, for one replicate stratum at a time, the student 

sampling weights of the selected unit in that replicate stratum are doubled while the weights in 

the complement1 unit are set to zero. A ratio estimate is computed for this modified sample and 

compared with the original estimate. This is repeated for each replicate stratum, squaring and 

then summing the result. Formula (5) then simplifies to 

( 2ˆ ˆ
Jackknife r

r

V R= −∑ )R̂  (6) 

where  is the ratio estimate based on the student sampling weights of replicate stratum r in 

which n

ˆ
rR

h student sampling weights are modified to either 0 or 2 times their original value. This 

simplification is possible because an average is taken over all replicates and over all sampling 
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units in the stratum. However, it should be noted that it is assumed that sampling fractions are 

deemed negligible (Cochran, 1977, p. 93, Corollary 1). In other words, if the difference in 

weights between the members in a pair is substantial, additional bias is introduced. The selection 

of a nh/2 sample occurs mostly by assigning PSUs to one of the units of a pair (i.e., a replicate 

stratum) based on stratifying characteristics such as median income or state assessment results 

where available. 

Some practical observations should be made regarding the CV in combination with the 

JRR method as described above. First of all, the CV has a maximum of 1. This is easily shown 

by the following. Suppose there are R replicate strata, then each replicate estimate of the sample 

size contains R-1 strata that are simply added and one stratum where approximately half the units 

are doubled and added to the other strata and the other half is discarded. At the extremes, two 

situations can occur: Either the units that are doubled have no weight at all, or the units that are 

doubled carry all the weight from that stratum. Suppose the total weighted sample size is W+, the 

sum of weights in a stratum is denoted Wr, and the stratum of interest is denoted r*, then the 

estimated sample size based on that stratum is 

*
*

2r r
r r

W W W W++ = +∑ *r  (7) 

or 

*
*

r
r r

W W W+= −∑ r

r
⎞
⎟

 (8) 

and, therefore, the difference between the total sample size and the stratum is at most Wr*. 

Hence, the numerator of the CV is at the extremes the sum of the squared sum of weights in each 

stratum obeying the basic inequality: 

2
2( ) r

R R
Var W W W⎛≤ ≤ ⎜

⎝ ⎠
∑ ∑  (9) 

Therefore, the numerator cannot exceed the denominator in the CV formula. Furthermore, if for 

every replicate stratum the students only appear in one of the variance units, equation (9) can be 

extended to: 
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denoting the square of the lower and upper bounds of the CV. The left part of this inequality 

turns into an equality if . A case where this situation has a substantial 

probability of occurring is when there are very few students in a subgroup and those students are 

clustered in a few schools. It is expected that in these cases the jackknife estimates are 

underestimating the true variation since the replicate strata do not represent the variation in the 

sample completely. 

,  for all ,i jW W i j=

Hansen and Tepping (1985) and Kovar et al. (1988) used 32 replicate strata in their 

studies with, predominantly, 2 units per stratum. Although this strategy is sufficient to compare 

estimators for the overall mean and total (sample) statistics, two special, partly overlapping 

situations often occur where variance estimation might be especially problematic: 

1. If the subgroup of interest resides in few strata (e.g., only certain geographical areas). 

2. If the subgroup of interest not only occurs in few strata, but is also sparse and clustered 

within those strata (e.g., Native Americans in Montana). 

Obviously, the design of Hansen and Tepping (1985) needs to be extended to provide an 

answer to: For which cases is variance estimation problematic and how can problematic 

estimation be detected? Generally, a suppression rule is used for these situations. For example, 

NAEP suppresses statistics that are based on students from less than five replicate strata 

(Johnson & Rust, 1993; Burke & Rust, 1995). 

In the following, characteristics of the current NAEP sampling and analysis design 

(Allen, Donoghue, & Schoeps, 2001) are described as an example of a stratified complex sample. 

The NAEP population is made up of primary strata (e.g., states) and for every primary stratum a 

separate stratified sample is drawn. In each primary stratum, usually 100 or more schools are 

sampled with inverse probability relative to size and stratified on several characteristics such as 

metropolitan statistical area status and denomination. Subsequently, the sampled schools are 

serpentine-ordered based on school location (urban to rural) and minority classifications and 

within cells on median household income or achievement scores (from state assessments), 
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assuring that neighboring cells are most similar. Schools are then assigned to one of two possible 

variance units in a pair for each of 62 replicate strata following this order. On average, in each 

school a random sample of 20 to 25 students is drawn. A distinction is made between certainty 

and noncertainty schools: Certainty schools are sampled in the sample if they appear in a 

certainty-cluster, usually an area that represents a major part of the students in the primary 

stratum and is part of the sample with certainty. All the other schools are noncertainty schools. In 

noncertainty schools, schools are assigned to the variance units of the replicate strata as 

described above, while in certainty schools students are assigned to the variance units of the 

replicate strata. The ordering of students in certainty schools is usually by appearance on the 

administration roster, which is essentially by subject assessed and then alphabetical by last name. 

Weights for students are computed based on the inverse probability of inclusion in the 

sample from the sampling frame and adjusted for nonresponse. Because the total student 

population between primary strata can be very different in size, a lot of variation in weights 

between schools can also be found between primary strata. In addition, because a simple random 

sample is drawn within schools while schools themselves are drawn with probability relative to 

size, most of the variation is between schools and not between students. Table 1 shows the 

relative percentages of within and between sums of squares aggregated at several levels of 

sampling for the weights and proficiency estimates of the NAEP 2003 mathematics, grade 4 and 

reading, grade 8 samples. The table shows that almost all variance of the sampling weights 

occurs between schools. About half the variance can be found between states (primary strata), 

while the assignment of schools and students to certain replicate strata and units accounts for the 

other half. It should be noted, though, that the occurrence of certainty schools and of multiple 

schools in one of the units of a pair still results in substantial within-units variance compared to 

between-schools variance. For proficiency, most of the variance occurs within schools. 

From the description above, it is clear that current NAEP designs are quite different from 

the design that Hansen and Tepping (1985) used in their study. Also, it was noted that there are 

some conflicting findings in the literature on the relation of bias and the CV and that the number 

of strata could be a crucial factor especially when comparing specific student groups. Therefore, 

this study has two objectives. The first is to resolve the discrepancies between the findings on the 

relation of bias and CV in the studies of Hansen and Tepping, Kovar (1985), and Kovar et al. 

(1988) by introducing current NAEP designs, statistics, and data. The second objective is to 
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study the relationship between bias, CV, and characteristics of stratified complex sample 

designs, predominantly the number of strata. This study does not compare variance estimation 

methods and will use the JRR approach throughout. 

Table 1 

Average Percentage of Variance of the Normalized Weights and Proficiency Estimates 

Between and Within Primary Strata, Replicate Strata, Variance Units, and Schools for 2003 

NAEP Mathematics, Grade 4 and Reading, Grade 8 

 Mathematics, grade 4 Reading, grade 8 

 Proficiency Weights Proficiency Weights 

Total N (x 100) 1,892 1,587 
Total variance 0.983 1.508 1.054 1.344 

% variance within primary 
strata 97.9% 60.3% 97.6% 50.7% 

% variance between primary 
strata 2.1% 39.7% 2.4% 49.3% 

% variance within replicate 
strata and primary strata 82.3% 46.8% 85.8% 41.0% 

% variance between replicate 
strata and primary strata 17.7% 53.2% 14.2% 59.0% 

% variance within units of 
pairs, replicate strata, and 
primary strata 

77.3% 41.3% 80.9% 36.9% 

% variance between units of 
pairs, replicate strata, and 
primary strata 

22.7% 58.7% 19.1% 63.1% 

% variance within schools 71.5% 0.1% 76.2% 0.3% 
% variance between schools 29.7% 99.8% 19.7% 99.7% 

Method 

Design 

To represent as much of the complex sample characteristics of NAEP as possible, this 

study was conducted as a database study. For subjects such as mathematics and reading, NAEP 

assesses more than 150,000 students once every two years in both grades 4 and 8. Because this 
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study is interested in relatively small sample sizes, the full NAEP samples can serve as the 

population and small samples can be drawn from this database. In this study two populations 

have been used: 2003 NAEP reading, grade 8 and 2003 NAEP mathematics, grade 4. 

First, stratified samples were drawn, based on 62 replicate strata and 2 variance units per 

stratum as assigned originally in NAEP. Five sample sizes were created drawing 1 through 5 

students from each variance unit from each replicate stratum. Therefore, the total number of 

students in each sample was at a minimum of 124 (62 x 2 x 1) and at a maximum of 620 (62 x 2 

x 5). Although this represents at most .4% of the population, samples were drawn with 

replacement to further ensure relative independence between samples. Furthermore, 100 samples 

were drawn to compute the average bias, and 100 repetitions were conducted to study the 

distribution of bias. Therefore, in total 10,000 samples were drawn for each subject. Definitions 

of bias and stability will be given in the following sections. 

Besides overall estimates of student group means and sample size totals, specific cases of 

clustering are studied. In NAEP, small race/ethnicity groups, such as Native Americans/Alaskan 

Natives, are often clustered in only a few schools. A race/ethnicity by gender table is created for 

each sample and average score and totals estimates are computed for each of the cells. The 

race/ethnicity variable in this study has the following categories: White, Black, Hispanic, 

Asian/Pacific Islander, Native American/Alaskan Native, and Other. 

Clustering 

The extent to which the clustering of the population is preserved in the samples can be 

monitored by computing design effects in the population and across samples. A design effect is 

computed as the complex sample variance estimate divided by a simple random sample theory 

variance estimate and signifies the impact of clustering on the effective sample size (i.e., the 

effective sample size is the sample size divided by the design effect). Table 2 shows the 

percentage of the population design effect that is retained by the samples for each of the 

subgroups. The design effect is highly similar across sample-size conditions; therefore, an 

average is presented here. The four columns represent reading and mathematics, and for each 

subject, score and total (i.e., sample size) estimates. The table shows that in general the samples 

only retain between 20% and 50% of the clustering. There are several instances where the design 

effect ratio shows an extremely low value. These cases are not entirely unexpected because 
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variance estimation based on few replicates is notoriously problematic (Burke & Rust, 1995). 

Therefore, erratic percentages can be attributed to poor estimation rather than poor sampling. 

Table 2 

Percentage of Population Design Effects Retained by the Samples in the Study for Reading 

and Mathematics and for Scale Score and Total Estimates 

Reading Mathematics 
 Score Total Score Total 

White 48% 38% 55% 24% 
Black 51% 29% 56% 23% 
Hispanic 65% 45% 82% 25% 
Asian 32% 30% 32% 26% 
Native 
American 17% 33% 8% 11% 

Male 

Other 42% 17% 41% 46% 

White 43% 40% 71% 24% 
Black 49% 27% 46% 22% 
Hispanic 72% 41% 61% 30% 
Asian 28% 37% 53% 37% 
Native 
American 16% 33% 40% 20% 

Female 

Other 25% 50% 41% 49% 

Variation 

The samples in this simulation study are drawn with the intention to research cases with a 

middle to high CV and with a wide variety of numbers of replicate strata. Because this study is a 

database study, there is relatively limited control over those characteristics besides manipulating 

sample size and targeting specific subgroups. The success of finding appropriate characteristics 

is shown in Table 3, displaying the average CV and the number of replicate strata over all data 

points by race/ethnicity category, for both subjects, and for all five different sample sizes. The 

race/ethnicity by gender groups have a range of coefficients between 0.1 and 0.8 and a range of 

the number of replicate strata of 2 to 60. Hence, the intended ranges have been achieved under 

this sampling strategy. 
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Table 3 

Average Coefficient of Variation and Number of Replicate Strata for All Student Groups 

Across Replications 

Subject Reading Mathematics 

 
Sample size  

(x 124) 1 2 3 4 5 1 2 3 4 5 
Total Total 0.10 0.07 0.06 0.05 0.05 0.11 0.08 0.06 0.05 0.05

White 0.21 0.15 0.12 0.11 0.09 0.22 0.16 0.13 0.11 0.10
Black 0.43 0.31 0.25 0.22 0.20 0.40 0.29 0.24 0.21 0.19
Hispanic 0.56 0.42 0.35 0.31 0.28 0.51 0.38 0.31 0.28 0.25
Asian 0.72 0.61 0.53 0.48 0.44 0.71 0.61 0.54 0.48 0.44
Native 
Am. 0.75 0.70 0.65 0.60 0.56 0.74 0.68 0.63 0.58 0.54

Male 

Other 0.81 0.79 0.77 0.75 0.74 0.79 0.78 0.75 0.73 0.71
White 0.21 0.15 0.12 0.11 0.09 0.23 0.16 0.14 0.12 0.11
Black 0.41 0.30 0.24 0.21 0.19 0.39 0.28 0.24 0.21 0.18
Hispanic 0.55 0.42 0.35 0.30 0.27 0.52 0.38 0.32 0.28 0.25
Asian 0.71 0.61 0.54 0.48 0.44 0.71 0.61 0.54 0.48 0.45
Native 
Am. 0.75 0.70 0.64 0.60 0.55 0.73 0.68 0.63 0.57 0.53

Average 
coefficient 
of 
variation 

Female 

Other 0.80 0.79 0.77 0.75 0.73 0.79 0.78 0.75 0.73 0.71
Total Total 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0

White 33.8 49.2 56.2 59.3 60.8 33.1 48.5 55.6 59.0 60.6
Black 9.7 17.8 24.6 30.4 35.1 10.7 19.5 26.8 32.8 37.7
Hispanic 6.4 12.0 17.0 21.6 25.7 7.6 14.2 20.0 25.1 29.5
Asian 3.4 5.5 8.1 10.5 12.8 3.3 5.3 7.6 9.9 12.0
Native 
Am. 2.5 3.1 3.9 4.9 5.8 2.5 3.2 4.1 5.0 6.1

Male 

Other 2.2 2.4 2.6 2.9 3.1 2.2 2.4 2.6 2.9 3.2
White 33.4 48.7 55.8 59.1 60.6 31.6 47.0 54.6 58.3 60.2
Black 10.5 19.1 26.3 32.3 37.2 11.0 19.9 27.3 33.2 38.3
Hispanic 6.5 12.1 17.3 21.8 26.0 7.4 13.9 19.6 24.6 29.0
Asian 3.4 5.7 8.1 10.5 13.0 3.2 5.2 7.3 9.6 11.7
Native 
Am. 2.5 3.1 3.9 4.9 5.9 2.5 3.2 4.0 5.0 5.9

Average 
number of 
replicate 
strata 

Female 

Other 2.2 2.4 2.5 2.8 3.1 2.2 2.4 2.6 2.9 3.2
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Evaluation 

The most desirable characteristic in variance estimators is that they be close to the truth. 

Because the simulation design is highly complex, an empirical MSE is computed to represent 

truth following the design of Kovar (1985). One thousand samples are drawn under the exact 

same conditions as the study samples, and the average squared difference from the expected or 

true value is taken, 

( )( )
1000 2

1

ˆ

1000

s
s

R E R
MSE =

−
=
∑

 (11) 

to be the MSE. The bias as percentage of the MSE is computed for each statistic. Also, an 

absolute percentage bias is given to discuss patterns of bias. 

In practice, decision rules are enforced based on the CV and the number of replicate 

strata, to notify the reader whether an estimate of variation is suspect or not. In this study, the 

outcome of these rules can be represented as Type I and Type II error rates, being the probability 

of flagging an estimate for a high CV or few replicate strata, while the estimate is unbiased, and 

the probability of not flagging an estimate for a high CV or few replicate strata, while the 

estimate is biased. In the statistical literature, estimators are usually considered to be biased if 

they deviate from the true value by 5% to 10%. For the CV, 5% intervals are used running 

between 10% and 100%. Generally, estimates with a CV less than 10% are considered to be of 

reasonably low variability, while estimates above 20% are considered severe cases. For the 

number of replicate strata, cutpoints from 1 through 60 are used where generally estimates based 

on less than 5 strata are considered severe cases. Subsequently, these error rates are shown as 

receiver operating curves plotting (1 – Type II) error or power against the Type I error. The idea 

is that the further the curve is from the diagonal, the better the power is relative to Type I error. 

Availability 

The sampling approach in this study does not allow for direct manipulation of the 

proportion of each of the race/ethnicity groups in each sample. Therefore, some of the smaller 

groups may not always be included and may yield empty cells. Subsequently, not all statistics are 

based on the same number of samples within replicates. Table 4 shows the average percentage of 

samples across replicates that contain at least one member of a race/ethnicity subgroup. 
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Obviously, a smaller sample increases the chances of empty cells, which affects predominantly 

the Native American/Alaskan Native and the Other groups. 

Table 4 

Average Percentage of Samples Across Replications That Contain One or More Members of a 

Race/Ethnicity Subgroup 

Subject Reading Mathematics 
Sample size (x 124) 1 2 3 4 5 1 2 3 4 5 

White 100 100 100 100 100 100 100 100 100 100 
Black 100 100 100 100 100 100 100 100 100 100 
Hispanic 99.87 100 100 100 100 99.99 100 100 100 100 
Asian 94.30 99.66 99.98 100 100 93.26 99.54 100 100 100 
Native 
Am. 70.76 91.18 97.48 99.38 99.85 73.32 92.22 97.99 99.58 99.88

Male 

Other 39.62 63.50 78.30 86.85 91.95 39.39 64.64 78.67 86.42 92.13
White 100 100 100 100 100 100 100 100 100 100 
Black 100 100 100 100 100 100 100 100 100 100 
Hispanic 99.86 100 100 100 100 99.99 100 100 100 100 
Asian 94.60 99.65 99.99 100 100 92.75 99.57 99.95 100 100 
Native 
Am. 70.67 91.57 97.13 99.28 99.81 71.30 91.85 97.71 99.26 99.78

Female 

Other 37.55 61.88 75.98 84.25 90.73 38.76 64.60 78.89 86.31 92.22

Results 

The results for 2003 NAEP reading, grade 8 and 2003 NAEP mathematics, grade 4 look 

very similar, and therefore reading results will predominantly be discussed. Figure 1 shows the 

average and absolute bias in standard error by categories of the CV, while Figure 2 shows the 

average and absolute bias in standard error by the number of replicate strata. For variation of 

average scale scores, the average bias exceeds 10% for estimates with a CV of 15% to 20% and 

continues to exceed except for the point where the horizontal axis is crossed at 70–75%. For the 

variation of totals estimates, the bias is below 10% until a CV of 60–65%. Where the score graph 

crosses the x-axis, the totals graph drops to a very small bias and warrants further investigation. 

As mentioned in the introduction, if only a few students are available for variance estimation, 

chances are substantial that those students are designated to only one unit of each replicate 
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stratum pair for few pairs. The result is that the formula for the CV is bounded. For estimates 

based on two replicates in only one of the variance units, the CV would be between 71% and 

100%. In Table 5 the critical lower bound value is determined for estimates based on 2, 3, 4, and 

5 replicates, and the percentage of observations below this value and the percentage of 

observations at or above this value are displayed, showing that at least 96% of the observations 

are at or above the critical lower bound. This could indicate that, for most of these estimates, the 

jackknife pairs are not filled appropriately. Furthermore, the table shows that for 2 replicate 

strata about 37% of the observations are in the 70%  to 75% CV category and that 86% of those 

observations have a large negative bias, below –20%. Subsequently, these observations suppress 

the average bias resulting in the drop in Figure 1. The results are less dramatic for larger numbers 

of replicate strata. Also, the bias results for the standard errors of the scores are shown in Table 

5, indicating a smaller influence of these cases at the 70% to 75% CV category and providing 

some explanation why different patterns for totals and scores are observed in Figure 1. Figure 3 

is the same as Figure 1 except that variance estimates based on less than 5 replicate strata have 

been removed. The relation between the CV seems to be more linear for estimates of standard 

errors associated with totals. 
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Figure 1. Average bias and absolute bias by categories of the coefficient of variation for 

scores and totals, 2003 reading, grade 8. 
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Figure 2. Average bias and absolute bias by categories of the number of replicate strata for 

scores and totals, 2003 reading, grade 8. 
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Figure 3. Average bias by categories of the coefficient of variation for scores and totals 

after removing estimates based on less than 5 replicate strata, 2003 reading, grade 8. 
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Table 5 

Percentage Observations at, Above, and Below Critical Bounds of the CV Conditional on the 

Number of Replicate Strata (2–5), Reading and Mathematics Combined 

Number of replicate strata 2 3 4 5 

Critical value 
(category) 

70.7% 
(70-75) 

57.7% 
(55-60) 

50.0% 
(50-55) 

44.7% 
(40-45) 

% below critical value category 1.5% 2.0% 3.0% 3.4% 
% above critical value 98.5% 98.0% 97.0% 96.6% 
% at critical value 37.0% 11.3% 15.1% 13.0% 
% with high negative bias of totals variance 
estimates (< -20%) of percent at critical value 85.9% 89.8% 90.4% 91.6% 

%  with high negative bias of score variance 
estimates (< -20%) of percent at critical value 68.2% 74.5% 78.4% 80.9% 

Additionally, for small CV estimates and both scale scores and totals, predominantly a 

negative bias is shown, while for larger estimates a positive bias emerges. It should be noted that 

the CV depends on the variation, at least for the totals estimate, and therefore underestimation of 

the variation results in underestimation of the coefficient, and conversely for overestimation. 

Hence, the effect of over- and underestimation might be magnified. The average absolute bias 

(both for scores and totals) seems largely linearly related to the CV. Furthermore, the variability 

of the standard error estimates can be inspected for each of the levels of the CV. In Figure 4 

empirical 90% confidence bars are shown for the average score standard error estimates after 

removing estimates based on less than 5 replicate strata. The variability is quite excessive and 

skewed. For larger CVs the variability is also larger and, therefore, a weak relationship exists 

between the CV and the reliability of the standard error of ratio estimates in NAEP. 

In conclusion, a CV cutoff point of 20% seems to be reasonable, given that for larger 

coefficients the bias exceeds 10% for average score estimates. However, for estimates of totals a 

more lenient cutoff could be allowed and, in general, the CV seems to be a weak predictor of 

bias and reliability of ratio estimate standard errors.  

The average percent bias also appears to be largely linearly related to the number of 

replicate strata used in a variance estimate, though the direction is obviously reversed. For both 

standard error estimates of average scores and totals, fairly unbiased estimation is warranted with 
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at least 40 to 45 replicate strata. For fewer replicates, standard errors of average scores are 

largely underestimated, while overestimation occurs for standard errors of totals. It is obvious 

that for very small numbers of replicates (e.g., 5 or less) variance estimation is poor. 

Subsequently, a decision rule such as derived by Burke and Rust (1995) is reasonable if the goal 

is to obtain high power, placing a flag on the worst cases of bias. 
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Figure 4. Average bias by categories of the coefficient of variation for scores after removing 

estimates based on less than 5 replicate strata and including 90% confidence bars, 2003 

reading, grade 8. 

The results above can also be explained in terms of hypothesis testing, where rules based 

on the CV and the number of replicate strata determine the probability that the null hypothesis 

(no bias) is accepted or rejected. The true variance is known in this study and, therefore, the bias 

can, for example, be defined as that the estimated variance is 10% larger or smaller than the true 

variance. Subsequently, the probability can be computed that the null hypothesis of no bias is 

rejected given that the estimate is not biased. Henceforth, while rules based on the CV and the 

number of replicate strata are both aimed at indicating whether an estimate of variance is biased, 
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both also appear to result in different decisions: The CV rule can be characterized as minimizing 

Type I errors, while the number of replicate strata rule maximizes power. 

Receiver Operating Characteristic Curve (ROC) 

To further explore Type I and II probabilities, receiver operating characteristic curves 

(ROCs) were constructed and displayed in Figure 5 for the CV and in Figure 6 for the number of 

replicate strata. The focus will be on standard errors of average scale score estimates. Although 

the totals estimates ROCs are slightly different from the average scale ROCs, commensurate 

with the plots in Figures 1 and 2, the difference in probabilities between the two rules is highly 

similar. The results are averaged across mathematics and reading. 
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Figure 5. Receiver operating curves for four definitions of bias and a range of definitions 

for coefficient of variation cutoff points, 2003 NAEP mathematics and reading. 

Each curve on the plot represents a different definition of bias specified in the legend. 

Hence, the curve closest to the diagonal is based on a definition that a variance estimate is biased 

if it deviates more than 10% from the true variance. Each point on the curve represents a 

different decision rule cutoff point, and some of these points are accompanied by the value of the 

CV or the number of replicate strata used as cutoff for that particular point. 
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Figure 5 shows that the power is relatively high at a CV of 20%, but so is the Type I 

error. In other words, a relatively large percentage of reasonable estimates is rejected. 

Furthermore, it seems that an optimal balance between power and Type I error can be found at a 

coefficient of 30%. However, in general, the Type I error is high for reasonable power levels 

resulting in a curve that is fairly close to the diagonal. 
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Figure 6. Receiver operating curves for four definitions of bias and a range of definitions 

for number of replicate strata cutoff points, 2003 NAEP mathematics and reading. 

Figure 6 shows that the Type I error is reasonably low at 5 replicate strata, but that the 

power at this level is also quite poor. In other words, only a few of the poor estimates are being 

detected and, in general, the curves are unfavorably close to the diagonal. An optimal balance 

would be achieved if the cutoff would be around 16 replicate strata.  

Discussion and Conclusion 

In this study two statistics have been investigated that are used to detect bias in variance 

estimation for complex samples. Specifically, under a JRR scheme, a minimum of 5 replicate 

strata is deemed necessary for reasonable estimation (Burke & Rust, 1995). Also, the variation in 

the sample should not exceed the total sample size by more than 20% (Hansen & Tepping, 
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1985). With respect to the latter indicator, some controversy has been documented (e.g., Kovar et 

al., 1988) questioning the validity of this rule. 

By drawing records from a large-scale assessment database, a quasi-simulation study was 

conducted to investigate the relation between bias and the two indicators of bias. The results 

show that the rule of 5 is quite liberal and predominantly aimed at removing the worst estimates. 

On the other hand, the CV rule is more conservative and predominantly aimed at removing cases 

that could be biased, yielding a relatively high power. 

While it is in several ways problematic to make strong inferences about how these results 

translate to an operational setting, tentative conclusions can be drawn from these results. The 

most important one is that it seems that these rules are quite poor predictors of bias. While a 20% 

cutoff for the CV appeared reasonable in terms of bias, this cutoff is problematic in terms of 

committing Type I errors. The same is true for the number of replicate strata. While 5 seems an 

appropriate cutoff for detecting severe bias, this rule is problematic in terms of Type II error. 

Hence, it is questionable to what extent these rules are useful. At best, an exorbitantly high CV 

may indicate consistently that the reliability of the standard error estimate is jeopardized and a 

minimum to the number of replicates may serve as a stopgap measure. It should be noted that the 

limited design of this study may present a somewhat biased picture because estimates based on 

few replicates were largely limited to very small sample sizes. In sum, the findings show that 

these predictors of bias are somewhat weak and, therefore, in practice it remains highly uncertain 

whether estimates are biased in relatively small samples. 

There is little question that it is important to alert readers about those cases where it is 

undeniably clear that the jackknife estimate does not yield appropriate results. It might be fruitful 

to defer to an alternative variance estimator in those cases, although the comparisons of Kovar et 

al. (1985, 1988) indicate that it is quite likely that alternative estimators will simultaneously do 

poorly. One option that is used by the Census Bureau (2002) is to use design effects of relatively 

large groups for small groups assuming the clustering is equivalent. The effects would be 

multiplied by a simple random sample estimate for groups where a stratified complex sample 

estimate is known to be inappropriate. In any case, the conclusion could simply be that the 

sample or, in some cases, the population does not allow for these inferences. For cases where it is 

uncertain whether the variance estimation is biased, some options could be considered. 
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First and most obvious, a better predictor or combination of predictors should be sought. 

Since the degrees of freedom themselves are difficult to accurately determine in a complex 

sample, indirect indicators, as the CV is, might still provide the most feasible option to detecting 

a low reliability of the standard error estimate. Among others, candidates are those related to the 

intraclass correlation and the variability of variance across clusters, schools, or replicates. 

Furthermore, a better predictor or combination could be focused on the inference and not so 

much on the variance estimate in isolation. The idea is that biased variance estimates could be 

permitted if the effect on a t- or z-statistic is relatively small and/or not meaningful in terms of 

the results a program publishes. 

Finally, this study is solely focused on the statistical properties of jackknife variance 

estimates in a large-scale survey setting. However, there are several practical issues and 

questions related to these statistical properties that should be considered and explored in 

concurrence. First, to what extent are flagging results indicative that the purpose of the survey is 

not fulfilled, and is the level of flagging decreasing across time? Second, to what extent should 

problematic estimates be removed from the results instead of issuing a warning to the user? How 

sample-dependent are these rules? For example, are there special samples where different rules 

should be applied? 
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Note
 

1  Although a JRR-half is used in this study, a JRR-complement can be computed by doubling 

the weights of the observations in the variance units that were not selected in the JRR-half and 

setting the weights of the observations that were selected in the JRR-half to zero. Both 

estimates have been computed initially and a correlation across all estimates between the CV 

greater than 0.999 and a correlation of 0.75 between the bias of the proficiency estimates were 

found. Therefore, no further attention has been devoted to the JRR-complement. 
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