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Abstract  

This paper focuses on the Non-Equivalent Groups with Anchor Test (NEAT) design for test 

equating and on two classes of observed–score equating (OSE) methods—chain equating (CE) 

and poststratification equating (PSE). These two classes of methods reflect two distinctly 

different ways of using the information provided by the anchor test for computing OSE 

functions. Each of the two classes includes linear and nonlinear equating methods. In practical 

situations, it is known that the PSE and CE methods tend to give different results when the two 

groups of examinees differ in ability. However, given that both methods are justified by making 

untestable assumptions, it is difficult to conclude which, if either, of the two equating approaches 

is more correct. This study compares predictions from both the PSE and the CE assumptions that 

can be tested in a comparable way with the data from a special study. Results indicate that both 

CE and PSE make very similar predictions but that those of CE are slightly more accurate than 

those of PSE. 

Key words: Test equating, Non-Equivalent Groups with Anchor Test (NEAT) design, observed-

score equating, chain equating, poststratification equating, missing data, pseudo-tests, 

continuization, discretization 
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Introduction 

Test equating methods are widely used to produce scores that are comparable across 

different forms of the same test, both within a year and across years. This paper focuses on the 

Non-Equivalent Groups with Anchor Test (NEAT) equating design and on two classes of 

observed–score equating (OSE) methods—chain equating (CE) and poststratification equating 

(PSE). PSE and CE reflect two distinctly different ways of using the information provided by the 

anchor test—poststratifying on the anchor to estimate the score distributions for the tests to be 

equated (PSE) or using the anchor test as the middle link in a chain of linking relationships (CE). 

Each of the two classes of methods includes both linear and nonlinear equating functions. The 

PSE methods include the Tucker and Braun-Holland linear methods and the nonlinear frequency 

estimation method (see Braun & Holland, 1982; Kolen & Brennan, 2004; Livingston, 2004). The 

CE methods include both the chained linear and the chained equipercentile methods. The 

nonlinear methods of CE and PSE have parallel versions formed by continuizing the discrete 

distributions by either linear interpolation (Kolen & Brennan) or by Gaussian kernel smoothing 

(von Davier, Holland, & Thayer, 2004a). 

von Davier et al. (2004a) examined the relationship between the CE and PSE methods in 

the NEAT design and both were shown to be examples of OSE methods under different sets of 

population invariance assumptions. These assumptions are untestable using the data usually 

available in the NEAT design. von Davier, Holland, and Thayer (2004b) showed that under 

certain (idealized) conditions both CE and PSE can produce the same equating function. 

In practical situations, the PSE and CE methods tend to give different results when the 

two groups of examinees differ substantially on the anchor test. However, given that both 

methods rely on untestable assumptions, it is difficult to conclude which of the two equating 

approaches is more appropriate in a given situation. CE and PSE methods were compared from 

several perspectives in von Davier, Holland, and Thayer (2003, 2004a, 2004b) and von Davier 

(2003). These studies show that both PSE and CE appear to be similar in their standard errors of 

equating and in their degrees of population invariance. Thus, such theoretical considerations do 

not lead to a clear choice between the methods. von Davier et al. (2004a) gave an example where 

the two methods produce results that are sufficiently and reliably different enough to have 

practical consequences. 
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However, there is a series of empirical and simulation studies that have repeatedly found 

that, when there are large differences between the two groups in the NEAT design, the CE 

methods tend to show less bias and about the same variability as the corresponding PSE 

methods. Livingston, Dorans, and Wright (1990) observed this effect and they offered an 

explanation as to why the PSE methods are increasingly biased as the differences between the 

two groups on the anchor test increases. Livingston (2004) also discussed this phenomenon as 

did Dorans, Liu, and Hammond (2005). Wang, Lee, Brennan, and Kolen (2006) focused directly 

on comparing CE and PSE and, through an IRT-based simulation study, again showed that 

frequency estimation (a PSE method) is more biased than the chained equipercentile method 

when the groups differ in ability. Thus, it is increasingly clear that CE methods are preferable to 

PSE methods when the groups differ widely on the anchor test. However, Wright and Dorans 

(1993) showed that this is not always the case using an approach similar to that of Livingston et 

al. (1990) but employing a method of selecting the groups of examinees that more closely 

approximated the assumptions of PSE than did Livingston et al. At this point it is fair to say that 

rather than merely having theoretical shortcomings (Kolen & Brennan, 2004, p. 146), CE 

methods are clear competitors with PSE methods. However, a full understanding of when each is 

appropriate continues to elude us. 

To compare the results of different equating methods, the usual approach is to design a 

study where a true or criterion equating is available and then to investigate the closeness of the 

different methods to the criterion equating. Examples of such studies that use the NEAT design 

and compare both CE and PSE methods are von Davier et al. (2006) and Wang et al. (2006). 

This approach is direct and simple in conception, but it does not allow for any detail in the 

explanation of why one method is closer to the criterion than the others. For the NEAT design 

this is especially problematic because both PSE and CE make different untestable assumptions 

about data that are not available in practice. A natural question is how adequate are these 

different sets of assumptions?  

The present study uses the data from von Davier et al. (2006), where there is a natural 

criterion equating, but in addition, data are available in this study that are not usually available in 

practice. These extra data allow us to evaluate the underlying assumptions of CE and PSE. 

Reports on the agreement of CE and PSE with the criterion equating are given in von Davier et 

al. In that study, both the traditional linear-interpolation-based and the Gaussian kernel-
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smoothing-based equipercentile functions of both the PSE and CE approaches were close to the 

criterion equipercentile function, but the CE results were slightly closer. The present study 

investigates how the assumptions of CE and PSE reflect these earlier findings.  

The special data set from von Davier et al. (2006) will be described in more detail in a 

later section. The study uses the item responses from actual examinees taking a real test that was 

given at two different test administrations. The actual item responses from the whole test are 

used to create scores for smaller, nonoperational pseudo-tests. Furthermore, by ignoring some of 

the scores on the pseudo-tests for examinees in the different test administrations this approach 

can mimic the data in a NEAT design. This ignored data can be used to evaluate the usually 

untestable assumptions of CE and PSE, as we do here. 

This report is part of a series of examinations of the special pseudo-test data set. von 

Davier and Ricker (2006) used the same data to compare PSE and CE to the criterion equating 

while varying both the type of anchor test (internal or external) and its length. Here, we use the 

same data to investigate the influence of the length (and, therefore, the reliability) of the anchor 

tests on the accuracy of the PSE and CE predictions. 

The analyses discussed in this paper used loglinear models for presmoothing and the 

kernel equating (KE) method for computing the equipercentile functions needed (von Davier et 

al., 2004a). The previous study of von Davier et al. (2006) showed (a) that the KE version of 

PSE gave results that were very similar to frequency-estimation method that used linear-

interpolation to continuize and (b) that the KE version of CE gave results that were very similar 

to the method of chained equipercentile equating that used linear-interpolation to continuize. For 

this reason, we did not think it necessary to use methods based on linear-interpolation 

continuization in our comparison of CE and PSE.  

Basic Notation 

In the NEAT design, the two operational tests to be equated, X and Y, are given to two 

samples of examines from different test populations or administrations (denoted here by P and 

Q). In addition, an anchor test, A, is given to both samples from P and Q. The data for the NEAT 

design is described in the design table (von Davier et al., 2004a) illustrated in Table 1, where  

denotes the presence of data and a blank indicates the absence of data.  
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Table 1 

The Design Table for the NEAT Design 

 X A Y 
P    
Q    

The anchor test score, A, can be either a part of both X and Y (an internal anchor test) or 

a separate score that is not used for scoring the test (an external anchor test). Both types are 

considered in this study. 

The target population, T, for the NEAT design is the synthetic population based on P and 

Q, Braun and Holland (1982). P and Q are given weights that sum to 1, which denote their 

degree of influence on T. Following Braun and Holland (1982), this is denoted by 

T = wP + (1 – w)Q. (1) 

If w = 1, then T = P and if w = 0 then T = Q. If w = ½, then P and Q are represented equally in T. 

Any choice of w between 0 and 1 is possible, and this reflects the amount of weight that is given 

to P and Q. Other authors have indicated the total population by summing the samples from P 

and Q, (P + Q). This corresponds to taking w in (1) to be proportional to the sample size from P 

relative to the total for P and Q, and this is the choice of w used here. 

The pseudo-test data can be related to the design table in Table 1. P and Q correspond to 

the two test administrations that took the original basic test. The target population is the 

combined two test administrations and so corresponds to choosing w proportional to the sample 

size in administration P. The pseudo-tests, X and Y and A, are all formed from the real test items, 

with X and Y designed to be substantially different in difficulty and yet parallel in test content. 

Various types of pseudo-anchor tests were made to play the role of A. Table 2 shows the design 

table for the pseudo-test data.  

Table 2 

The Design Table for the Pseudo-Test Data 

 X A Y 
P    
Q    
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The pseudo-test data are then used to simulate a NEAT design by pretending that X was not 

given to Q and that Y was not given to P even though that was the case.  The criterion equating 

used in von Davier et al. (2006) is found by using all the data from T for both X and Y and 

equating them through a single group design on T. This criterion equating is the equating function 

that both CE and PSE attempt to estimate by making different types of assumptions about the 

missing data in Table 3. Thus, it is the natural criterion equating for the pseudo-test data. 

In our discussion we will let F, G, and H denote the cumulative distribution functions 

(cdfs) of X, Y, and A, respectively, and will further specify the populations on which these cdfs 

are determined by the subscripts P, Q, and T. These cdfs arise throughout the following 

discussion.  

All OSE methods may be viewed as based on the equipercentile equating function 

defined on the target population, T, as: 

eXY;T(x) = GT
-1(FT(x)) (2) 

where FT(x) and GT(y) are the cdfs of X and Y, respectively, on T.  

Linear equating may be derived from (2) by assuming that FT(x) and GT(y) are 

continuous and have the same shape with possibly differing means and variances. Under this 

assumption, the equipercentile equating function, eXY;T(x), reduces to the linear equating 

function, LinXY;T(x), defined by 

LinXY;T(x) = µYT + σYT((x – µXT)/σXT). (3) 

Equating Methods for the NEAT Design 

In the NEAT design, the two operational tests, X and Y, are each observed either on P or 

on Q, but not both. Thus, X and Y are not both observed on T, regardless of the choice of w. For 

this reason, assumptions must be made to overcome the missing data that arise in the NEAT 

design, which are evident in Table 1. A basic task for developing OSE methods for the NEAT 

design is to make acceptable and sufficiently strong assumptions that allow values for FT(x) and 

GT(y) to be found. In other equating and test linking designs, such as the equivalent-groups or the 

single-group designs, the target population is simply the group from which the examinees were 

sampled. In those cases, FT(x) and GT(y) may be directly estimated from the observed data. In the 
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NEAT design, however, assumptions that are not directly testable using the available data must 

be added to the mix. CE and PSE represent two different sets of such assumptions. 

In the NEAT design, OSEs have been proposed that use the anchor test information in 

three fundamentally different ways. First, the anchor score can be used as a stratifying or 

conditioning variable for estimating the score distributions or the sample statistics of the tests to 

be equated. This approach is similar to poststratification in survey research, and, following von 

Davier et al. (2004a), we refer to equating methods based on this approach as poststratification 

equating (PSE) methods. Second, the anchor score can be used as the middle link in a chain of 

linking relationships; X is first linked to A and then A is linked to Y. Following standard usage, 

we will refer to equating methods based on this approach as chain equating (CE) methods. The 

equating functions for either PSE or CE can be linear or nonlinear in shape. 

A third way to use the anchor information uses classical test theory to produce estimates 

of the mean and variance of X and Y over T. This results in the Levine OSE linear method. 

Currently, there is no equipercentile version of the Levine OSE linear method and therefore we 

do not consider this third approach in this paper. 

The two OSE methods, CE and PSE, make different assumptions about the distributions 

of X and Y in the populations where they are not observed. These assumptions were identified in 

von Davier et al. (2004a) and are briefly given here. 

CE assumptions. The equipercentile function computed on P for linking X to A is the 

same as that for linking X to A on T for any choice of T = wP + (1 – w)Q. An analogous 

assumption holds for the links from A to Y in Q and in T.  

PSE assumptions. The conditional distribution of X given A in P is the same as the 

conditional distribution of X given A in T, for any choice of T = wP + (1 – w)Q. An 

analogous assumption holds for Y given A in Q and in T. 

In the pseudo-test data we can check the CE and PSE assumptions. However, as given 

above, these assumptions require checking different things for CE and for PSE. For example, 

checking the CE assumptions requires comparing the link from X to A in P with the link from X 

to A in T, and similarly, for the links between A and Y in Q and T. However, checking the PSE 

assumptions requires comparing the conditional distributions of X given A in P with the 

conditional distribution of X given A in T, and similarly for the conditional distribution of Y 
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given A in Q and T. Because the pseudo-test data includes data for both X in Q and Y in P, these 

checks of the (usually) untestable assumptions are possible, at least in principle. 

One problem that immediately arises is that what is compared in the evaluation of the CE 

assumptions is very different from what is compared in the evaluation of the PSE assumptions. It is 

not clear how to compare the magnitude of a failure of the CE assumptions with the magnitude of a 

failure of the PSE assumptions. Our solution to this problem is to identify necessary consequences of 

the two sets of assumptions for the distribution of X in Q and Y in P and then to compare these 

consequences or predictions with the actual data. We discuss these predictions next. 

The Predictions of PSE and CE  

The PSE predictions. The PSE assumptions are supposed to hold for any choice of T = 

wP + (1 – w)Q, so that in particular they hold for T = Q. Thus, the PSE assumptions imply that 

the conditional distribution of X given A in T may be expressed as 

P{X = x | A, Q} = P{X = x | A, P}. (4) 

Hence, the marginal distribution of X in Q, fxQ = P{X = x | Q}, is given by 

fxQ = P{X = x | Q} = P{X = x | A = a, P}haQ, (5) 
a
∑

where 

haQ = P{A = a | Q}, (6) 

is the marginal distribution of A in Q. Thus, (5) is the PSE prediction of fxQ that is a necessary 

consequence of the PSE assumptions. Similar predictions for the marginal distribution of Y in P 

follow from the PSE assumption for the conditional distribution of Y given A in T and P. 

Because the PSE predictions are necessary consequences of the PSE assumptions, any 

evidence that the PSE predictions are wrong implies that the PSE assumptions are also wrong. 

To implement these PSE predictions we used the following approach. 

First, we used loglinear models to presmooth the bivariate distribution of (X, A) obtained 

from P and the bivariate distribution of (Y, A) from Q. We denoted these presmoothed bivariate 

probabilities, respectively, as 
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pxa = P{X = x, A = a | P} and qya = P{Y = y, A = a | Q}. (7) 

Second, using these bivariate probabilities, form the marginal distributions of A in P and 

Q, that is, 

haP = pxa and haQ = qya. (8) 
x
∑

y
∑

Third, we computed the conditional probability, P{X = x | A = a, P}, as the ratio pxa/haP.  

Fourth, we used these estimated conditional probabilities to obtain the predicted score 

probabilities for X in Q via equation (5), that is, 

fxQ = pxa(haQ/haP). (9) 
a
∑

By similar reasoning, the predicted score probabilities for Y in Q are 

gyP = qya(haP/haQ). (10) 
a
∑

We denoted the observed frequencies of X in Q by nxQ and the frequencies for Y in P by 

myP. In a real NEAT design, neither of these two sets of frequencies is available, but in this 

special data set they are. The X in Q frequencies, {nxQ}, sum to NQ, while the Y in P frequencies 

sum to NP. The check on the assumptions of PSE that we propose is to compare the predicted 

frequencies, NQ fxQ and NP gyP, to the observed frequencies, nxQ and myP, respectively. We 

compare the observed with the predicted frequencies in several ways described in more detail, 

later. These include direct comparisons of the observed and predicted frequencies as well as the 

smoother comparisons of observed and predicted moments. 

The CE predictions. The CE assumptions do not directly concern discrete score 

distributions as the PSE assumptions do. Instead, they assert that the equipercentile function for 

linking X to A in T is the same for any choice of T, including both P and Q. The CE predictions 

for the score distributions of X in Q and Y in P are not as direct as they are for PSE. We used the 

following approach. 
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First, we took the presmoothed bivariate distributions, {pxa} and {qya}, from (7) and used 

them to get the marginal score probabilities of X in P, A in P, A in Q, and Y in Q, denoted, 

respectively, by fxP, haP, haQ, and gyQ, in parallel with the notation in (8) – (10). 

Second, using the methods of kernel equating, we continuized these score probabilities to 

get the continuous cdfs FP(x), HP(a), HQ(a), and GQ(y).  

Third, we observed that the assumption that the equipercentile function for linking X to A 

in P is the same as it is for linking X to A in Q means that H-1
Q(FQ(x)) = H-1

P(FP(x)), so that the 

CE predicted continuized cdf of X in Q is given by 

FQ(x) = HQ(H-1
P(FP(x))). (11) 

Similarly, the CE predicted continuized cdf of Y in P is 

GP(y) = HP(H-1
Q(GQ(y))). (12) 

To compute FQ(x) in (11) for any x, first compute a = eA(x) = H-1
P(FP(x)), the KE equipercentile 

function linking X to A on P. Then, using the computed value of a, compute HQ(a) from the KE 

continuized cdf. The new KE software (ETS, 2005) has subroutines for both of these 

calculations. Similar calculations are made for GP(y) in (12). 

The two predicted cdfs are continuous, but the score data are discrete. In order make 

comparisons with the PSE predictions, we suggest discretizing the two predicted continuous cdfs 

in the following way. Denote the X-scores by xj, for j = 1 to J and evaluate FQ(x) at the value, x = 

(xj + xj+1)/2, for j = 1 to J – 1. Then, define a discrete probability distribution, {rjQ}, for X by 

rjQ = FQ((xj + xj+1)/2) − FQ((xj-1 + xj)/2), for j = 2, 3, …, J – 1, 

 (13) 

rJQ = 1 – FQ((xJ-1 + xJ)/2), and r1Q = FQ((x1 + x2)/2). 

The {rjQ}, given in (13), are discrete probabilities that sum to 1.0 and that, if continuized using 

the scores, {xj}, will closely reproduce the cdf, FQ(x). This discretization of the continuous cdf, 

FQ(x), is of possible independent interest and allows the score points to be unequally spaced, 
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when this occurs. However, in the present study, number-right scores arise and these are equally 

spaced. We propose another use for this method of discretizing cdfs in the discussion section. 

In the same way, the predicted score probabilities for Y = yk (k = 1 to K) in P are given by 

skP = GP((yk + yk+1)/2) − GP((yk-1 + yk)/2), for k = 2, 3, …, K – 1, and 

 (14) 

sKP = 1 – GP((yK-1 + yK)/2), and s1P = GP((y1 + y2)/2). 

We used the values of NQ rjQ as the CE prediction of the X in Q frequencies, nxQ, just as 

NQ fxQ is the PSE prediction of these frequencies. In a similar way, we used NP skP as the CE 

prediction of the Y in P frequencies, myP. 

Except for the discretizing steps, (13) and (14), that are needed to make the CE 

predictions comparable to those of PSE, the CE predictions are necessary consequences of the 

CE assumptions. Hence, evidence that they are wrong is evidence that the CE assumptions are 

wrong. 

Comparing the predicted frequencies with the data. There are several different ways to 

investigate the difference between any set of observed and predicted score frequencies. We use 

three different approaches in our analyses. 

First, to get an overall view of how well the predictions tracked the observed frequencies 

we graphed the observed and predicted frequencies together as well as their Freeman-Tukey 

(FT) residuals (Holland & Thayer, 2000) to display the full set of predicted and observed 

frequencies. The FT residuals have the form, 

1 4 1i i in n m+ + − + ,  (15) 

where ni denotes the observed frequencies and mi the predicted frequencies for either CE or PSE. 

If the observed frequencies are well approximated by the predictions, then these residuals will 

tend to show no pattern and to lie in the range expected for approximate normal deviates, that is, 

plus or minus 2 or 3. 

Second, to get a more quantitative and summary assessment of the agreement between 

the observed and predicted frequencies we used three standard goodness-of-fit measures—
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likelihood ratio chi-square, Pearson chi-square, and sum of squared FT residuals (Holland & 

Thayer, 2000). The following formulas define these measures. In each case, ni denotes the 

observed frequencies and mi the corresponding predicted frequencies from either CE or PSE. 

Pearson 
2χ  statistic, 

2
2 ( ) ,i i

i i

n m
m

χ −
=∑  (16) 

Likelihood ratio 
2χ statistic, 2 2 log( / )i i

i
G n n= im∑ , (17) 

The FT 
2χ statistic, 2 ( 1 4FT i i i

i

n n mχ = + + − +∑ 21) . (18) 

These three measures are often used to assess the closeness of fitted frequencies to 

observed frequencies in discrete distributions of scores (Holland & Thayer, 2000) and have 

nominal chi-square reference distributions when the disagreement between the observed and 

predicted frequencies is due to random variation. However, in this application these reference 

distributions are not likely to be accurate because none of these predicted frequencies were 

created under the assumptions that would lead to using these references distributions. 

Nonetheless, the measures are useful quantitative and summary indices of the overall agreement 

between the observed and predicted frequencies. Two reviewers suggested comparing the 

predicted frequencies to a set of smoothed versions of the observed frequencies (rather than the 

raw unsmoothed observed frequencies) to dampen some of the noise in the observed frequencies. 

However, we resisted this suggestion since it would introduce the method of smoothing the raw 

frequencies into the comparison and, in our opinion, would cloud rather than simplify it. 

Moreover, our third type of comparison does provide a natural type of smoothing of the observed 

frequencies to compare with the predicted frequencies, to which we now turn. 

For a smoother and more detailed look at the predictions, we compared the first four 

moments—mean, standard deviation, skewness, and kurtosis—of the predicted and observed 

frequencies and used the percent relative difference between the observed and predicted 

moments as a way to quantify the relative accuracy of the predictions. 
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Study Details 

The original data set. The data come from one test form of a licensing test program for 

prospective teachers of children in primary through upper elementary school grades. The form 

included 119 multiple-choice items, about equally divided among four content areas—language 

arts, mathematics, social studies, and science. This form of the test was administered twice, and 

the two test administrations play the role of populations P and Q in our analysis. The mean total 

scores (number right) of the examinees taking the test at these two administrations differed by 

approximately one-fourth of a standard deviation, as can be seen in Table 3. This data set was 

selected because of the large number of test items from which to construct pseudo-tests and 

because the score distributions at the two test administrations were substantially different. 

Table 3 

Ns, Means, and Standard Deviations of the Original Test Score for the Two Test 

Administrations, P and Q 

Administration P Q 

Number of examinees 6,168 4,237 

Mean score 82.3 86.2 

SD of scores 16.0 14.2 

Test construction. We used these data to construct two pseudo-tests, X and Y, as well as 

three different pseudo-anchor tests, A1, A2, and A3, of different lengths. A pseudo-test consists 

of a subset of the test items from the original 119-item test, and the score on the pseudo-test for 

an examinee in the sample is found from the item responses of that examinee to the items in the 

pseudo-test. This approach is an alternative to simulating test data from an item response model 

and has the benefit of being based on real test data from real examinees rather than being 

completely based on a statistical model. 

The external anchor test cases. To create data sets with external anchor tests, we used the 

119 items from the original test to create two smaller pseudo-tests, X and Y. Each of these 

contained 44 items, 11 items from each of the four content areas. Care was given to make X and 

Y parallel in content but different in difficulty. Test X was constructed to be easier than Y, based 

on the item statistics for the items. Tests X and Y had no items in common. In addition, a basic 

12 



set of 24 items (6 from each content area) was selected to be representative of the original test 

and to serve as the largest external anchor, A1. The two other anchor tests, A2 and A3, were 

formed by deleting 4 and 8 items, respectively, from A1 in such a way that A2 is a 20-item 

subset of A1, and A3 is a 16-item subset of A1 and A2. Furthermore, to maintain parallelism in 

content, test A2 had five items from each content area, while A3 had four. 

The pseudo-anchor tests were constructed (to the extent possible) to cover the content 

tested by the 119-item test and the two 44-items tests as well as to represent the content 

categories in the same proportions as the original test. The mean difficulty of the anchor tests 

approximately equaled the mean for the original test. The structure of the various pseudo-tests is 

outlined in Table 4. 

Table 4 

The Structure of the Two Basic Pseudo-Tests and the Three External Anchor Tests 

X 
The easier test 

Anchor items Y 
The more difficult test 

Language arts 

1, 5, 6, 7, 8, 9, 11, 23, 
24, 25, 30 

A1:  3, 10, 14, 15, 17, 18 
A2:  3, 10, 14, 17, 18 
A3:  3, 10, 14, 18 

2, 4, 12, 13, 19, 20, 21, 
26, 27, 28, 29 

Mathematics 

31, 33, 34, 40, 44, 46, 
47, 49, 51, 54, 60 

A1: 32, 42, 43, 52, 55, 58 
A2:  42, 43, 52, 55, 58 
A3:  42, 43, 52, 58 

35, 37, 38, 41, 45, 48, 
50, 53, 56, 57, 59 

Social studies 

61, 63, 66, 67, 69, 77, 
78, 83, 86, 87, 90 

A1:  64, 71, 73, 74, 76, 79 
A2:  64, 71, 74, 76, 79 
A3:  64, 71, 74, 79 

62, 65, 68, 70, 72, 75, 
80, 81, 82, 85, 88 

Science 

92, 93, 95, 99, 103, 
105, 106, 108, 113, 
114, 118  

A1: 91, 98, 101, 107, 110, 120 
A2: 91, 98, 101, 110, 120 
A3: 91, 98, 101, 110 

94, 96, 97, 100, 102, 
104, 109, 112, 115, 
116, 117 

Note. Item numbers are from the original test. 
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From Table 4 it is clear that the original test and the pseudo-tests, X, Y, A1, A2, and A3, 

are multidimensional in the sense that the content covered involved four topic areas. However, 

great care was taken to make all of the pseudo-tests as parallel in this content coverage as 

possible, and each test has proportionally the same content coverage across the four dimensions. 

Hence, to the extent possible, all of the pseudo-tests are multidimensional in the same way. 

Table 5 gives the Ns, means, standard deviations, and alpha reliabilities of the scores on 

X, Y, A1, A2, and A3 and for the two sums X1 = X + A1 and Y1 = Y + A1 (they  play a role for 

the internal anchor cases, see below) for the examinees in P, Q, and the combined group. X is 

easier than Y because the mean score on X is higher than the mean score on Y in all three groups. 

For example, the mean score on X on the combined group is larger than the mean score on Y by 

approximately 127% of the Y-standard deviation. This difference in difficulty is substantial and 

is probably an extreme that would only be observed in practice if pretesting is not feasible. In 

addition, all three anchor tests show approximately 23 to 24% difference between P and Q, in 

terms of the standard deviation of the combined group. The reliabilities of the three anchor tests 

behave as expected, with A1 the most reliable and A3 the least reliable. However, the range of 

these reliabilities is not large—from .68 to .75 on the combined group. 

Table 5 

Ns, Means, (Standard Deviations), and [Alpha Reliabilities] of the Scores on X, Y A1, A2, A3, 

X1, and Y1 in P, Q, and the Combined Group, P + Q 

Test X Y A1 A2 A3 X1 =  
X + A1 

Y1 =  
Y + A1 

P 
 
N = 
6,168 

35.1 
(5.7) 
[.81] 

 

26.6 
(6.7) 
[.81] 

 

16.0 
(4.2) 
[.75] 

 

13.7 
(3.6) 
[.71] 

 

10.8 
(3.0) 
[.68] 

 

51.2 
(9.3) 
[.88] 

 

42.6 
(10.3) 
[.88] 

 

Q 
 
N = 
4,237 

36.4 
(4.8) 
[.77] 

 

28.0 
(6.3) 
[.79] 

 

17.0 
(3.9) 
[.73] 

 

14.5 
(3.3) 
[.69] 

 

11.5 
(2.8) 
[.66] 

 

53.4 
(8.0) 
[.85] 

 

45.0 
(9.6) 
[.87] 

 
P + Q 
 
N = 
10,405 

35.6 
(5.4) 
[.80] 

 

27.2 
(6.6) 
[.80] 

 

16.4 
(4.1) 
[.75] 

 

14.0 
(3.5) 
[.71] 

 

11.1 
(3.0) 
[.68] 

 

52.1 
(8.9) 
[.87] 

 

43.6 
(10.1) 
[.87] 
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The internal anchor test cases. To create data sets that had internal anchor tests, we 

formed X1 = X + A1 and Y1 = Y + A1. Then we paired X1 and Y1 with A1, A2, or A3 as the 

three internal anchor test scores. Because A2 was a subset of A1 and A3 was a subset of A1 and 

A2, each of the three anchor tests is internal to the total scores, X1 and Y1. This approach 

allowed us to keep the total test the same size (44 + 24 = 68 items) as we varied the length (and 

therefore the reliabilities) of the anchor tests. 

Mimicking the NEAT design. Because all the examinees in P and Q took all the 119 items 

on the original test, it follows that all of the examinees in P and Q also have scores for the two 

44-item tests, X and Y, as well as for each of the three anchor tests, A1, A2, and A3. In order to 

mimic the structure of the NEAT design indicated in Table 1, we pretended scores for X or X1 

were not available for the examinees in the test administration designated as Q and that scores 

for Y or Y1 were not available for the examinees in P. Thus, the data indicated in Table 2 can be 

viewed as the NEAT design in Table 1. However, because all scores were, in fact, available, they 

allow us to test the different assumptions made by CE and PSE in the NEAT design using the 

predictions discussed in the earlier sections. 

Presmoothing the bivariate score distributions. The same polynomial loglinear model 

was used for presmoothing all of the bivariate score distributions that arose from the joint 

frequency distributions of a pseudo-test and an anchor test. Appropriate adjustments were made 

for the structural zeros in the case of the internal anchor tests. The model was selected after 

considerable analysis of the various bivariate distributions using a variety of possible loglinear 

models. The chosen bivariate model fit five marginal moments for each score variable plus four 

cross-product moments of the form xa, xa2, x2a, and x2a2. Examination of the marginal and 

conditional distributions of the bivariate frequencies indicated that a loglinear model of this form 

fit all the sample bivariate distributions well. 

Continuizing the cdfs. All of the cdfs were continuized using Gaussian kernel smoothing 

with a penalty function that minimized the sum of squared discrepancies between the 

presmoothed probabilities and density function of the final cdfs (von Davier et al., 2004a). The 

resulting data-dependent bandwidths ranged from 0.529 to 0.640. These values are typical of 

those obtained for presmoothed data where the loglinear models are of the polynomial forms 

described earlier. 
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Results 

This section focuses on comparisons of the predictions made by CE and PSE with the 

observed data for X or X1 in Q and for Y or Y1 in P. The results are divided into three parts. 

First, graphs of the observed and predicted frequencies are examined to assess the overall 

agreement or disagreement between the predicted and observed data. Second, more quantitative 

assessments of the agreement between the observed and predicted frequencies are made using 

three different measures of goodness-of-fit between the observed and predicted distributions. 

Third, we give detailed comparisons of the first four moments of the observed and predicted 

distributions.  

Comparisons of the observed and predicted frequencies. Figures 1 and 2 graph the 

observed and predicted frequencies for CE and PSE for X and X1 in Q and for Y and Y1 in P, for 

the case of the longest anchor test, A1. (All of the graphs for the shorter anchor tests look very 

similar and are given in the appendix.) 

It is evident that the predictions of CE and PSE are very similar and that notable 

departures of the observed frequencies from CE are associated with notable departures from PSE 

as well. To look at the differences in more detail, we use the Freeman-Tukey residuals that are 

graphed in Figures 3 and 4. 

Examination of Figures 3 and 4 indicates that the pattern of the residuals for CE and PSE 

are very similar and that it appears fairly random, well within the expected range for well-fitting 

predictions. However, those for CE often are smaller than those for PSE. This is clearest in the 

middle range of scores in Figure 3. In summary, the graphical plot of the predictions of CE and 

PSE show that they both track the data fairly well and both sets of predictions appear to be 

somewhat more similar to each other than they are to the observed data. The next comparisons 

looks at the overall agreement of the predictions in a more summary and quantitative way. 

Comparisons of the goodness-of-fit measures. Table 6 gives the values for
2χ , , 

and

2G

2
FTχ , defined earlier, for all the cases in the study. 
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Figure 1. Frequencies for X in Q and Y in P for external anchor test A1. 
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Figure 2. Frequencies for X1 in Q and Y1 in P for internal anchor test A1. 
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Figure 3. Freeman-Tukey residuals for X in Q and Y in P for external anchor test A1. 
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Figure 4. Freeman-Tukey residuals for X1 in Q and Y1 in P for internal anchor test A1. 
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Table 6 

The Three Goodness-of-Fit Measures 

External anchor cases Internal anchor cases 
Tests and 
anchors 

2χ  
2G  2

FTχ  Tests and 
anchors 

2χ  
2G  2

FTχ  

X, A1: Q    X1, A1: Q    
PSE 63.9 68.5 66.3 PSE 58.6 64.2 59.5 
CE 56.6 57.1 54.5 CE 56.4 60.5 56.0 

X, A2    X1, A2    
PSE 72.0 77.6 76.0 PSE 69.1 76.1 71.8 
CE 72.5 74.7 73.4 CE 67.0 72.4 68.4 

X, A3    X1, A3    
PSE 78.0 86.7 85.1 PSE 75.5 85.0 79.8 
CE 66.7 71.8 69.4 CE 71.8 78.9 73.6 

Y, A1: P    Y1, A1: P    
PSE 49.3 51.4 49.9 PSE 78.1 77.7 74.1 
CE 37.9 43.3 42.4 CE 74.8 77.9 74.9 

Y, A2    Y1, A2    
PSE 58.7 59.8 58.0 PSE 90.2 88.1 84.5 
CE 46.7 50.2 48.2 CE 82.4 84.1 81.1 

Y, A3    Y1, A3    
PSE 68.3 68.9 67.4 PSE 103.7 97.9 94.2 
CE 45.4 48.5 48.1 CE 91.6 89.6 87.2 

The results in Table 6 quantify the observation made earlier from Figures 3 and 4 that the 

predictions of CE are somewhat closer to the observed frequencies than the PSE predictions. In 

all but three cases, all of the goodness-of-fit measures are smaller for CE than for PSE. In the 

three situations where this is not true (the shaded cells of Table 6) the difference between the 

goodness-of-fit measures for CE and PSE values is small. Thus, while the CE and PSE 

predictions are very similar, as seen in Figures 1 and 2, those of CE are usually slightly closer to 

the observed frequencies. 

In addition, there is a consistent tendency for the goodness-of-fit measures for PSE to get 

smaller as the length of the anchor test increases. This trend is consistent in every case in Table 7. 
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Thus, it is evident that the length (and the reliability) of the anchor test has a distinct and 

measurable effect on improving the predictions of PSE. This effect is not easily seen in the graphs 

of the frequencies. The predictions of CE do not show this trend for the external anchor test cases 

but they do show it for the internal anchor test cases. 

Table 7  

The First Four Moments of the Observed and the Predicted Distributions and Their Relative 

Differences. External Anchor Test Cases 

Tests, 
anchor; 

obs/pred. 

Mean Mean  
% rel. dif. 

SD SD  
% rel. dif.

Skewness Skew  
% rel. dif.

Kurtosis Kurt  
% rel. dif.

X, A1: Q 
Obs 36.38  4.77  -1.09  1.54  
PSE 36.16 -0.6 5.15 7.9 -1.09 -0.5 1.30 -15.6 
CE 36.42 0.1 5.00 4.7 -1.11 -2.2 1.41 -8.4 

X, A2 
Obs 36.38  4.77  -1.09  1.54  
PSE 36.13 -0.7 5.19 8.8 -1.08 1.0 1.22 -20.9 
CE 36.41 0.1 5.05 5.7 -1.08 0.8 1.28 -17.0 

X, A3 
Obs 36.38  4.77  -1.09  1.54  
PSE 36.04 -0.9 5.26 10.2 -1.09 0.1 1.28 -17.0 
CE 36.33 -0.1 5.10 7.0 -1.10 -0.8 1.43 -7.2 

Y, A1:P 
Obs 26.59  6.68  -0.10  -0.55  
PSE 26.79 0.8 6.56 -1.7 -0.17 -60.1 -0.52 5.2 
CE 26.44 -0.6 6.73 0.8 -0.13 -21.6 -0.53 4.1 

Y, A2 
Obs 26.59  6.68  -0.10  -0.55  
PSE 26.82 0.9 6.52 -2.3 -0.18 -70.2 -0.51 7.5 
CE 26.45 -0.5 6.66 -0.2 -0.15 -48.6 -0.51 8.1 

Y, A3 
Obs 26.59  6.68  -0.10  -0.55  
PSE 26.91 1.2 6.49 -2.8 -0.17 -68.7 -0.51 7.8 
CE 26.56 -0.1 6.63 -0.7 -0.15 -42.0 -0.50 8.6 
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Comparisons of the first four moments. Another summary comparison of the predictions 

of CE and PSE concerns the predictions of the mean, standard deviation, skewness, and kurtosis 

of the observed frequency distributions. These moments may be viewed as four different ways of 

smoothing and summarizing the frequencies. The values of these moments are given in Tables 7 

and 8. In addition, Tables 7 and 8 also show the percent relative differences (% Rel. Dif.) 

between the observed and predicted moments. The percent relative difference is the observed 

moment minus the predicted moment divided by the absolute value of the observed moment. 

Thus, positive relative differences indicate over-prediction, while negative values indicate under-

prediction. In Tables 7 and 8, the relative differences have been multiplied by 100 to express 

them as percents. These comparisons are done separately for X or X1 in Q and for Y or Y1 in P. 

Table 7 illustrates the external anchor cases and Table 8 the internal anchor cases. 

Several overall tendencies are revealed by a comparison of the CE and PSE predictions of 

the first four moments of the observed frequencies. First, in almost every case in Tables 7 and 8, 

in terms of the absolute value of the percent relative difference, the CE predictions are closer to 

the observed data than are the PSE predictions (the few exceptions are shown in shaded cells). 

The predictions of the means are quite accurate for both methods; the means have the 

consistently smallest percent relative differences in Tables 7 and 8, but the relative differences 

for the CE predictions are always smaller. For the standard deviations, the percent relative 

differences are generally a little larger, but again, those for CE are always smaller. The percent 

relative differences for both sets of predictions are generally larger for the skewness and kurtosis 

than for the mean and variance. However, both the signs and the magnitude of the predictions for 

skewness and kurtosis are correct for both CE and PSE. Moreover, the few cases where PSE has 

the smaller percent relative difference occur for skewness and kurtosis. 

As seen earlier for the goodness-of-fit measures, there is a consistent tendency for the 

accuracy of the predictions of PSE for the means and standard deviations to increase as the 

length of the anchor test increases. These tendencies are less consistent for the skewness and 

kurtosis predictions. The CE predictions for the mean and standard deviation for the external 

anchor test do not show the same consistent improvement as the length of the anchor test 

increases. This difference in trends for CE and PSE echoes the findings for the goodness-of-fit 

measures given earlier, and it is restricted to the external anchor case. 
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Table 8 

The First Four Moments of the Observed and the Predicted Distributions and Their Relative 

Differences. Internal Anchor Test Cases 

Tests, 
anchor; 

obs/pred. 

Mean 
 

Mean 
% rel.  

dif. 

SD SD  
% rel. 

dif. 

Skewness Skew  
% rel. 

dif. 

Kurtosis Kurt  
% rel. 

dif. 
X1, A1: Q 

Obs 53.38  8.04  -0.86  0.66  
PSE 53.17 -0.4 8.47 5.3 -0.87 -1.0 0.60 -9.8 
CE 53.31 -0.1 8.36 3.9 -0.86 -0.4 0.60 -8.9 

X1, A2 
Obs 53.38  8.04  -0.86  0.66  
PSE 53.11 -0.5 8.57 6.5 -0.84 1.9 0.51 -22.5 
CE 53.29 -0.2 8.45 5.0 -0.83 2.8 0.51 -22.6 

X1, A3 
Obs 53.38  8.04  -0.86  0.66  
PSE 52.94 -0.8 8.67 7.8 -0.85 0.7 0.57 -14.2 
CE 53.15 -0.4 8.53 6.0 -0.85 1.5 0.58 -12.0 

Y1, A1: P 
Obs 42.62  10.31  -0.19  -0.56  
PSE 42.82 0.5 10.17 -1.3 -0.23 -25.3 -0.54 4.7 
CE 42.62 0.0 10.27 -0.3 -0.21 -15.1 -0.54 4.6 

Y1, A2 
Obs 42.62  10.31  -0.19  -0.56  
PSE 42.89 0.6 10.18 -2.2 -0.25 -36.3 -0.51 8.8 
CE 42.65 0.1 10.17 -1.3 -0.24 -29.7 -0.51 9.0 

Y1, A3 
Obs 42.62  10.31  -0.19  -0.56  
PSE 43.08 1.1 10.00 -3.0 -0.25 -35.2 -0.51 8.9 
CE 42.81 0.4 10.12 -1.8 -0.24 -28.0 -0.51 9.5 
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Conclusions and Discussion 

This study investigates the assumptions that underlie two of the most used OSE methods 

for the NEAT design—CE and the PSE. In the usual operational settings, these assumptions are 

untestable and cannot be evaluated. In this study we used a special data set that allowed  us to 

test the predictions that the assumptions of both CE and PSE make regarding the data that are 

missing in real NEAT designs. 

We found that the two methods were very similar in terms of how well the predicted 

distributions approximated the observed distributions, with the CE-based results being slightly 

closer to the observed distributions than those of PSE. In addition, we observed that while the 

predictions of PSE were consistently improved using the longer and more reliable anchor tests, 

this was not found consistently for CE. The lack of the expected trend for CE appears for the 

goodness-of-fit measures (Table 6) and for the means and SDs (Table 7), but only for the 

external anchor case. In reviewing an earlier draft of this paper, our colleague, Tim Moses, did 

additional analyses with these data and found that when the PSE and CE predicted frequencies 

were compared to smoothed versions of the observed frequencies obtained by fitting loglinear 

models to them, the trends for CE in Table 6 became consistent with those of PSE. These results 

suggest that the lack of this trend for CE may be due to sampling variability. 

In retrospect, we recognize that we could have approached the problem of putting the 

predictions of CE and PSE on the same footing in a different way. Instead of discretizing the CE-

based continuous cdfs for X in Q and Y in P, we could have continuized the smooth, PSE-based, 

predicted frequencies for X in Q and Y in P. These results could then be compared with criterion 

cdfs based on the observed frequencies for X in Q and Y in P. Finding the criterion cdfs for X 

and Y would have required the addition of presmoothing the observed frequencies for X in Q and 

Y in P and then continuizing them to get the criterion cdfs. With the predicted cdfs for CE and 

PSE and the criterion cdfs in hand, we could then have compared these cdfs in various ways. 

Such an approach is interesting and worth further consideration, but it would involve more 

presmoothing and continuizing than the approach we took here. 

In discussing this study, we wish to mention two further issues that have arisen.  

Discretizing continuous distributions. The method for discretizing the continuous cdfs of 

CE given in (12) and (13) has uses beyond obtaining predicted discrete score distributions for 

CE. In von Davier, et al. (2004a), it is proposed to use the percent relative error (PRE) in the 
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moments of Y and the transformed X-scores, eY(X) on the target population, T, as a way of 

diagnosing the adequacy of an equipercentile equating function. The PRE measures they use 

have the form  

PRE(p) = 100[µp(eY(X)) − µp(Y)]/µp(Y)  (19) 

where 

µp(Y) =  and µp(eY(X)) =( ) p
k k

k
y s∑ T ( ) p

j j
j

e x r∑ Y T .  (20) 

In (20), skT denotes the discrete score probabilities for Y on T, while rjT denotes them for X on T. 

µp(Y) and µp(eY(X)) are the pth moments of Y and the transformed X scores, eY(X), over the target 

population. The values of p run from 1 to 10 in von Davier, et al. (2004a) These authors pointed 

out that, in trying to apply PRE(p) to the CE method, they were hampered by the fact that CE 

does not estimate the discrete score distributions rjT and skT. However, PSE does produce such 

estimates. 

What CE does produce are the continuized cdfs of X and of Y on T, in a manner similar to 

equations (11) and (12). The discretizing method in (13) and (14) worked so well to produce the 

accurate predictions of CE in this study that we think that it may be a useful way to produce the 

discrete probabilities needed for computing PRE(p) values for CE. The discretization would be 

applied to the CE values for FT(x) and GT(y) in that case. We believe that this is a useful area for 

future research. 

As a final comment about the discretizing method in (13) and (14), we note that it can be 

shown to have the following reciprocal property with the linear-interpolation method of 

continuizing discrete distributions that is traditionally used for equipercentile equating (Kolen & 

Brennan, 2004). If a discrete distribution is continuized by linear interpolation and then 

discretized using (13), the original discrete distribution is the result. This finding was verified by 

our colleague Tim Moses who did the calculation directly on the data in this study. If the 

Gaussian kernel smoothing method is used to continuize the distributions and the bandwidths are 

chosen to make the densities of the continuous cdfs close to the presmoothed frequencies, then 

the discretizing method in (13) and (14) will very closely reproduce the original presmoothed 

frequencies, but there will be tiny differences, as Moses found. 
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Pseudo-test studies versus simulation studies. After all the work that was done to create 

pseudo-tests and pseudo-anchor tests, we wonder if it was worth it. A great deal of care was 

taken to make sure that the pseudo-tests, X and Y, were parallel in content covered, but 

sufficiently different in difficulty to require equating. The result was two tests that had quite 

different mean scores on all of the populations. In an IRT-based simulation study there is no 

issue of content coverage (at least for a one-dimensional latent variable) and a difference in test 

difficulty is just a matter of the choice of difficulty parameters. Several different differences in 

test difficulty could be easily studied in a simulation study. To do this in a pseudo-test study 

would require attention to the overlap of the test items in the pseudo-tests that would force 

correlations between the results for different pairs of Xs and Ys. In addition, in the pseudo-test 

study, considerable effort was made to select appropriate test items for the anchor tests, A1, A2, 

and A3. They were all chosen to be representative of the original test’s content and difficulty. 

Furthermore, the variation in the length of the anchors was intended to vary their reliabilities. 

What resulted was a very modest range of reliability differences. In a simulation study, a wider 

range of anchor test reliability could have been achieved in a variety of ways. The 

representativeness of the content of the anchor tests would not arise in a simulation study. 

The pseudo-test study was designed to make CE and PSE produce different results. P and 

Q had mean scores on the anchor tests that were different enough to be a cause for concern in an 

actual equating. This difference is known to make CE and PSE differ. The disappointment is 

that, in retrospect, this effort made for only little differences between CE and PSE. Both methods 

make very similar predictions and are more similar to each other than they are to the data. It is 

true that CE performed a bit better than PSE did, but the striking finding is how little difference 

there is between the two methods in this study. A simulation study would be easier to mount and 

more differences could be arranged to produce cases where CE and PSE are more different. We 

believe that larger differences between CE and PSE would lead to sharper tests of the untestable 

assumptions that underlie these methods. 

In criticizing pseudo-test studies, we recognize that there are also clear benefits to them. 

The most notable is that the data are real rather than made up. The item responses reflect the 

behavior of real examinees rather than a statistical model. This is an important benefit, but in the 

present case we wonder if it is important enough to overcome the drawback of the labor-

intensive construction of pseudo-tests and the lack of control this leads to for important factors 
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that could be more easily varied in a simulation study. Careful design of simulation studies can 

mimic many features of real data from examinees, and simulations can serve as a type of “animal 

model” for real test data. 
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Appendix 

Graphs of Observed and Predicted Frequencies and Their Freeman-Tukey 

Residuals for the Other Cases Examined in the Study 
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Figure A1. Frequencies for X in Q and Y in P for external anchor test A2. 
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Figure A2. Freeman-Tukey residuals for X in Q and Y in P for external anchor test A2. 
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Figure A3. Frequencies for X in Q and Y in P for external anchor test A3. 

33 



0 10 20 30 40

-3
-2

-1
0

1
2

3
Freeman-Tukey residuals: X in Q

Raw score

R
es

id
ua

l

PSE
CE

0 10 20 30 40

-3
-2

-1
0

1
2

3

Freeman-Tukey residuals: Y in P

Raw score

R
es

id
ua

l

 
Figure A4. Freeman-Tukey residuals for X in Q and Y in P for external anchor test A3. 
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Figure A5. Frequencies for X1 in Q and Y1 in P for internal anchor test A2. 
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Figure A6. Freeman-Tukey residuals for X1 in Q and Y1 in P for internal anchor test A2. 
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Figure A7. Frequencies for X1 in Q and Y1 in P for internal anchor test A3. 
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Figure A8. Freeman-Tukey residuals for X1 in Q and Y1 in P for internal anchor test A3. 

38 


	Introduction
	Basic Notation
	Equating Methods for the NEAT Design
	The Predictions of PSE and CE
	Study Details
	Results

	Conclusions and Discussion
	References
	Appendix



