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Abstract

A hierarchical latent regression model is suggested to estimate nested and nonnested relationships

in complex samples such as found in the National Assessment of Educational Progress (NAEP).

The proposed model aims at improving both parameters and variance estimates via a two-level

hierarchical linear model. This model falls naturally within the set of models used in most large

scale surveys, in that all of them are special cases of the hierarchical latent regression model. The

model parameter estimates are obtained via the expectation-maximization (EM) algorithm. An

example with NAEP data is presented and results of parameter estimation and standard errors

are compared with results from operational procedures of NAEP.

Key words: Hierarchical linear models, latent regression models, maximum likelihood estimates,

EM algorithm, item response theory, NAEP
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1 Introduction

Hierarchical linear modeling (HLM) is a well-known framework particularly appropriate for

complex stratified and clustered samples with balanced or unbalanced designs and varying degrees

of missing data patterns (Raudenbush & Bryk, 2002). This family of models has proven to be

useful especially for the analysis of educational data from complicated designs involving survey

sampling. Examples of cognitive educational surveys with complex designs are the National

Assessment of Educational Progress (NAEP) and the Trends in International Mathematics and

Science Studies (TIMSS). In these programs students are sampled from schools, and schools are

sampled from participating states or countries following a stratification scheme. Stratification

in this context means that the sample is drawn from each of several relatively homogenous

strata with respect to characteristics such as median household income and level of urbanization.

Furthermore, blocks of items are systematically sampled across students to assess a large amount

of information in a relatively short amount of student testing time. Hence, students do not

answer all test questions, and relatively little information is obtained from individual students.

Justification for this design stems from the reporting level of these programs, being proficiency

estimates of student populations (e.g., male students, students in a particular state or country).

The prevalent operational model used to estimate student population proficiencies is a latent

regression model (Allen, Donoghue, & Schoeps, 2001; Mislevy, 1984, 1985). Population groups

indicators are regressed onto a latent proficiency, which is characterized by a collection of item

response theory (IRT) models (Birnbaum, 1968; Lord, 1980; van der Linden & Hambleton, 1997).

Suppose that the ability of student i in subscale t is denoted as θit, where i = 1, · · · , n and

t = 1, · · · , p. For example, in the NAEP mathematics assessment p equals 5, corresponding to the

subscales: (a) Numerical Properties and Operations; (b) Measurement; (c) Geometry; (d) Data

Analysis and Probability; and (e) Algebra. Furthermore, θ is a latent variable and, hence, the

latent regression assumes the following form:

θit = γtxi + εi, (1)

where γt is a vector of Q regression coefficients for scale t, that is, γt = (γ1t, · · · , γQt)′.

Furthermore, xi is a vector of Q population groups indicators and εi is a residual term, assumed

to be normal distributed. Student latent proficiencies θt = (θt1, · · · , θtN )′ can be inferred from

student item responses Y t = (y1t, · · · , yNt) through item response theory. The complete latent
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regression model assuming a normal distribution for θi given µit = γt
′xi can be estimated through

the following likelihood:

Lt =
N∏

i=1

((
M∏

h=1

P (yiht|θit, βh)

)
φ(θit|µit, σ

2
t )

)wi

(2)

where P denotes the probability of observing response yiht given latent ability θi and IRT item

parameters β. Furthermore, φ denotes a normal density with variance σ2
t . The product operators

imply that items are assumed to be independently observed and that students are independently

observed. This is obviously not true in a complex sample, and therefore post-hoc operations are

conducted in NAEP, using jackknife repeated replications (JRR), to derive appropriate standard

errors. Several alternatives have been proposed.

Wilson and Adams (1995) and Adams, Wilson, and Wu (1997) have formulated a multilevel

model to concurrently estimate latent regression and IRT parameters. Also, Raudenbush, Fotiu,

and Cheong (1999) have applied a multilevel model to the plausible values produced in the NAEP

program, which are imputations from the posterior ability distribution. Furthermore, Johnson

(2002) and Johnson and Jenkins (2005) have developed a Bayesian framework for multilevel

IRT with NAEP data that include a Markov chain Monte Carlo estimation procedure and also

concurrent estimation of item and population parameters. Finally, Aitkin and Aitkin (2005) have

used generalized mixed models to estimate four-level models with NAEP-type data.

These alternatives have in common that they work quite well with very small samples and

small regression models. However, larger data sets corresponding to typical NAEP samples

become rapidly intractable to compute. The only exception is Raudenbush et al. (1999), although

the extent to which the multilevel structure is captured in the plausible values is questionable. In

this study, a less ambitious approach has been taken to estimate a random effects parameter across

schools in the population model. When students are selected from the same school, observations

of school and teacher characteristics are quite likely to be related, violating the assumption of

independent observations that is required in NAEP’s latent regression models. More importantly,

as Raudenbush and Bryk (2002) pointed out, students in the same school share values on many

more variables, some of which are not observed, which means that the variables tend to disappear

into the residual term of the linear model, causing correlated disturbances.

There are several other clustering levels in educational surveys like NAEP, such as states or

countries, classrooms, and primary sampling units (PSUs). These are ignored in this study for
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several reasons. For classrooms, sampling often occurs across subjects (e.g., reading, mathematics)

and across students. In practice, not enough data is available to support such detailed estimation.

For states and PSUs, the situation is more complex. In state-to-state samples, PSUs coincide

with schools and a separate model is applied to each state after a common measurement scale

is determined. In other words, the state level of clustering is implicit. For national samples,

geographic location is more likely to be an important clustering variable, although stratification

may be applied at this level as well, hence reducing the effect of clustering.

The first section of this paper will introduce the structure of a latent hierarchical linear model

that is appropriate for NAEP data, followed by a discussion of model parameter estimation via the

expectation-maximization (EM) algorithm. Also, estimation of standard errors is discussed and

the model is extended to the multivariate case. The univariate case is illustrated by an application

of a two-level model to NAEP 2004 age 17 long-term trend mathematics data, and the resulting

parameter estimates are compared with parameters from the current operational NAEP approach.

The paper concludes with a discussion of these results.

2 Hierarchical Latent Regression Model

2.1 Hierarchical Linear Models

The primary focus of this study is hierarchical modeling with latent variables. To facilitate

the discussion of this model, we will use a simple two-level latent regression model with predictors

only on the first level. This model can be considered a special case of a two-level hierarchical

latent regression model (HLRM), which may or may not be more appropriate for the problem at

hand. Extension of this model to a general HLRM is also straightforward. Since the discussion

of hierarchical models involves sampling clusters, the notation of clusters will be added to

indicate hierarchical relations and a nested data structure. Hence, there are nj students nested

within school j for j = 1, · · · , J , and their proficiencies θ1jt to θnjjt are likely to be positively

correlated, since they share a common curriculum and instructional experience. Furthermore,

let xij be the vector of Q population groups indicators with an additional cluster index, that is,

xij = (Xij1, Xij2, · · · , XijQ) for student i in school j. Correspondingly, the regression effects for

school j and subscale t is γjt = (γjt1, · · · , γjtQ)′. The item responses for student i in school j

on subscale t is denoted by yijt. A two-level model describes linear relations between the latent

proficiency and the population groups indicators where regression coefficients are random effects
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across school j. The Level 1 model is:

θijt = xijγjt + εijt. (3)

The residual term εijt is assumed to be εijt ∼ N(0, σ2
t ). The Level 2 model is:

γjt = γt + ujt. (4)

The coefficients γt in the above model (4) without the second-level notation implies that the

overall regression effects (a vector of Q regression effect parameters (i.e.,γt = (γt1, · · · , γtQ)′)) are

fixed, that is, they do not vary across sampling units.

With the second-level model, predictors can be added to model the random regression

effects. Furthermore, this model can be made quite flexible by estimating some regression effects

with second-level predictors and some without and possibly by allowing a subset of regression

parameters γjt to be considered random effects ujt and others to be considered fixed effects.

In this paper, a simple unconditional model on the second level (i.e., the model in (4) without

predictors) is used primarily for demonstration purposes. Moreover, in the simple model, γ̂t is

an overall estimated mean of regression effects across all clusters, taking into account school or

cluster random effects. Hence, it is expected that the HLRM model will help in the estimation

of relations between student abilities and the group indicators. The random effects parameter

ujt is assumed to be ujt ∼ N(0, T t) for j = 1, 2, · · · J and t = 1, · · · , p. A rationale for treating

cluster regression effects as random effects is that NAEP does not report individual school effects

but rather group proficiency for the population of students. Because participating schools as well

as their students are sampled from this population, there is primarily interest in the variance

component due to the complex sample and not in specific school or student effects.

Substituting the model in (4) in (3) gives the combined model

θijt = xijγt + xijujt + εijt. (5)

The marginal variance of θijt is xijTx′ij + σ2, where xijTx′ij is the variance component due to

random effects ujt, attributable to the variation across selected schools. Also, σ2
t depicts the

variation among students within schools. In this model, variation is decomposed into a school-

and a student-level component.
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2.1.1 Multivariate Case

In the multivariate case, student proficiency θij is a p-dimensional vector (i.e., θij ∈ <p

and θij = (θij1, · · · , θijp)′). Regression effects on p subscales can be represented as a matrix

Γ = (γ1|γ2| · · · |γp), where each column is a vector of regression effects for a particular subscale or

dimension. The random school effects are represented as U j = (uj1|uj2| · · · |ujp), and the residuals

are a column vector of p subscale residuals εij = (εij1, · · · , εijp)′. Subsequently, the combined

multivariate model is a hierarchical linear regression among p-dimensions and can be written as

θij = xijΓ + xijU j + εij . (6)

Alternatively, this model can be written by using matrix notation that reflects only the

second-level and/or subscale indices. For example, in the univariate case, for subscale t = 1, · · · , p,

the proficiencies of all students within a second-level unit (e.g., in school j) can be expressed as

θjt = (θ1jt, · · · , θnjjt)′, and for group indicators Xj = (x′1j , · · · , x′njj)′. Furthermore, the residual

terms are εjt = (ε1jt, · · · , εnjjt)′, leading to a model for school j

θjt = Xjγt + Xjujt + εjt. (7)

This notation is used frequently throughout this report. In addition, the model is also expressed as

θijt =
Q∑

q=1

Xijqγqt +
Q∑

q=1

Xijquqjt + εijt (8)

when discussing computational details.

2.2 Estimation of HLRM Parameters

In NAEP, the sample is stratified both at the school- and at the student-level, resulting in

unequal sampling probabilities. Let wij be the sampling weight for student i in school j. While

there is much discussion about the use of sampling weights within the HLM framework (e.g.,

Asparouhov, 2005), they are included here in HLRM models in order to capture differences

between sampling and population distributions regardless of the complex nature of the sample. In

the following sections, the marginal likelihood estimates (MML) of the model parameters will be

discussed as part of an EM algorithm. For subscale t = 1, · · · , p, the log likelihood function L over
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all individual students and test item responses is

L = log




J∏

j=1

nj∏

i=1

P (yijt|xijγt, xijT tx
′
ij + σ2

t )
wij




=
J∑

j=1

nj∑

i=1

wij log
(∫

P (yijt|θ)φ(θ|xijγt,xijT tx
′
ij + σ2

t )dθ

)
. (9)

In the maximization step, the parameters γt, σ2
t , and T t given the data (ujt, yijt) for i = 1, · · · , nj ,

j = 1, · · · , J and t = 1, · · · , p can be estimated by (see also the appendix)

γ̂t =




J∑

j=1

nj∑

i=1

wijx
′
ijxij



−1

J∑

j=1

nj∑

i=1

wijx
′
ij(θ̃ijt − ujtxij), (10)

σ̂2
t =

∑J
j=1

∑nj

i=1 wij σ̃
2
ijt +

∑J
j=1

∑nj

i=1 wij(θ̃ijt − xijγt − xijujt)2∑J
j=1

∑nj

i=1 wij

, (11)

T̂ t =
1
J

J∑

j=1

ujtu
′
jt, (12)

where θ̃ijt in (10) is the posterior mean of student proficiencies and σ̃2
ijt in (11) is the posterior

variance. In the expectation step (E-step), these moments can be found following

θ̃ijt =
∫

θijtp(θijt|yijt)dθijt, (13)

and

σ̃2
ijt =

∫
(θijt − θ̃ijt)2p(θijt|yijt)dθijt, (14)

where the posterior density p(θijt|Y ) can be expressed following Bayes theorem as

p(θijt|Y ) =
p(yijt|θijt)φ(θijt|xijγt, xijT tx

′
ij + σ2

t )∫
p(yijt|θijt)φ(θijt|xijγt,xijT tx

′
ij + σ2

t )dθijt
. (15)

Furthermore, T t is a covariance matrix of random school effects

T t =




τt11 τt12 · · · τt1Q

τt21 τt22 · · · τt2Q

· · · · · · · · · · · ·
τtQ1 τtQ2 · · · τtQQ


 ,

where the diagonal elements τtqq indicate the variance of random regression effects of γqtj for
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q = 1, · · · , Q and t = 1, · · · , p across all schools j = 1, · · · , J . τtqq′ and the off-diagonal elements

indicate the covariance between two random effects γqtj and γq′tj for q, q′ = 1, · · · , Q.

Extension of the maximization step to the multivariate case is straightforward. The estimates

of Γ,Σ, and T = Var(U j) for t = 1, · · · , p and j = 1, · · · , J can be estimated by

γ̂t =




J∑

j=1

nj∑

i=1

wijx
′
ijxij



−1

J∑

j=1

nj∑

i=1

wijx
′
ij(θ̃ijt − ujtxij), (16)

for each subscale t = 1, · · · , p. Collecting the estimates of γ̂t will yield Γ̂ = [γ̂1, · · · , γ̂p]:

Σ̂ =

∑J
j=1

∑nj

i=1 wijΣ̃ij +
∑J

j=1

∑nj

i=1 wij ε̃
′
ij ε̃ij∑J

j=1

∑nj

i=1 wij

, (17)

T̂ =
1
J

J∑

j=1

U ′
jU j , (18)

where ε̃ij = (θ̃ij − xijΓ − xjU j) in (17). Furthermore, the posterior mean is now a vector of

posterior means, and Σ̃ij is the posterior variance-covariance matrix of θij . The covariance matrix

T̂ in (18) has dimension pQ× pQ. The diagonal block matrix in T̂ is T̂ tt for t = 1, · · · , p and the

off-diagonal block matrix T̂ ts is the covariance matrix of school random effects between subscale

t and subscale s, for s, t = 1, · · · , p. Hence, the matrix T̂ can be further written in terms of the

variance and covariance of random school effects among p subscales as the following block matrix:

T̂ =




T̂ 11 T̂ 12 · · · T̂ 1p

T̂ 21 T̂ 22 · · · T̂ 2p

· · · · · · · · · · · ·
T̂ p1 T̂ p2 · · · T̂ pp


 ,

with

T̂ ts =
1
j

J∑

j=1

ujtu
′
js, (19)

and

T̂ ts = T̂ ′
st (20)

for t 6= s and t, s = 1, · · · , p, denoting the covariance matrices of random school effects between

subscale t and s. In the multivariate case, the covariance of the effects between any two subscales

t and s for t 6= s, t, s = 1, · · · , p, is a Q×Q matrix with elements
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T̂ ts =




τ̂ts,11 τ̂ts,12 · · · τ̂ts,1Q

τ̂ts,21 τ̂ts,22 · · · τ̂ts,2Q

· · · · · · · · · · · ·
τ̂ts,Q1 τ̂ts,Q2 · · · τ̂ts,QQ


 .

where T̂ tt is defined in (18), representing the covariance matrix of school random effects for

subscale t. Therefore, there are p variance matrices T̂ t and p(p−1)
2 covariance matrices T̂ ts resulting

in p2+p
2 matrices to be estimated in order to obtain T̂ in the multivariate case.

2.2.1 Conditional Moments for the Univariate Case

Individual student proficiency Θ (i.e., θjt, θijt) and the random school effect U (or ujt) are

unobserved quantities. However, conditional expectations can be obtained given observed response

data Y (i.e., yjt, yijt) and parameter estimates from a previous EM cycle γ̂t, σ̂
2
t , T̂ t. Specifically,

student latent proficiencies θjt and school effects ujt are treated as missing data for j = 1, · · · , J

and t = 1, · · · , p. If (θjt, ujt) was observed, finding the MML estimates would be straightforward.

For notational convenience, let Ω = (Xj ,yj ,σ
2
t ,γt, T t), including the observed responses yj and

group indicators Xj , as well as previous parameter estimates from a previous cycle γt, σ
2
t , T t.

The posterior mean and variance for student abilities can be obtained through numerical

integration using (13) and (14). Hence, to complete the E-step of this algorithm, an expression for

the conditional expectations for E(ujt|Ω) and E
[
(θ̃ij − xijγt − xijujt)2|Ω

]
to estimate σ2

t , and

E(ujtu
′
jt|Ω) to estimate T t are needed. The question is how these conditional expectations can

be found.

For the term (θ̃ij − xijγt − xijujt)2 in (11) it follows that

(θ̃ij − xijγt − xijujt)2 = (θ̃ij − xijγt)
2 − 2(θ̃ij − xijγt)xijujt + (xijuij)2. (21)

Therefore, finding the conditional expectation for E[(θ̃ij − xijγt − xijujt)2|Ω] only requires the

conditional expectations E(ujt|Ω)), E[(xijuij)2|Ω], and E(ujtu
′
jt|Ω). Because

E(ujtu
′
jt|Ω) = E(ujt|Ω)E(ujt|Ω)′ + Var(ujt|Ω), (22)

the evaluation of E(ujtu
′
jt|Ω) relies on the conditional expectation E(ujt|Ω)) and variance

Var(ujt|Ω) of ujt. Therefore, in the E-step the conditional expectations and variances of missing

data ujt, as well as the conditional expectation of the quadratic term (xijuij)2 given Ω, need

to be evaluated before computing parameter estimates for each M cycle. That is, each E-step
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requires the evaluation of E(θjt|Ω), Var(θjt|Ω), E(ujt|Ω), Var(ujt|Ω), and E[(xijujt)2|Ω]. They

are the elements necessary for the computation of expected sufficient statistics for γt, σ
2
t , T t,

provided that the complete data were observed. Substituting the expected complete data sufficient

statistics into formulas in (10), (11), and (12) in the M-step yields improved estimates in terms

of the likelihood. Repeating the E- and M-steps until convergence is achieved yields maximum

likelihood estimates (Dempster, Laird, & Rubin, 1977).

Let θ̃jt = (θ̃ijt, · · · , θ̃injt) and Var(θjt|Ω) = Σ̃j , denoting a diagonal matrix with elements

Var(θ1jt|Y ), · · · ,Var(θnjjt|Y ). The conditional mean E(ujt|Ω), the conditional variance

Var(ujt|Ω) and the conditional expectation for the quadratic form E[(xijujt)2|Ω] depend on

the joint distribution of utj and latent abilities θjt. The joint distribution of (θj , ujt) given

Xj , γt, T t, σ
2
t is assumed to be multivariate normal with mean vector (Xjγt,0) and covariance

matrix

Cov(θjt, ujt) =


 σ2

t I + XjT tX
′
j XjT t

T ′
tX

′
j T t


 .

Following the proof of Raudenbush and Bryk (2002, pp. 442–443), the conditional expectation is

given by

E(ujt|θjt) = T tX
′
j(σ2I + XjT tX

′
j)−1(θjt −Xjγt)

= C−1
jt X ′

j(θjt −Xjγt), (23)

where I in (23) indicates an identity matrix of size j for j = 1, · · · , J , and

Cjt = X ′
jXj + σ2T−1

t . (24)

The conditional variance of ujt given θj can be expressed as

Var(ujt|θj) = T t − T tX
′
j(σ2

t I + XjT tX
′
j)−1XjT t

= C−1
jt σ2

t . (25)

Denote the conditional expectation E(ujt|θjt) as ūjt, which can be evaluated through (23) for

each school. The values of ūjt and Var(ujt|θjt) can be obtained prior to observing item response
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data Y . The conditional expectation of ũjt given Ω can be expressed as

ũjt =
∫

u

(∫
P (u|θ, Y )P (θ|Y , σ2

t , γt,T t)dθ

)
du

=
∫ ∫

uP (u|θ)P (θ|Y , σ2
t ,γt, T t)dudθ

=
∫

C−1
jt X ′

j(θjt −Xjγt)P (θ|Y , σ2
t ,γt, T t)dθ

= C−1
jt X ′

j(θ̃jt −Xjγt). (26)

Also, the posterior mean ũjt in (26), E(
∑J

j=1 ujtu
′
jt) can be expressed as

E




J∑

j=1

ujtu
′
jt


 =

J∑

j=1

ũjtũ
′
jt +

J∑

j=1

Var(ujt|Y , σ2
t , γt,T t), (27)

where Var(ujt|Xj , Y , σ2
t ,γt, T t) is the conditional variance for each random school effect. Write

Var(ujt|Xj , Y , σ2
t , γt,T t) as Var(ujt|Ω) for simplicity, which can be integrated and expressed in

terms of posterior variance of θjt, denoted as Σ̃j . This is a diagonal matrix with elements equal

to the posterior variance for each student within a school or cluster:

Var(ujt|Ω) =
∫

(ujt − ũjt)(ujt − ũjt)′
(∫

P (u|θ)P (θ|Ω)dθ

)
du

=
∫ ∫

[(ujt − ūjt)(ujt − ūjt)′ + (ūjt − ũjt)(ūjt − ũjt)′]P (u|θ)P (θ|Ω)dudθ

= Var(ujt|θj) +
∫ ∫

[(ūjt − ũjt)(ūjt − ũjt)′]P (u|θ)P (θ|Ω)dudθ

= C−1
jt σ2

t +
[
C−1

jt X ′
j

]
Σ̃j

[
C−1

jt X ′
j

]′
. (28)

To evaluate the conditional expectation E[(xijujt)2|Ω], first write it as a quadratic form,

E[(xijujt)2|Ω] = E(u′jtx′ijxijujt|Ω). By a theorem of the quadratic expectation (e.g., Stapleton,

1995, p.51),

E(u′jtx′ijxijujt|Ω) = trace[x′ijxijVar(ujt|Ω)] + ũ′jtx′ijxijũjt

= xijVar(ujt|Ω)x′ij + ũ′jtx′ijxijũjt. (29)

Combining the expressions of ũjt in (26), Var(ujt|Ω) in (28), and the quadratic term

E[(xijujt)2|Ω] in (29) and substituting these into (21) yields E[(θ̃ijt − xijγt − xijujt)2|Ω], which

can be written as

E[(θ̃ijt − xijγt − xijujt)2|Ω] = (θ̃ijt − xijγt)
2 − 2(θ̃ijt − xijγt)xijũjt +

xijVar(ujt|Ω)x′ij + ũ′jtx′ijxijũjt. (30)
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The expressions of conditional expectation and variance for ujt can be used to complete the

computation of parameter estimates for each EM cycle. Note that the estimation of the regression

parameters γt, the covariance matrix of the population proficiency distribution σ2
t , and the

covariance matrix T t of random effects in the M-step only depend on the evaluation of the

conditional mean and variance of θ̃ijt in the E-step, because the conditional expectations E(ujt|Ω)

and E[(xijujt)2|Ω)] and the conditional variance Var(ujt|Ω) can be written as a function of the

conditional moments of θjt. Therefore, no additional numerical integration is needed to compute

E(ujt|Ω) and Var(ujt|Ω), and (15), (13), and (14) are used to obtain these quantities. In this

case, a straightforward Simpson rule numerical quadrature integration is used to carry out the

computations.

2.2.2 Summary for Univariate Case

The EM algorithm for maximum likelihood parameter estimation in HLRM models for

the univariate case can be summarized as follows. The (r + 1)th M-step can be completed by

computing

γr+1 =




J∑

j=1

nj∑

i=1

wijx
′
ijxij



−1

J∑

j=1

nj∑

i=1

wijx
′
ij(θ̃ijt − ujtxij), (31)

σ2
r+1 =

∑J
j=1

∑nj

i=1 wij σ̃
2
ijt +

∑J
j=1

∑nj

i=1 wijE[(θ̃ijt − xijγt − xijujt)2|Ωr]∑J
j=1

∑nj

i=1 wij

, (32)

T̂ t =
1
J

J∑

j=1

ũjtũ
′
jt +

1
J

J∑

j=1

Var(ujt|Ωr). (33)

The E-step can be completed by computing the posterior moments from (13) and (14) and,

subsequently computing ũjt using (26), E[(θ̃ijt − xijγt − xijujt)2|Ωr] using (30) and Var(ujt|Ωr)

using (28). Furthermore, Ωr is Ω at iteration r. The E- and M-steps are alternated until

convergence is achieved.

2.2.3 Conditional Moments for the Multivariate Case

It is straightforward to extend the results above to the multivariate case, in which

the multivariate conditional expectation E[(θ̃ij − xijΓ − xijU j)′(θ̃ij − xijΓ − xijU j)|Ω]
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needs to be evaluated. Accordingly, Ω is in this case (X,Y ,Γ,Σ, T ). Denote the product

(θ̃ij − xijΓ− xijU j)′(θ̃ij − xijΓ− xijU j) as A. Then

A = (θ̃ij − xijΓ)′(θ̃ij − xijΓ)− (θ̃ij − xijΓ)′xijU j −U ′
jx
′
ij(θ̃ij − xijΓ)

+U ′
jx
′
ijxijU j . (34)

The conditional mean E[U j |Ω] = Ũ j is simply the collection of school means for each subscale

(i.e., Ũ j = [ũj1|ũj2| · · · |ũjp]). The posterior variance Var(U j |Ω) can also be viewed as a collection

of posterior variances and covariances of random school effects among subscales. That is, the

posterior covariance matrix Var(U j |Ω) takes on the following form:

Var(U j |Ω) =




T̃ 11 T̃ 12 · · · T̃ 1p

T̃ 21 T̃ 22 · · · T̃ 2p

· · · · · · · · · · · ·
T̃ p1 T̃ p2 · · · T̃ pp


 .

The multivariate conditional expectation and subscale specific variance matrices of random

effects can be obtained through (18). Hence, in the multivariate case p(p−1)
2 additional conditional

covariance matrices T̃ ts = cov [(ujt, ujs)|Ω] between two subscales for t, s = 1, · · · , p have to

be computed, as well as the E
[
(U ′

jx
′
ijxijU j)|Ω

]
. Furthermore, A contains the p × p matrix

U ′
jx
′
ijxijU j . The diagonal elements can be found by (29) following a quadratic form, while the

off-diagonal elements can be found by

E[u′jsx
′
ijxijujt|Ω] = cov[u′jsx

′
ij , xijujt|Ω] + ũ′jsx

′
ijxijũjt

= xijCov[ujt, ujs|Ω]x′ij + ũ′jsx
′
ijxijũjt

= xijT̃ stx
′
ij + ũ′jsx

′
ijxijũjt, (35)

where T̃ st is the posterior covariance between subscale s and subscale t, for s, t = 1, · · · p.

In (29) and (35), two conditional covariances appear: cov[(xijujt,xijujt)|Ω] and

cov[(xijujt, xijujs)|Ω]. The conditional variance τ̃t of ujt for subscale t given Ω can be evaluated

by (28), while the expression for cov[(xijujt,xijujs)|Ω] will be more complicated to obtain.

Primarily, T̃st has to be computed.

First, examine the joint distribution of θjt, θjs, ujt, and ujs. The joint distribution of student

proficiencies within school j and between two subscales θjt, θjs is assumed normal with mean

12



vector (Xjγt,Xjγs), and variance matrix,

M = Cov(θjt,θjs) =


 σ2

tI + XjT tX
′
j σ2

stI + XjT tsX
′
j

σ2
stI + XjT

′
tsX

′
j σ2

sI + XjT sX
′
j


 ,

where T st = Cov(ujt, ujs), the covariance matrix for random effects between the two subscales.

Similarly, the joint distribution of school random effects between two subscales ujtandujs is

assumed normal with mean vector (0, 0) and covariance matrix

G = Cov(ujt,ujs) =


 T t T ts

T ′
ts T s


 .

Furthermore, let Ψ =cov[(θjt, θjs), (ujt, ujs)] so that

Ψ =


 XjT t XjT ts

T ′
tsX

′
j XjT s


 ,

because Cov(ujt, εijs) = 0 by definition. Ψ is a covariance matrix of student proficiencies and

random effects for school j. Also, the joint distribution of θjt, θjs, ujt,ujs is assumed normal with

mean (Xjγt, Xjγs,0) and covariance matrix

B =


 M Ψ

Ψ′ G


 .

Subsequently, the conditional variance of school effects is

Var [(ujt,ujs)|(θjt, θjs)] = G−Ψ′M−1Ψ, (36)

using the same theorem as in (23). Furthermore, it can be shown that

Cov(ujt,ujs) = E [Cov(ujt,ujs)|θjt, θjs]− cov [E(ujt|θjt,θjs), E(ujs|θjt, θjs)] . (37)

The covariances in (37), cov [E(ujt|θjt,θjs), E(ujs|θjt, θjs)], can be evaluated by substituting (23)

into the following expression

Cov [E(ujt|θjt, θjs), E(ujs|θjt, θjs)] = Cov [ūjt, ūjs]

= Cov
[
C−1

jt X ′
j(θjt −Xjγt),C

−1
js X ′

j(θjs −Xjγs)
]

= C−1
jt X ′

j [σts ⊗ I]Xj

[
C−1

js

]′
, (38)

13



where σts are the covariance components of the matrix Σ. Then, from (36),(37), and (38), the

expectation of the conditional covariance E [Cov(ujt, ujs)|θjt, θjs] can be expressed as

E [Cov(ujt, ujs)|θjt, θjs] = G−Ψ′M−1Ψ

= Cov(ujt,ujs) + C−1
jt X ′

j [σts ⊗ I] Xj

[
C−1

js

]′

= T st + C−1
jt X ′

j [σts ⊗ I] Xj

[
C−1

js

]′
. (39)

Finally, the conditional covariance Cov [(ujt, ujs)|Ω] is evaluated by

T̃ ts = Cov [(ujt, ujs)|Ω]

= Cov [(ujt, ujs)|θjt, θjs] + C−1
jt X ′

j

[
σ̃ij(t,s) ⊗ I

]
Xj

[
C−1

jt

]′

= T st + C−1
jt X ′

j

[
(σts + σ̃ij(t,s))⊗ I

]
Xj

[
C−1

js

]′
(40)

with the same method as used in (28). Notice that σ̃ij(t,s) is a posterior covariance component in
the posterior covariance matrix Σ̃ij , which is given by

Σ̃ij =




σ̃ij(1,1) σ̃ij(1,2) σ̃ij(1,3) · · · σ̃ij(1,p)

σ̃ij(2,1) σ̃ij(2,2) σ̃ij(2,3) · · · σ̃ij(2,p)

· · · · · · · · · · · · · · ·
σ̃ij(p,1) σ̃2

ij(p,2) σ̃ij(p,3) · · · σ̃ij(p,p)


 .

Hence, to obtain the conditional expectations for Tst for the multivariate case, the result from (40)

has to be substituted back into (35).

2.2.4 Summary for Multivariate Case

The steps of the EM algorithm for maximum likelihood parameter estimation in the

multivariate case can be summarized as follows. The (r + 1)th M-step can be completed by

computing

γt,r+1 =




J∑

j=1

nj∑

i=1

wijx
′
ijxij



−1

J∑

j=1

nj∑

i=1

wijx
′
ij(θ̃ijt − ujtxij), (41)

Σr+1 =

∑J
j=1

∑nj

i=1 wijΣ̃ij +
∑J

j=1

∑nj

i=1 wijE[ε̃′ij ε̃ij |Ωr]∑J
j=1

∑nj

i=1 wij

(42)

and

T̂ tt,r+1 =
1
J

J∑

j=1

ũjt,rũ
′
jt,r +

1
J

J∑

j=1

Var(ujt,r|Ωr). (43)
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The E-step can be determined by computing the multivariate posterior moments and, subsequently,

Ũ j = (ũj1, · · · , ũjp) through (26), ε̃ij = θ̃ij − xijγ − xijU j , E[ε̃′ij ε̃ij |Ωr] through (30), and

Var(ujt,r|Ωr) through (28). Also, ũjt,r and Ωr are the conditional mean for ujt and Ω,

respectively, at iteration step r.

Equation (43) gives the estimates of p matrices T̂ t,r+1 at step r + 1. The other p(p−1)
2

covariance matrices of school effects between subscales t, s = 1, · · · , p are

T̂ ts,r+1 =
1
J

J∑

j=1

ũjt,rũ
′
js,r +

1
J

J∑

j=1

Cov [(ujt,r,ujs,r)|Ωr] , (44)

using (40) to obtain an analytic expression for Cov [(ujt,r, ujs,r)|Ωr]. The E- and M-steps are

alternated until convergence is obtained. In sum, the general structure of the multivariate case is

similar to the univariate case, except for the additional computation of the posterior covariances

T̃st of school effects.

3 Standard Errors

As briefly mentioned in the introduction, programs such as NAEP often make simple random

sample assumptions during parameter estimation and then apply a post-hoc complex sample

estimator to obtain appropriate standard errors. Hence, initial standard errors of parameters are

computed based on simple random sample theory. There are some concerns that deserve further

study to improve the estimation of standard errors for regression effects in the current NAEP

analysis. Besides ignoring the complex sample structure, affecting both parameter estimates

and their standard errors, an approximation is also employed that is governed by assumptions

that may not satisfy the complicated NAEP context (e.g., a normal posterior distribution of

θijt). Before the standard error computation under the HLRM framework is discussed, a brief

introduction of the current NAEP method is first provided below. The discussion will be limited

to the standard errors of γ.

3.1 Standard Errors in NAEP

The standard errors of the regression effects are estimated by summing (a) the sampling

variance and (b) a variance component that reflects the uncertainty due to the latency of

15



proficiency. Specifically,

Var(γ̂t) ≈ Var(γ̂t|X, Y t)

= E[Var(γ̂t|X, Y t, θt)] + Var[E(γt|X, Y t,θt)]. (45)

The first component is estimated assuming that examinees are selected from a simple random

sample and examinee proficiency values are observed. For the univariate case, noting that the

conditional covariance equals σ2
t = E[ε2

i ] = E[(θ̃it − γtxi)
2
], this component is expressed as

(X ′DX)−1σ2
t , where D is a diagonal matrix of individual sampling weights. Note that θ̃it is the

posterior expectation. The second component, taking into account that θt is not observed, is

expressed as

Var(E(γt|X, Y , θt)) = (X ′DX)−1
X ′DVar(θt|X, Y )DX(X ′DX)−1

, (46)

because E(γt|X,Y ,θt) = (X ′DX)−1
X ′Dθ̃t. Hence, the standard errors of regression effects in

the univariate case can be approximated by

Var(γ̂t) = (X ′DX)−1σ2
t + (X ′DX)−1

X ′DΣ̃DX(X ′DX)−1
, (47)

where Σ̃ = Var(θ̃t|X, Y ) is a diagonal matrix with student posterior variances.

For the p-variate case, the covariances between effects across subscales also need to be

estimated. The vector of student proficiencies θi = (θi1, · · · , θip)′ for i = 1, · · · , N is assumed to

have a common conditional variance matrix Σ̃. The variation due to sampling, Cov(γ̂s, γ̂t), can

be expressed as

Cov(γ̂s, γ̂t) = E
[
(γ̂s − γs)(γ̂t − γt)

′] , (48)

and the first component in (45) is computed as

Cov(γ̂s, γ̂t) = σst(X′DX)−1
, (49)

where σst is the (s, t) entry in the covariance matrix

Σ̃ =




σ11 σ12 σ13 · · · σ1p

σ21 σ22 σ23 · · · σ2p

· · · · · · · · · · · · · · ·
σp1 σp2 σp3 · · · σpp


 .

The second component is similar to the univariate case, except that Σ̃ is a collection of p(p+1)
2

diagonal matrices.
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3.2 Standard Errors for the HLRM

The procedures employed in NAEP can be extended to the hierarchical latent regression

model based on (45). The sampling variance (e.g., first component) of the estimate of γt can be

found following a development by Raudenbush and Bryk (2002, p. 42). Assuming Xj to be full

column rank, the ordinary least square estimator of γjt is

γ̂jt = (X ′
jXj)−1X′

j θ̃jt, (50)

and the dispersion matrix is given by

Var(γ̂jt) = V jt = (X ′
jXj)−1σ2

t . (51)

Multiplying both sides of the Level 1 model in (3) by (X ′
jXj)−1X ′

j yields

γ̂jt = γjt + ejt, (52)

where ejt ∼ N(0, V jt). Moreover, combining the Level 2 model in (4) yields

γ̂jt = γ + ujt + ejt. (53)

The variance for γ̂jt in (53) is decomposed into two parts: one is the parameter dispersion of ujt

(e.g., T t) and the other is the residual dispersion of ejt ( e.g., V jt). Specifically,

Var(γ̂jt) = Var(ujt + ejt) = T t + V jt, (54)

is a Q×Q variance matrix that can be written as

Var(γ̂jt) = 4jt = T t + (X ′
jXj)−1σ2

t . (55)

In most educational surveys, school or cluster sample sizes are not balanced, and the values for

4jt will differ from school to school. Assuming 4jt is known, the unique, minimum variance,

unbiased estimator of γt will be the generalized least square estimator

γ̂t = (
J∑

j=1

4−1
jt )−1

J∑

j=1

4−1
jt γ̂jt. (56)

Subsequently, the variance of γ̂t is

Var(γ̂t) = (
J∑

j=1

4−1
jt )−1. (57)
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If 4jt is not known, it can be estimated by (55) using T̃ for T .

The second component in (45) addresses the variation due to the latency of θ and is equal to

the variance of the posterior expectation of γ̂t. The posterior expectation of γ̂t is equivalent to

E(γt|X,Y ,θ) = (
J∑

j=1

4−1
jt )−1

J∑

j=1

[4−1
jt (X ′

jXj)−1X ′
jθj ]. (58)

Subsequently, the variation of this expectation can be estimated by

Var(E(γ̂t|X, Y , θ)) = V
J∑

j=1

[
4−1

j (X ′
jXj)−1X ′

jΣ̃jXj(X ′
jXj)−14−1

j
′]

V ′, (59)

for V = [(
∑J

j=1 4−1
j )]−1.

It should be noted that the formula for computing E(Var(γ̂t|X, Y t, θt)) in (57) and

Var(E(γ̂t|X, Y t,θt)) in (59) are feasible if all Level 1 coefficients are considered random and

every Level 2 unit contains an adequate sample to computate γ̂jt in (50). Raudenbush and Bryk

(2002, pp. 44–45) stated that the formulae for computing standard errors for γ̂t have rather

limited use in practical applications. Following their derivations (pp. 44–45), the generalized least

squares estimator for fixed effects is

γ̂t =




J∑

j=1

XjV
−1
θj

Xj



−1

J∑

j=1

XjV
−1
θj

Xj , (60)

where

Vθj = Var(θj) = XjTX ′
j + σ2I. (61)

Hence, the variance covariance matrix of for fixed effects estimates γ̂t is

Var(γ̂t) =




J∑

j=1

XjV
−1
θj

Xj



−1

. (62)

If Xj is full rank, the result in (57) is equivalent to the result from (62), as proven by Raudenbush

and Bryk (2002, p. 44).

4 Application to NAEP Data

The NAEP 2004 age 17 long-term trend mathematics assessment data has been analyzed

with a two-level simple HLRM model without predictors on the second level. The data contains

7,561 students, and a single scale is assumed under the IRT model employed here. There are 62
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cluster units, with sample sizes for each unit ranging from 3 students to 291 students. There are 7

clusters where the number of students is less than 30, and 5 clusters where it is less than 20. The

regression parameter estimates, as stated before, are overall mean effects across clusters. Thus,

the estimates of regression effects parameters are expected to be close to the estimates from the

current NAEP approach.

A large model and three small models are tested. The large model contains 156 independent

predictors plus an intercept at the first-level model. The predictors are represented as principal

components x∗ with standard deviations sd∗, where sd∗1 ≥ sd∗2 ≥ · · · ≥ sd∗q ≥ · · · ≥ sd∗Q. These

principal components are extracted from dummy codes indicating membership to many student

groups. The three small models contain only student group membership indicators or contrasts

for (a) gender (male vs. female) and (b) racial ethnicity (White, Black, Hispanic, Asian/others),

and (c) gender + race/ethnicity, in addition to the intercept included in each model.

An EM algorithm for parameter estimation of a simple HLRM model is implemented via a

C++ program.

4.1 Small Models

Small Model 1: Gender. A small model was estimated, using students’ gender designations as

predictors at the first level, modeling male versus female students. The residual variance estimate

in this small model is .9145, obliviously greater than that of the large operational model containing

157 principal components, which is .3737. The larger residual variance of this small model implies

that a large amount of the variation of latent traits is not accounted by this indicator. The

residual variance estimate under the current NAEP approach is .978, which is slightly larger than

that from the HLRM approach, implying that the variation accounted for by the clusters is small

with respect to the male/female distinction.

The regression effect and intercept estimates and standard errors, as well as the estimates

from the current NAEP approach, are given in Table 1. The intercept estimate is .075, and

regression effect for female students is -.1104. The estimates of regression effects are very close

to those from current NAEP approach, with slight differences appearing in the fourth decimal

place. Both regression effect estimates (HLM and NAEP) for female are negative, implying male

students generally perform better than female students.

Columns 4 and 5 are standard errors estimates for the regression parameters, denoted by
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Table 1
HLM Parameter Estimates Versus NAEP (Gender)

Variable NAEP(γ̂) HLRM(γ̂) HLRM SE(γ̂) HLRM SE1(γ̂)
Intercept .075 .0752 .0498 .0496
Female -.1104 -.1105 .0232 .0226

HLRMSE(γ̂) and HLRMSE1(γ̂), respectively. HLRMSE1(γ̂) involves sampling variation

only, but HLRMSE(γ̂) incorporates both sampling and measurement variation. It shows from

the table that almost all the variation for estimating the regression parameters is attributed to

sampling; only a small amount of variation is due to the latency of a student ability.

Small Model 2: Race/ethnicity. A small model was also estimated using students’ racial

group designations as predictors at the first level, modeling White students versus other races

of students (Black, Hispanic, Asian/others). The residual variance estimate in this small model

is .8312, obliviously greater than that of the large operational model containing 157 principal

components, which is .3737. The larger residual variance of this small model implies that a large

amount of the variation of latent traits is not accounted for by indicators of race/ethnicity. The

residual variance estimate under the current NAEP approach is .8674, which is slightly larger than

that from the HLRM approach, implying that the variation accounted for by the clusters is small

with respect to the racial distinctions.

The regression effect, intercept estimates, and standard errors, as well as the estimates from

the current NAEP approach, are given in Table 2. The intercept estimate is .208 and regression

effect for Black students is -.8688; for Hispanic students, -.6306; and for Asian/other students,

.0691. The estimates of regression effects are very close to those from the current NAEP approach,

with slight differences appearing in the fourth decimal place. Both regression effect estimates

(HLRM and NAEP) for Black and Hispanic students are negative, implying White students

generally perform better than Black and Hispanic students.

Small Model 3: Gender + race/ethnicity. A small model was also estimated using both

students’ gender and racial ethnicity designations as predictors at the first level, modeling male

versus female and White versus other racial students (Black, Hispanic, Asian/others). The

residual variance estimate in this small model is .8290, obliviously greater than that of the large

operational model containing 157 principal components, which is .3737. The larger residual
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Table 2
HLM Parameter Estimates Versus NAEP (Racial)

Variable NAEP(γ̂) HLRM(γ̂) HLRM SE(γ̂) HLRM SE1(γ̂)
Intercept .208 .2083 .0358 .0356
Black -.868 -.8688 .0441 .0433
Hispanic -.630 -.6306 .0496 .0488
Asian/others .069 .0691 .0665 .0652

variance of this small model implies that a large amount of the variation of latent traits is not

accounted for by indicators of racial ethnicity and gender. The residual variance estimate under

the current NAEP approach is .8653, which is slightly larger than that from the HLRM approach,

implying that the variation accounted for by the clusters is small with respect to the gender and

racial distinctions.

The regression effect, intercept estimates, and standard errors as well as the estimates from

the current NAEP approach are given in Table 3. The intercept estimate is .2514. The regression

effect for female students is -.0882; for Black students, -.8641; for Hispanic students, -.6279, and

for Asian/other students, .0729. The estimates of regression effects are very close to those from

the current NAEP approach, with slight differences appearing in the fourth decimal place. Both

regression effect estimates (HLRM and NAEP) for female students are negative, implying male

students generally perform better than female students. Both regression effects estimates (HLRM

and NAEP) for Black and Hispanic students are negative, implying White students generally

perform better than Black and Hispanic students.

Table 3
HLM Parameter Estimates Versus NAEP (Gender + Racial)

Variable NAEP(γ̂) HLRM(γ̂) HLRM SE(γ̂) HLRM SE1(γ̂)
Intercept .2514 .2516 .03959 .0393
Female -.0882 -.0882 .0225 .0219
Black -.864 -.8641 .0432 .0424
Hispanic -.627 -.6279 .0491 .0483
Asian/others .0729 .0729 .0668 .0656
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4.2 Large Model

Model parameter estimates. A large model was estimated using 156 principal components

extracted from the covariance matrix of the student group indicators employed in the current

NAEP model. This model converged around the 100th EM cycle, with the total likelihood

monotonically increasing until convergence, as is presented in Figure 1. The HLRM regression

parameter estimates plus the intercept for the large model are given in Table 4, Table 5, Table 6,

and Table 7 in column 5, denoted HLM(γ̂), along with current NAEP estimates of regression

parameters in the second column, denoted as NAEP (γ̂). (Note that Table 4, Table 5, Table 6,

and Table 7 actually constitute a long table, containing the results of parameter estimates with

a large set of principle components extracted from operational NAEP analysis). The regression

parameter estimates for these two approaches are very close to each other, which is expected, since

the HLM regression effects are the overall mean estimates of the regression effects for each cluster.

Figure 2 displays a plot of the regression effects estimates from HLRM versus those from NAEP.
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Figure 1 The log likelihood for the first 200 EM iterations.

The estimate of the residual variance from the simple HLRM model is .3737, compared to

.567 in the current NAEP model, which is expected because the HLRM takes the variation across
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Figure 2 Comparison of HLM estimates for regression effects with NAEP.

clusters into account. Not entirely expected is the formidable magnitude of this difference. The

comparison of the residual variance estimates among the large model and the three small models

is given in Table 8.

Although the covariance matrix among random effects T t has dimension 157, the computation

of T̂ t requires only the first two posterior moments of u. Therefore, the computations of T̂ is

stable as long as the computation of ũjt and Var(ujt|Ω) are stable. Because T̂ t is a large matrix,

the elements are not listed here. However, the diagonal components range from .000069 to .0142,

which implies that there exist substantial differences between clusters, supporting the hierarchical

model. It seems prudent to establish a mechanism to determine the significance of incorporating

random effects in a given analysis.

Standard errors. The standard error estimates from the simple two-level HLRM are expected

to be higher than the current NAEP estimates because additional variation across clusters are

accounted for. In Tables 4 through 7, column 3 denotes the NAEP standard error NAEPSE(γ̂),

and column 6 denotes the HLRM standard error, HLMSE(γ̂). Furthermore, in Tables 4 through

7, columns 4 and 7 show the standard error estimates for the part due to sampling only. From
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Table 4
HLRM Parameter Estimates Versus NAEP Estimates

PCF NAEP (γ̂) NAEPSE(γ̂) NAEPSE1(γ̂) HLM(γ̂) HLMSE(γ̂) HLMSE1(γ̂)

1 .0046 .009 .0087 .0122 .0219 .0211
2 -.0374 .001 .0009 -.0377 .0022 .0021
3 .0049 .0013 .0012 .005 .0032 .0031
4 .0142 .0016 .0015 .0137 .0034 .0033
5 -.0171 .0018 .0018 -.0169 .0035 .0034
6 -.0461 .0019 .0018 -.0474 .0046 .0045
7 -.0017 .0019 .0019 -.0012 .0024 .0023
8 -.0235 .0021 .002 -.0241 .005 .0049
9 -.001 .0021 .0021 -.0009 .0032 .0031
10 .0013 .0023 .0022 .0024 .0039 .0037
11 .0223 .0023 .0022 .0226 .0041 .0039
12 .009 .0023 .0022 .0085 .0036 .0035
13 -.0091 .0025 .0023 -.007 .0052 .0049
14 .0149 .0025 .0024 .0154 .0042 .0041
15 -.0071 .0027 .0026 -.0076 .0065 .0064
16 .0158 .0027 .0026 .0165 .0034 .0033
17 -.0011 .0027 .0026 -.0005 .0051 .0049
18 -.0692 .0028 .0027 -.0716 .0044 .0043
19 .0234 .0028 .0027 .0236 .0052 .005
20 .0075 .0029 .0028 .0077 .0052 .005
21 -.0207 .0029 .0028 -.021 .0062 .006
22 -.0084 .003 .0029 -.0088 .0055 .0053
23 -.0341 .0031 .003 -.0353 .006 .0058
24 -.0122 .0032 .0031 -.0113 .0056 .0054
25 .001 .0033 .0032 .0007 .0132 .0129
26 .0032 .0034 .0033 .003 .0063 .0061
27 .008 .0035 .0034 .0085 .0056 .0054
28 .0093 .0038 .0036 .0094 .0078 .0076
29 -.0324 .0039 .0037 -.0334 .0069 .0066
30 .0085 .0039 .0038 .0092 .0067 .0064
31 -.0241 .004 .0039 -.0246 .0075 .0073
32 .0141 .0042 .004 .0147 .0074 .0072
33 -.012 .0043 .0041 -.0137 .0081 .0078
34 -.0285 .0044 .0042 -.0281 .009 .0088
35 -.029 .0044 .0042 -.0314 .0076 .0073
36 .0392 .0044 .0043 .0409 .0089 .0085
37 .0083 .0045 .0043 .0092 .0093 .009
38 .0043 .0045 .0044 .0041 .0081 .0078
39 -.0233 .0047 .0045 -.0235 .0085 .0082
40 .0416 .0047 .0045 .0436 .0081 .0078
41 -.0378 .0047 .0046 -.0383 .0091 .0088
42 .0164 .0049 .0047 .0173 .009 .0086
43 .0181 .0049 .0048 .0194 .0087 .0084
44 .0222 .005 .0048 .0234 .0086 .0083
45 -.027 .005 .0048 -.0278 .0078 .0075
46 .0155 .0051 .0049 .0153 .008 .0077
47 .0171 .0051 .0049 .0183 .01 .0096
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Table 5
HLRM Parameter Estimates Versus NAEP Estimates–Continued

PCF NAEP (γ̂) NAEPSE(γ̂) NAEPSE1(γ̂) HLM(γ̂) HLMSE(γ̂) HLMSE1(γ̂)

48 -.0367 .0051 .005 -.0367 .0091 .0088
49 -.0059 .0052 .005 -.0056 .0091 .0088
50 -.0015 .0053 .0051 -.001 .0082 .0078
51 -.0276 .0053 .0052 -.0286 .0086 .0083
52 -.0027 .0054 .0052 -.0017 .0116 .0113
53 -.0043 .0054 .0052 -.0044 .0093 .009
54 .02 .0055 .0053 .0216 .0094 .0091
55 -.0113 .0056 .0054 -.0115 .0103 .01
56 -.0106 .0056 .0054 -.0109 .0088 .0085
57 -.0212 .0057 .0055 -.0216 .0096 .0093
58 -.0069 .0057 .0055 -.0074 .0085 .0082
59 .0088 .0058 .0056 .0084 .0076 .0073
60 -.0015 .0058 .0056 -.001 .0103 .0098
61 -.0175 .0059 .0057 -.0184 .0082 .0079
62 .0214 .0059 .0057 .023 .01 .0096
63 -.002 .006 .0058 -.0022 .0104 .01
64 .0137 .0061 .0059 .014 .0126 .0122
65 .0144 .0062 .006 .0157 .0089 .0085
66 .0107 .0062 .006 .0109 .0123 .0119
67 -.0048 .0063 .0061 -.0034 .0117 .0113
68 -.0265 .0064 .0061 -.0289 .0113 .0109
69 -.0022 .0064 .0062 -.003 .0126 .0122
70 -.0144 .0064 .0062 -.0164 .0126 .0123
71 .0072 .0065 .0063 .0088 .0107 .0104
72 -.0003 .0065 .0063 0 .0094 .009
73 -.0505 .0066 .0063 -.0504 .0122 .0117
74 .0232 .0066 .0064 .0229 .0122 .0118
75 -.0756 .0067 .0064 -.0777 .0094 .009
76 -.032 .0068 .0065 -.032 .0116 .0112
77 -.0246 .0068 .0066 -.0259 .0112 .0107
78 .0023 .0069 .0066 .0038 .0148 .0145
79 .001 .0069 .0067 .0025 .0108 .0103
80 .0694 .007 .0068 .072 .0102 .0097
81 .0073 .0071 .0068 .0067 .0126 .0121
82 -.0445 .0071 .0068 -.0435 .0135 .0131
83 .0064 .0071 .0069 .0068 .0138 .0133
84 .0118 .0072 .0069 .0115 .0124 .0119
85 .0215 .0072 .007 .0209 .0139 .0134
86 .0292 .0073 .007 .0312 .0114 .0109
87 .0207 .0073 .0071 .0197 .014 .0136
88 -.031 .0074 .0071 -.0321 .0139 .0135
89 .024 .0075 .0072 .0225 .011 .0106
90 -.0477 .0075 .0072 -.0478 .0133 .0129
91 .0016 .0075 .0072 .001 .0123 .0119
92 -.0203 .0075 .0073 -.0205 .0116 .0112
93 -.0128 .0076 .0073 -.0117 .0105 .01
94 .0329 .0076 .0073 .0339 .0132 .0127
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Table 6
HLRM Parameter Estimates Versus NAEP Estimates—Continued

PCF NAEP (γ̂) NAEPSE(γ̂) NAEPSE1(γ̂) HLM(γ̂) HLMSE(γ̂) HLMSE1(γ̂)

95 .0216 .0077 .0075 .0227 .0135 .013
96 .0324 .0078 .0075 .033 .0138 .0134
97 -.0108 .0078 .0075 -.0095 .0129 .0124
98 .0199 .0078 .0075 .0209 .0116 .0112
99 -.0388 .0078 .0075 -.0412 .0113 .0108
100 .029 .0079 .0076 .0292 .013 .0125
101 .0241 .008 .0077 .0245 .0143 .0138
102 -.0048 .008 .0077 -.0056 .0128 .0124
103 -.014 .0081 .0078 -.015 .0136 .0131
104 -.0031 .0081 .0078 -.0039 .0121 .0116
105 -.004 .0082 .0079 -.0044 .0151 .0147
106 -.0148 .0082 .0079 -.014 .0118 .0113
107 -.023 .0082 .0079 -.0225 .0128 .0124
108 -.0107 .0083 .0079 -.0116 .0123 .0117
109 .0008 .0083 .008 .0011 .0133 .0128
110 .0237 .0083 .008 .0238 .0148 .0142
111 .0137 .0083 .008 .0142 .0149 .0144
112 -.0101 .0083 .008 -.0098 .016 .0156
113 -.0163 .0084 .0081 -.018 .0139 .0134
114 -.0419 .0084 .0081 -.0426 .0141 .0136
115 .0104 .0084 .0081 .0125 .0144 .014
116 -.0303 .0085 .0082 -.0316 .0153 .0149
117 .0227 .0085 .0082 .0226 .0151 .0146
118 .0114 .0086 .0083 .0139 .0168 .0163
119 -.0174 .0086 .0083 -.0165 .0142 .0137
120 -.0335 .0086 .0083 -.0341 .0153 .0147
121 -.0079 .0087 .0084 -.009 .0183 .0177
122 -.0052 .0087 .0084 -.0046 .0164 .0159
123 -.0297 .0088 .0084 -.0306 .0172 .0167
124 -.0484 .0088 .0085 -.0496 .015 .0144
125 -.0125 .0088 .0085 -.0118 .0182 .0176
126 -.0356 .0089 .0086 -.037 .0138 .0132
127 .0248 .0089 .0086 .0266 .0123 .0117
128 -.0075 .009 .0086 -.0067 .0144 .0139
129 .0199 .009 .0087 .0205 .0138 .0132
130 .0045 .0091 .0087 .0035 .0147 .0141
131 .0121 .0091 .0087 .0139 .0129 .0123
132 -.0072 .0091 .0088 -.0097 .0186 .018
133 .0352 .0091 .0088 .0349 .0147 .0141
134 .0412 .0092 .0088 .0416 .0207 .0202
135 .0129 .0092 .0089 .011 .0149 .0145
136 .0049 .0093 .0089 .0028 .0159 .0153
137 -.0124 .0093 .009 -.012 .017 .0163
138 -.0187 .0093 .009 -.0201 .0202 .0198
139 -.0333 .0093 .009 -.0335 .0152 .0147
140 -.0086 .0094 .009 -.0093 .0155 .0149
141 -.0095 .0094 .0091 -.0112 .0165 .0159
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Table 7
HLRM Parameter Estimates Versus NAEP Estimates—Continued

PCF NAEP (γ̂) NAEPSE(γ̂) NAEPSE1(γ̂) HLM(γ̂) HLMSE(γ̂) HLMSE1(γ̂)

142 .0098 .0095 .0091 .0088 .0142 .0136
143 -.0208 .0095 .0091 -.0216 .0149 .0144
144 .0166 .0095 .0092 .0172 .0169 .0164
145 .033 .0096 .0093 .0319 .017 .0164
146 .0078 .0096 .0093 .0076 .0135 .013
147 -.0007 .0097 .0093 -.0001 .0137 .0132
148 -.0014 .0097 .0094 -.003 .0157 .0151
149 -.0179 .0098 .0094 -.0174 .0174 .0169
150 -.0217 .0098 .0095 -.0218 .0154 .0149
151 -.0032 .0099 .0096 -.0029 .0155 .015
152 .0074 .0099 .0096 .0077 .0132 .0126
153 .0002 .0101 .0097 .0004 .0154 .0149
154 .0098 .0101 .0097 .0085 .0147 .0142
155 -.0184 .0101 .0097 -.02 .0157 .0152
156 -.028 .0101 .0098 -.0263 .0177 .0171
157 -.0155 .0102 .0098 -.0143 .0145 .0138

Table 8
HLM Residual Variance Estimates σ̂2 Versus NAEP

Model Large Gender Racial Gender + Racial
HLM .3737 .9146 .8313 .8290
NAEP .5673 978 .8674 .8653

these columns it can be seen that the HLRM standard errors are substantially larger than standard

errors from the current NAEP approach, falling a range between 2 and 10 times as large. Hence,

as expected the current NAEP standard error estimates for regression effects are underestimates.

As stated in Section 3, the variance of γ̂ contains both variation due to sampling and variation

due to measurement errors for student abilities. For NAEP estimates for standard errors, the

variation due to sampling is much larger than the variation due to the latency, where the former

typically accounts for about 90% to 95% of the estimates. Similar pattern of results are found

with the HLRM model standard error estimates, although the proportion due to sampling is

higher. In Tables 4 through 7, the variation due to sampling is specifically listed as HLMSE1(γ̂)

for the HLRM model and NAEPSE1(γ̂) for the NAEP model. The proportion due to sampling

in the HLRM model ranges from 94.73% to 97.83%, slightly higher than the proportions within

the current NAEP approach, partly due to the variation across clusters being accounted for and

added to the sampling variation.
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5 Discussion and Conclusion

In this paper a hierarchical latent regression model has been developed for use in large-scale

assessments such as NAEP. The primary purpose of this model is to account for the hierarchical

nature of the sample, hence, improving regression parameters and standard errors estimates.

A simple two-level HLRM model discussed in this paper can be easily extended to more

general two-level and/or higher level hierarchical linear models incorporating IRT modeling for

student latent abilities, as is the case for the current NAEP models. The HLRM is naturally

adapted from the current NAEP model, as students are naturally nested within schools.

The regression effect estimates from a simple two-level HLRM model can be compared

directly with the current NAEP estimates. However, they are by design more appropriate, since

school clustering is taken into account. Some indication of this is provided by a crude comparison

of standard errors, which appear under the HLRM to be at least twice the size of the current

NAEP estimates. Another indicator is the fact that the residual variance decreased in the simple

HLRM model (e.g., the three small models and the large model discussed above) compared to the

current NAEP estimates, which is expected, since the random effects term across clusters accounts

for variation that is otherwise attributed to unexplained variation.

However, the interest was not limited to parameter estimates, but also included the general

feasibility of estimating these parameters. Under the proposed formulation of the HLRM, the T

matrix estimate provides some indication of the virtues of employing a hierarchical model. First

of all, in the applications presented in this study, the diagonal of this matrix was substantial,

indicating a nontrivial random effect. Second, no specific problems were encountered during

estimation. Specifically, the estimation of T̂ involves only computing ũjt, and Var(ũjt|Ω), the

posterior mean and variance of ujt and can yield a numerically stable estimate as long as those

moments can be computed in a preceding stage.

With the same convergence criterion, the EM algorithm in the current NAEP procedure takes

six iterations to reach convergence, while the algorithm for HLM estimation needs many more

cycles to reach convergence (more than 50 in this example) for the large model discussed. Figure

1 is a plot of likelihood changes over the first 200 EM iterations. It shows that the log likelihood

function is monotonically increasing over the first 200 iterations, which implies that the likelihood

increases monotonically cycle by cycle as well. One possible explanation for this slow convergence

could be the insufficient number of students in some clusters. As is addressed before, we have 62
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clusters in this example, but 5 cluster units have less than 20 students and 7 cluster units have

less than 30 students.

6 Future Research Directions

The purpose of regression parameter estimates and standard error estimates is to provide

reasonable estimates for NAEP target statistics for population characteristics (e.g., mean scale

scores for subgroups, percentage above a certain level of performance achievement). How the

parameter estimation in the simple HLRM model would affect NAEP reporting scale scores and

their standard errors for each subgroup is of great interest and currently under study.

An important assumption of the HLRM model is that the item parameters are assumed to be

fixed or estimated without errors, which is obviously an unsatisfactory statement. Simultaneous

estimation of IRT item parameters and HLRM regression parameters also constitutes work in

progress.
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Appendix

In the multivariate case, regression effects Γ will become a matrix including the regression

effects for each subscale (i.e., Γ is a Q×p matrix [γ1|, · · · , |γp] with each subscale regression effects

γt having Q components for t = 1, · · · , p). Let xij be the collection (or a row) of background

variables for student i in school j in the p-scale assessment, then the likelihood function L for N

students’ responses to n items in the test given school random effects U j is the total marginal

likelihood, and is expressed as

L = log




J∏

j=1

nj∏

i=1

P (yij |Γ′ijx′ij + U ′
jx
′
ij ,Σ)wij




=
J∑

j=1

nj∑

i=1

wij log
[
P (yij |Γ′ijx′ij + U ′

jx
′
ij ,Σ)

]

=
J∑

j=1

nj∑

i=1

wij log
[∫

P (yij |θ)φ(θ|Γ′ijx′ij + U ′
jx
′
ij ,Σ)dθ

]
. (63)

φ(θ|Γ′ijx′ij + U ′
jx
′
ij ,Σ) represents for the conditional multivariate normal density with mean

vector Γ′ijx′ij + U ′
jx
′
ij and covariance matrix Σ (i.e., θ|U j ∼

N (Γ′ijx′ij + U ′
jx
′
ij ,Σ)). Denote the expectation of θ by µθ = Γ′ijx′ij + U ′

jx
′
ij , then the density

function is given by

φ(θ|µθ,Σ) =
1

(2π)
p
2 |Σ| 12

exp
[
−1

2
(θ − µθ)

′Σ−1(θ − µθ)
]

. (64)

The partial derivative of logφ(θ|µθ,Σ) with respect to Γ′ is

∂logφ(θ|µθ,Σ)
∂Γ′

= Σ−1(θ − Γ′x′ij)x
′
ij . (65)

Therefore,

∂L

∂Γ′
=

J∑

j=1

nj∑

i=1

wij

∫
P (yij |θ)φ(θ|µθ,Σ)

P (yij)
∂logφ(θ|µθ,Σ)

∂Γ′
dθ

=
J∑

j=1

nj∑

i=1

wij

∫
P (yij |θ)φ(θ|µθ,Σ)

P (yij)
Σ−1(θ − µθ)xijdθ

=
J∑

j=1

nj∑

i=1

wij

∫
P (θ|yij)Σ

−1(θ − µθ)xijdθ

=
J∑

j=1

nj∑

i=1

wijΣ−1(θ̃ − Γ′x′ij −U jx
′
ij)xij . (66)
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Set (57) to 0, and then we can obtain the estimates of each subscale γt, t = 1, · · · , p, as is

given by

γ̂t =




J∑

j=1

nj∑

i=1

wijx
′
ijxij



−1

J∑

j=1

nj∑

i=1

wijx
′
ij(θ̃ijt − ujtx

′
ij). (67)

To obtain the estimates of Σ, it follows that

∂L

∂Σ
=

J∑

j=1

nj∑

i=1

wij

∫
P (yij |θ)φ(θ|µθ,Σθ)

P (yij)
∂logφ(θ|µθ,Σθ)

∂Σ
dθ

=
J∑

j=1

nj∑

i=1

wij

∫
p(θ|yij)

∂logφ(θ|µθ,Σ)
∂Σ

dθ. (68)

In the multivariate case, U j , like Γ, is a matrix formed by columns of school random effects

for each subscale (i.e., U j = [u1j |, u2j |, · · · |, upj ]). Now it becomes more convenient to find

the derivatives of logφ(θ|µθ,Σ) with respect to Σ, a symmetric matrix. Denote the matrix

Ξ = Σ−1(θ − µθ)(θ − µθ)′Σ
−1, then the partial derivative of logφ(θ|µθ,Σ) with respect to Σ can

be expressed as

∂logφ(θ|µθ,Σ)
∂Σ

= −1
2
(2Σ−1 − diagΣ−1) +

1
2

[2Ξ− diagΞ]

=
1
2
diag

[
Σ−1 −Ξ

]− [
Σ−1 −Ξ

]
. (69)

Now denote the matrix S as

S
J∑

j=1

nj∑

i=1

wij =
J∑

j=1

nj∑

i=1

wij

∫
P (θ|yij)(θ − µθ)(θ − µθ)

′dθ. (70)

Following the same procedure given by Mislevy (1984, p. 366),

∂L

∂Σ
= −1

2
diag

[
Σ−1(Σ− S)Σ−1

] J∑

j=1

nj∑

i=1

wij −Σ−1(Σ− S)Σ−1
J∑

j=1

nj∑

i=1

wij . (71)

Set the above expression to 0, and then Σ̂ = S. Substituting Σ̂ into 70 and further simplify the

equation in 70 will yield

Σ̂
J∑

j=1

nj∑

i=1

wij =
J∑

j=1

nj∑

i=1

wij

∫
P (θ|yij)(θ − µθ)(θ − µθ)

′dθ

=
J∑

j=1

nj∑

i=1

wij

∫
P (θ|yij)(θ − θ̃ + θ̃ − µθ)(θ − θ̃ + θ̃ − µθ)

′dθ

=
J∑

j=1

nj∑

i=1

wijΣ̃ij +
J∑

j=1

nj∑

i=1

wij(θ̃ij − µθ)(θ̃ij − µθ)
′. (72)
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Therefore, the MML estimates for Σ is given by

Σ̂ =

∑J
j=1

∑nj

i=1 wijΣ̃ij +
∑J

j=1

∑nj

i=1 wij(θ̃ij − µθ)(θ̃ij − µθ)′∑J
j=1

∑nj

i=1 wij

=

∑J
j=1

∑nj

i=1 wijΣ̃ij +
∑J

j=1

∑nj

i=1 wij(θ̃ij − Γ′x′ij −U ′
jx
′
ij)(θ̃ij − Γ′x′ij −U ′

jx
′
ij)
′

∑J
j=1

∑nj

i=1 wij

. (73)

34




