
 

 

 

Cognitive Diagnosis for 
NAEP Proficiency Data 
 

May 2006 
RR-06-08 

Research
Report

Xueli Xu

Matthias von Davier 

 

Research & 
Development 
 



Cognitive Diagnosis for NAEP Proficiency Data 

Xueli Xu and Matthias von Davier 

ETS, Princeton, NJ 

May 2006 

 



As part of its educational and social mission and in fulfilling the organization's nonprofit charter 

and bylaws, ETS has and continues to learn from and also to lead research that furthers 

educational and measurement research to advance quality and equity in education and assessment 

for all users of the organization's products and services. 

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to 

publication. To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 

Copyright © 2006 by Educational Testing Service. All rights reserved. 

ETS and the ETS logo are registered trademarks of 
Educational Testing Service (ETS). 

 

 



Abstract

More than a dozen statistical models have been developed for the purpose of cognitive diagnosis.

These models are supposed to extract a much finer level of information from item responses than

traditional unidimensional item response models. In this paper, a general diagnostic model (GDM)

was used to analyze a set of simulated sparse data and real data from National Assessment of

Educational Progress (NAEP) assessments. The purpose of this study was to find out (a) whether

the parameters can be recovered for a sparse data matrix in the framework of the GDM and (b)

how to estimate group characteristics for large survey data, such as NAEP, in the framework

of the GDM. The results of the simulation study show that GDM parameters can be recovered

satisfactorily. The GDM under single group and multiple group assumptions were employed to fit

NAEP assessment data. The results under these two assumptions and between the GDM and the

statistics derived using the operational NAEP model were compared. The findings indicate that it

is possible to conduct cognitive diagnosis for NAEP proficiency data.

Key words: General diagnostic model (GDM), model parameters, group characteristics, item

responses, large survey data
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1. Introduction

Cognitive diagnosis of item response data is a popular topic these days. Compared to

traditional unidimensional item response models, cognitive diagnosis models are developed to

extract much finer information from item responses than the traditional approach. Once the

relationship between cognitive attributes and items is specified, the cognitive diagnosis models

describe the functional effect of these items on the inference of individual skill mastery. By

developing such models, one can provide information about skill mastery status in multiple

dimensions of skills that may help students and teachers to choose appropriate training programs.

The cognitive diagnosis models are mainly developed for individual inferences.

With the ambition of extracting more information from item responses, however, the

parameter estimates of cognitive diagnosis models may suffer from instabilities because a large

number of parameters are estimated simultaneously. Even if the item parameters are assumed

to be known, the potentially large number of person parameters based on a limited set of items

may reduce the accuracy of individual estimates. In contrast to potentially unreliable individual

estimates, reliably estimating group characteristics in terms of marginal skill mastery probabilities

might be feasible because information is aggregated across individuals. Thus, the population

parameters and the subgroup characteristics, in addition to the item parameters, are the foci in

this paper.

Because using cognitive diagnosis models to make inferences about population and subgroup

characteristics is a promising approach, this study investigated using such a model to analyze the

data from subgroup-oriented educational surveys, such as the National Assessment in Educational

Progress (NAEP). A compensatory version of the general diagnostic model (GDM; von Davier &

Yamamoto, 2004) is used in this study since this class of models already includes many standard

item response theory (IRT) models and their extensions to confirmatory multidimensional IRT

models, as well as skill profile models (von Davier, 2005).

This paper is organized as follows. Section 2 introduces the GDM and discusses some of

its properties. A simulation study is described in Section 3 to demonstrate the capability of

parameter recovery in a sparse data matrix in the framework of the GDM. Section 4 and 5 present

the analysis and results for two NAEP assessment data sets. In Section 5, a brief discussion is

provided.
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2. The General Diagnostic Model and Its Properties

During the last decade, more than a dozen models have been developed for cognitive

diagnosis. (For a comprehensive review, see Roussos, 1994; Junker & Sijtsma, 2001.) The GDM

(von Davier, 2005) is a model that contains many logistic-type models as special cases. These

logistic-type models include latent class models of various types, the compensatory fusion model,

and a two-parameter logistic (2PL) model among others (von Davier & Yamamoto, 2004). The

rest of this section will focus on the introduction of the GDM and a discussion of its properties.

Let the matrix Q = {qik} specify the correspondence between items and attributes. The

entry qik = 1 means that the attribute k is measured by the item i, and qik = 0 otherwise.

With qik ∈ {0, 1}, let the number of skill levels be Lk = m + 1 and choose skill levels

αk ∈ {(0 − c), (1 − c), . . . , (m − c)} for some constant c. In the GDM, these skill levels are real

valued constants that can be chosen by the users to match their hypothesis or emulate a certain

model. The partial credit version of the GDM (von Davier, 2005) for a polytomous response

x ∈ {0, 1, 2, . . . ,mi} is

P (X = x|βi,α, qi,γi) =
exp[βxi +

∑K
k=1 xγikqikαk]

1 +
∑mi

y=1 exp[βyi +
∑K

k=1 yγikqikαk]
.

In this model, K attributes are assessed and the latent vector is denoted by α = {α1, . . . , αK}.

The dichotomous Q matrix specified above consists of K attribute columns and I item rows. The

parameters to be estimated are item parameters (such as βis and γis) and population parameters

(i.e., the point mass for latent attribute patterns). Solution to the maximum likelihood may be

obtained by means of the expectation-maximization (EM) algorithm (Bock & Aitkin, 1981; von

Davier & Yamamoto, 2004; Dempster, Laird, & Rubin, 1977; Muraki, 1992), which, since the

complete-data density function belongs to the exponential family, is guaranteed to converge to the

local maxima of the parameters values. Thus, the estimates of item parameters and population

parameters can achieve asymptotic consistency when both the number of examinees and the

number of items are large. These properties were also empirically demonstrated in the von Davier

(2005) study.
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An EM algorithm was developed for the partial credit version of the GDM and implemented

in the software mdltm (von Davier, 2005). The software provides the users with the following

estimates: (a) the posterior distribution of attribute patterns for groups specified in advance,

(b) the posterior distribution of attribute patterns for each individual, (c) the estimates of item

parameters of interest, and (d) the conditional probability of response categories for each item.

The first two types of estimates are, in fact, the population parameters. The posterior

distribution of latent attribute patterns for groups is obtained only when a multiple group

assumption is used in the analysis.

3. Simulation Study: Sparse Data Matrix

In the simulated data, both the generating model and the fitted model were the GDM. Forty

data sets were generated without missing values, each of which included 2,880 examinees and 36

items and assessed up to four attributes. Each attribute was assumed to have two levels, denoted

as 0 and 1. Thus, the examinees were classified in one of 24 = 16 latent attribute patterns. Three

degrees of missing response rates were used in this simulation study, 10%, 25%, and 50%. The

missing responses were randomly assigned to items for each examinee using the corresponding

proportion. For example, in the case where 50% of data was missing, 18 out of 36 items were

omitted for each simulated examinee.

For this recovery study, the item parameters of interest included the βs and γs in the GDM,

and the population parameters were the point masses for 16 latent attribute patterns. After

three overall groups of 40 data sets each with different levels of missing data were produced, the

software mdltm (von Davier, 2005) was used to fit the data. The recovery of the item parameters

and the population parameters were studied by calculating the bias and root mean squared error

(RMSE) across the 40 data sets for each of the parameters of interest. For any parameter in this

model, ζ = (β, γ, or the point mass for latent attribute patterns), the bias of the estimate ζ̂ is

obtained by bias(ζ̂) =
∑40

s=1
ζ̂s−ζ
40 . The RMSE of ζ̂ follows the form

RMSE(ζ̂) =
40∑

s=1

(ζ̂s − ζ)2/40,

where s is the index for simulations and ζ̂s is the estimate in simulation s.
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The recovery for each item parameter in different missing data conditions can be seen in

Tables 2 through 7. In particular, Tables 2 and 3 show the bias and RMSE of the estimated

parameters in the case where 10% of the data was missing. Tables 4 and 5 give the bias and

RMSE of the estimates in the 25% missing condition. The bias and RMSE of the estimates in

the 50% missing condition are shown in Tables 6 and 7. The recovery for the point mass of each

latent attribute pattern can be seen in Tables 8 through 10 for these three missing conditions,

respectively. In particular, the Means column represents the estimates for the point mass, while

the Truth column shows the true values for the point mass. The Diff. column in Tables 8 through

10 is the difference between the estimates and the true values, while the RMSE column is the

RMSE of the estimates. Table 1 summarizes the recovery by averaging the biases and RMSEs

across all the item parameters or across all the population parameters.

Tables 1 through 10 show that the RMSE of the item parameters was consistently higher in

the cases where 50% of the data was missing than in the cases where 10% or 25% of the data was

missing. However, even the highest observed RMSE in the 50% missing condition is still tolerable.

Overall, the largest RMSE is 0.23 for the item parameter estimates, which happened in the case

where 50% of the data is missing.

The tables also show that the RMSE for the point mass of the latent attribute patterns is

very small for all levels of missing data. This finding means that even with a severely sparse data

(the 50% missing condition), the missing data does not have a significant effect on the estimates

of the skill distribution in the population. This suggests it is feasible to consider estimating the

population parameters in more sparse data matrices, such as those exhibited in NAEP data.

Table 1.

Summary of the Accuracy of Estimates

10% missing 25% missing 50% missing

(32 items left) (25 items left) (18 items left)

Item parameters Average bias 0.001 0.002 0.005

Average RMSE 0.071 0.083 0.119

Population parameters Average bias 0.000 0.000 0.000

Average RMSE 0.004 0.004 0.007
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Table 2.
Bias of Slopes and Difficulties for 10% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.006 † -0.0093 0.0022
2 † -0.0226 0.0005 † 0.0002
3 † -0.0086 0.0099 † -0.0049
4 -0.0198 † † 0.0155 0.0048
5 † -0.0101 -0.0032 † -0.0015
6 0.009 † † 0.0063 -0.0122
7 † † † † -0.0016
8 0.0053 † † 0.0007 -0.0149
9 0.0063 -0.0359 0.012 † 0.005

10 † 0.0065 0.0026 0.0048 0.0023
11 † † † † -0.0117
12 † -0.0139 -0.0032 † -0.0055
13 † 0.0113 0.0066 -0.02 0.0005
14 † † † -0.0186 0.0015
15 † † 0.01 † 0.0178
16 0.0216 † 0.004 0.0131 -0.0018
17 † 0.0145 -0.0036 † 0.002
18 † † † -0.0099 0.0054
19 † 0.0194 0.0032 -0.0158 0.0122
20 0.0069 † -0.0061 0.013 0.0038
21 † † 0.0073 0.0115 0.0111
22 -0.0075 † † 0.0002 -0.003
23 † 0.0119 -0.0048 0.0237 -0.0353
24 0.0318 † 0.0202 -0.0105 0.0199
25 0.0002 † † -0.0033 0.0127
26 -0.0024 † -0.0085 † 0.0083
27 0.0164 † † 0.001 0.0051
28 † 0.0118 0.000 † 0.0001
29 0.0005 † -0.0003 † -0.0075
30 -0.0068 † 0.0067 -0.028 -0.005
31 † † -0.0021 † 0.0197
32 † 0.0137 -0.0046 † -0.0003
33 0.0001 -0.0177 † † -0.0021
34 † † -0.0105 † -0.0158
35 † -0.0108 0.001 0.0012 -0.007
36 -0.001 0.003 0.0189 † -0.005
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Table 3.
RMSE for 10% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.0693 † 0.0689 0.0519
2 † 0.0716 0.0637 † 0.0436
3 † 0.0657 0.0642 † 0.0480
4 0.0624 † 0 0.0554 0.0466
5 † 0.0659 0.0621 † 0.0702
6 0.0623 † 0 0.0654 0.0609
7 † 0 † 0 0.0376
8 0.0798 † 0 0.0811 0.0858
9 0.0826 0.0965 0.0655 † 0.0644

10 † 0.0865 0.0904 0.0798 0.0780
11 † 0 † 0 0.0469
12 † 0.0783 0.0639 † 0.0561
13 † 0.0884 0.0839 0.0874 0.0842
14 † 0 † 0.0470 0.0481
15 † 0 0.0654 † 0.0677
16 0.0776 † 0.0806 0.0908 0.0552
17 † 0.0714 0.0535 † 0.0522
18 † 0 † 0.0499 0.0470
19 † 0.0900 0.0661 0.0814 0.0672
20 0.0534 † 0.0671 0.0776 0.0722
21 † 0 0.0669 0.0628 0.0619
22 0.07299 † 0 0.0610 0.0612
23 † 0.0898 0.0833 0.0841 0.0927
24 0.0862 † 0.1047 0.0875 0.1034
25 0.0628 † 0 0.0710 0.0614
26 0.0640 † 0.0941 † 0.0760
27 0.0744 † 0 0.0769 0.0422
28 † 0.0649 0.0687 † 0.0509
29 0.0665 † 0.0596 † 0.0468
30 0.0532 † 0.0680 0.0720 0.0615
31 † 0 0.0541 † 0.0460
32 † 0.0808 0.0615 † 0.0697
33 0.0633 0.0670 † 0 0.0562
34 † 0 0.1611 † 0.1690
35 † 0.0911 0.0861 0.0858 0.0684
36 0.0670 0.0766 0.0780 † 0.0671
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Table 4.
Bias of Slopes and Difficulties for 25% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.0115 † -0.0219 0.0007
2 † -0.019 0.0054 † -0.0102
3 † -0.0166 0.011 † -0.0066
4 -0.0136 † † 0.0062 0.005
5 † 0.0073 -0.0121 † -0.0111
6 0.0087 † † 0.0108 -0.0135
7 † † † † -0.0012
8 -0.0076 † † 0.0121 -0.0144
9 0.0089 -0.0019 -0.0096 † -0.0061

10 † 0.0042 0.0127 0.0066 -0.0011
11 † † † † -0.0112
12 † -0.0052 -0.0027 † 0.0045
13 † 0.0002 0.005 -0.0143 -0.0137
14 † † † -0.023 0.0058
15 † † 0.018 † 0.0246
16 0.0201 † -0.013 0.0335 -0.0186
17 † 0.0174 -0.0045 † -0.0025
18 † † † -0.0065 0.011
19 † 0.0072 0.0191 -0.0308 0.0026
20 0.0297 † 0.0006 0.0001 0.0165
21 † † 0.004 0.0208 0.014
22 -0.015 † † -0.0117 0.0157
23 † 0.0301 -0.0111 0.0164 -0.0266
24 0.0465 † 0.0177 0.0075 0.0242
25 0.0048 † † -0.0047 0.0172
26 -0.0005 † -0.003 † 0.0064
27 0.0047 † † 0.0182 -0.0061
28 † 0.0333 -0.0028 † 0.0069
29 -0.0104 † -0.0002 † -0.001
30 0.0073 † -0.0071 -0.0176 -0.0124
31 † † 0.0032 † 0.0173
32 † 0.0366 -0.015 † -0.0038
33 0.0007 -0.0134 † † 0.0011
34 † † -0.0186 † -0.0183
35 † -0.0186 0.0006 0.0159 -0.001
36 -0.0045 0.0127 0.01 † 0.0058
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Table 5.
RMSE for 25% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.0784 † 0.0936 0.0474
2 † 0.0915 0.0814 † 0.0444
3 † 0.0693 0.0592 † 0.0522
4 0.079 † † 0.0631 0.0460
5 † 0.0712 0.0784 † 0.0688
6 0.073 † † 0.0789 0.0652
7 † † † † 0.0384
8 0.0876 † † 0.1058 0.0917
9 0.0843 0.1057 0.0885 † 0.0708

10 † 0.1159 0.0932 0.1051 0.0879
11 † † † † 0.0468
12 † 0.1032 0.091 † 0.0632
13 † 0.1017 0.0836 0.0982 0.0907
14 † † † 0.0638 0.0473
15 † † 0.0796 † 0.0838
16 0.0807 † 0.088 0.1131 0.0737
17 † 0.0848 0.0723 † 0.0645
18 † † † 0.0546 0.0488
19 † 0.105 0.0717 0.1061 0.0718
20 0.0858 † 0.0874 0.0854 0.0832
21 † † 0.0762 0.059 0.0674
22 0.0767 † † 0.086 0.0713
23 † 0.1106 0.0807 0.0916 0.0974
24 0.1184 † 0.1071 0.1042 0.1372
25 0.0787 † † 0.0755 0.0736
26 0.0778 † 0.1056 † 0.0880
27 0.085 † † 0.0783 0.0504
28 † 0.0879 0.0623 † 0.0574
29 0.0708 † 0.0696 † 0.0580
30 0.0603 † 0.086 0.0769 0.0777
31 † † 0.0683 † 0.0481
32 † 0.0977 0.0822 † 0.0632
33 0.0696 0.0821 † † 0.0720
34 † † 0.2192 † 0.2148
35 † 0.1173 0.0957 0.094 0.0946
36 0.0875 0.0872 0.0844 † 0.0675
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Table 6.
Bias of Slopes and Difficulties for 50% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.015 † -0.0066 0.0047
2 † -0.0435 0.0047 † 0.0098
3 † 0.0132 -0.0046 † -0.0145
4 0.0046 † † 0.012 0.0078
5 † -0.0208 0.0065 † 0.0047
6 0.0077 † † -0.0136 -0.0264
7 † † † † 0.006
8 0.0176 † † 0.0097 0.0035
9 0.0138 -0.0196 0.0149 † -0.004

10 † 0.0479 0.0014 0.0133 -0.0109
11 † † † † -0.0174
12 † -0.0073 -0.0054 † -0.0003
13 † 0.0205 0.0054 -0.0305 -0.0011
14 † † † -0.0111 0.002
15 † † 0.0133 † 0.0308
16 0.0364 † 0.0071 0.0527 -0.03
17 † 0.0002 0.0016 † 0.016
18 † † † -0.0027 0.0001
19 † 0.0294 -0.0098 -0.0137 0.0202
20 0.0443 † 0.0122 0.0298 0.0239
21 † † 0.0001 0.0316 -0.0011
22 -0.0006 † † 0.0259 -0.0166
23 † 0.044 -0.0285 0.0542 -0.0348
24 0.0841 † 0.0575 -0.008 0.067
25 0.0166 † † -0.0036 0.007
26 0.0126 † -0.0023 † 0.0018
27 0.0142 † † 0.0327 -0.0102
28 † 0.0044 0.0027 † 0.009
29 0.0133 † -0.0044 † 0.0057
30 0.0247 † -0.014 -0.0202 -0.0174
31 † † -0.0057 † 0.0279
32 † 0.036 -0.0116 † -0.0014
33 0.0224 -0.021 † † -0.0037
34 † † -0.0131 † -0.0197
35 † -0.0116 0.0088 -0.0007 -0.0334
36 -0.0086 -0.0146 0.0286 † -0.005
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Table 7.
RMSE for 50% Missing Data

Item γ1i γ2i γ3i γ4i βi

1 † 0.1056 † 0.0953 0.0824
2 † 0.1272 0.1044 † 0.07
3 † 0.1251 0.1041 † 0.0805
4 0.101 † † 0.0995 0.0661
5 † 0.1387 0.1376 † 0.0958
6 0.1129 † † 0.1259 0.0751
7 † † † † 0.0626
8 0.1517 † † 0.1455 0.1305
9 0.1158 0.1347 0.1217 † 0.0918

10 † 0.1658 0.1417 0.1329 0.1157
11 † † † † 0.0643
12 † 0.1354 0.1076 † 0.0799
13 † 0.1811 0.1612 0.1326 0.1092
14 † † † 0.0634 0.0676
15 † † 0.1114 † 0.096
16 0.148 † 0.1301 0.1688 0.0992
17 † 0.0998 0.1152 † 0.0676
18 † † † 0.0774 0.0528
19 † 0.1874 0.1333 0.1347 0.1037
20 0.1228 † 0.1173 0.1489 0.1135
21 † † 0.1062 0.1005 0.0705
22 0.1002 † † 0.1144 0.0928
23 † 0.1718 0.1874 0.1692 0.1427
24 0.2093 † 0.1616 0.1759 0.1807
25 0.1045 † † 0.1111 0.0772
26 0.1224 † 0.1328 † 0.1039
27 0.1055 † † 0.1154 0.0552
28 † 0.1346 0.1043 † 0.0847
29 0.0947 † 0.0817 † 0.0687
30 0.1272 † 0.1375 0.1244 0.0925
31 † † 0.0802 † 0.0669
32 † 0.1634 0.1357 † 0.0835
33 0.1071 0.1174 † † 0.1035
34 † † 0.2305 † 0.2308
35 † 0.19 0.156 0.1725 0.1085
36 0.1017 0.1556 0.1105 † 0.0885
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Table 8.
Population Parameter Recovery for 10% Missing Data

Patt. Means Truth Diff. Diff./S.E. RMSE
0 0.2605 0.2604 0.0001 0.1140 0.0049
1 0.0514 0.0521 -0.0007 -0.7156 0.0043
2 0.0512 0.0521 -0.0009 -0.8105 0.0048
3 0.0102 0.0104 -0.0002 -0.4335 0.0026
4 0.0522 0.0521 0.0001 0.1124 0.0034
5 0.0103 0.0104 -0.0001 -0.1894 0.0026
6 0.0103 0.0104 -0.0001 -0.2652 0.0025
7 0.0520 0.0521 -0.0001 -0.1538 0.0038
8 0.0527 0.0521 0.0006 0.6472 0.0040
9 0.0107 0.0104 0.0003 0.5079 0.0023

10 0.0109 0.0104 0.0005 0.9385 0.0023
11 0.0528 0.0521 0.0008 0.9267 0.0038
12 0.0100 0.0104 -0.0004 -0.6184 0.0029
13 0.0521 0.0521 0.0000 0.0434 0.0047
14 0.0514 0.0521 -0.0007 -0.7187 0.0042
15 0.2613 0.2604 0.0009 0.9530 0.0043

Table 9.
Population Parameter Recovery for 25% Missing Data

Patt. Means Truth Diff. Diff./S.E. RMSE
0 0.2598 0.2604 -0.0006 -0.4967 0.0054
1 0.0514 0.0521 -0.0006 -0.5357 0.0054
2 0.0518 0.0521 -0.0003 -0.1763 0.0066
3 0.0100 0.0104 -0.0004 -0.6526 0.0029
4 0.0518 0.0521 -0.0003 -0.3205 0.0038
5 0.0113 0.0104 0.0009 1.2607 0.0033
6 0.0101 0.0104 -0.0003 -0.5259 0.0023
7 0.0521 0.0521 0.0000 -0.0198 0.0056
8 0.0527 0.0521 0.0006 0.5695 0.0047
9 0.0104 0.0104 0.0000 0.0515 0.0025

10 0.0115 0.0104 0.0011 1.4175 0.0036
11 0.0532 0.0521 0.0011 1.0532 0.0047
12 0.0095 0.0104 -0.0010 -1.2084 0.0036
13 0.0517 0.0521 -0.0004 -0.3029 0.0054
14 0.0512 0.0521 -0.0009 -0.7858 0.0052
15 0.2614 0.2604 0.0010 0.8891 0.0052
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Table 10.
Population Parameter Recovery for 50% Missing Data

Patt. Means Truth Diff. Diff./S.E. RMSE
0 0.2584 0.2604 -0.0021 -1.3744 0.0070
1 0.0527 0.0521 0.0006 0.4371 0.0064
2 0.0516 0.0521 -0.0005 -0.2983 0.0077
3 0.0100 0.0104 -0.0004 -0.3261 0.0061
4 0.0521 0.0521 0.0000 0.0115 0.0063
5 0.0096 0.0104 -0.0008 -0.6357 0.0058
6 0.0103 0.0104 -0.0002 -0.1627 0.0044
7 0.0514 0.0521 -0.0007 -0.3862 0.0078
8 0.0540 0.0521 0.0019 1.2356 0.0072
9 0.0100 0.0104 -0.0004 -0.4797 0.0041

10 0.0100 0.0104 -0.0005 -0.4001 0.0051
11 0.0547 0.0521 0.0026 1.4168 0.0086
12 0.0111 0.0104 0.0007 0.5641 0.0056
13 0.0524 0.0521 0.0003 0.1326 0.0101
14 0.0514 0.0521 -0.0007 -0.3504 0.0093
15 0.2606 0.2604 0.0001 0.0778 0.0077

4. Cognitive Diagnosis of NAEP Assessment Data

NAEP data is unique in many ways. Two features of concern in the study are the high

degree of sparseness in the data and the group level characteristics of all estimates. To avoid

fatigue effects and to maintain a certain level of motivation, each NAEP student is administered

only 20-25 items on average. Such a short test obviously will not lead to an accurate estimate of

the latent ability for each individual. Fortunately, the group level characteristics, instead of the

individual ability estimates, are the targets of inference in NAEP. By aggregating the estimates

of the latent ability across individuals when working with the posterior distribution of the latent

ability, it is possible to obtain a consistent estimate of the latent ability distribution for subgroups

of interest (Mislevy, Beaton, Kaplan, & Sheehan, 1992).

An immediate question for cognitive diagnosis of NAEP data is how to estimate the

distribution of latent attribute patterns for subgroups. There are three solutions available to this

question. Let P (Y|α) be the likelihood function under a specified model and α ∼ G(·) be the prior

distribution of this latent space defined by the latent attribute patterns. The simplest solution is

to specify a single distribution G(·) for the latent attribute patterns and then obtain the estimates
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for subgroups by

P (α) =
∑

i∈ subgroup k

ωiP (αi|Yi),

where ωi is the weight for each examinee in this subgroup. Though this solution allows one to

borrow information from other observations because it uses all the data to estimate the latent

distribution, this approach will give biased estimates for subgroups when the skill distribution

of the subgroups of interest differ to a large extent. The second approach is to specify prior

distributions for each subgroup separately and then obtain the subgroup estimates by summing

over the posteriors of each examinee in that subgroup. This approach is equivalent to multiple

group IRT (Bock & Zimowski, 1997), but in this case it was applied to the diagnosis model. This

approach provided a consistent estimate of the latent distribution for each subgroup. However,

if there are a huge number of subgroups to estimate, this approach will lead to “the curse of

dimensionality.” That is, the number of parameters will increase as the number of subgroups

increases so that there is not enough data to estimate the parameters. The third and a more

complex approach is to specify the prior distribution dependent on the covariates of interest. That

is, P (α|z) ∼ f(z
′
β, α), where z is the covariate vector. Then the estimates for each subgroup are

calculated by aggregating the posterior P (αi|Yi, zi) over the students in that subgroup of interest.

This approach allows one to utilize the information from all of the data Y and z as well as to

consider the differences among subgroups. The current study focused on the first two solutions

because they are simple to implement. The third approach emulates what is operationally done in

NAEP estimation of a latent regression model, commonly referred to as conditioning modeling, in

the context of large scale educational assessment.

The GDM with a single group assumption (first approach) and a multiple group assumption

(second approach) were used to analyze a Reading assessment data set, and only a single group

assumption was used to analyze a Math assessment data set. A Q matrix does not exist for NAEP

current assessment data. This study used the scales defined in the Reading Framework of the

National Assessment of Educational Progress, 1992-2000 (National Assessment Governing Board

[NAGB], n.d.) and the Mathematics Framework for the 2005 National Assessment of Educational

Progress (NAGB, 2004) as cognitive attributes, and the correspondence between items and scales

defined the Q matrices used here. The data and results are described in the following subsections.
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4.1 Reading Assessment: Data Description

Grade 12 data from the 2002 NAEP Reading assessment were analyzed using the GDM. This

assessment included three subscales: reading for literary experience, reading for information, and

reading to perform a task (National Center for Education Statistics, 2003). In this study, a simple

Q matrix was chosen in the way that these three subscales were taken as three attributes and the

items had entries only on the scale they belonged to. For example, if an item was measured in the

reading for literary experience scale, then the item had 1 on this scale and 0 on the other two

attribute scales (i.e., reading for information and reading to perform a task). The data contained

responses to 112 items in total by 14,724 students. The students were selected by a stratified

sampling plan, and the allocation of items to students followed the balanced incomplete block

design (NAEP Glossary of Terms, n.d.). One of the salient features of NAEP is that each student

takes only part of the complete set of items. In particular for this assessment, each student took

only 20 items on average. Thus, the structural missing values dominate the huge data matrix,

since each examinee takes on average only about one sixth of the items from the total of 112

items. In the NAEP Reading design, students commonly receive test booklets with items from

only one scale. Fortunately, some booklets contain items from at least two scales, allowing the

model to tap into information on two attributes from examinees using those booklets.

4.2 Reading Assessment: Analysis and Results

The data were analyzed under both a single group assumption and a multiple group

assumption. In the single group assumption, there was only one prior distribution for the latent

attribute patterns, and this prior distribution was updated through the iterations in the EM

algorithm. Three models were used to first fit the data under the single group assumption: the

2PL IRT model (Birnbaum, 1968), the three-skill-three-level GDM, and the three-skill-four-level

GDM. The number of levels for each attribute was chosen to take both model complexity and

model inference into account. In particular, a model with five or more levels for each attribute will

result in too large a number of latent attribute patterns to estimate. A model with two levels for

each attribute in this case seemed to make strong assumptions on mastery and nonmastery.

As mentioned earlier, the three cognitive skills are reading for literary experience, reading

for information, and reading to perform a task. The three or four levels for each attribute were

prespecified. For example, in this analysis, the three levels were represented by -1.41421, 0.00000,
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and 1.41421, while the four levels were represented by -1.73205, -0.57735, 0.57735, and 1.73205.

These levels are the profile scores for each attribute, and they are specified by the users. In this

analysis, we selected these levels around 0 symmetrically. These three models were compared

in terms of the log-likelihood and Bayesian information criterion (BIC; Schwartz, 1978) index.

Results indicated that the three-skill-four-level model fitted the data better than the 2PL model

and the three-skill-three-level model in terms of both log-likelihood and BIC (see the first three

rows in Table 11). Therefore, the analysis focused on the three-skill-four-level model. This model

was then applied in the multiple group analysis. With the multiple group assumption, separate

prior distributions of latent attribute patterns were specified for different subgroups. For instance,

with a gender subgroup analysis, two separate prior distributions were used, one for the male

group and one for the female group. Thus, these two separate marginal distributions for the latent

attribute patterns were updated along with the EM algorithm. The likelihood and BIC index for

male and female groups are listed in the gender group row in Table 11. The results for separate

racial group analysis are also listed in that table. The four racial groups analyzed were White,

Black, Hispanic, and Asian. The results showed that multiple group analysis for gender and race

gave larger log-likelihood than single group analysis. However, the racial group analysis resulted

in larger BIC than single group analysis, while gender group analysis resulted in smaller BIC than

single group analysis. We have to investigate further to understand the results.

Table 11.
Model Comparison: Reading Assessment

Models # of parameters Log-likelihood BIC
Under single group assumption

2PL IRT 328 -150234.69 303617.3
3-skill-3-level GDM 290 -150355.23 303493.7
3-skill-4-level GDM 327 -149987.27 303112.8

Under multiple group assumption
Racial group 516 -149576.38 303513.0
Gender group 390 -149701.72 302699.2

The latent attribute distributions for each of the racial groups resulting from the single group

assumption and the multiple group assumption were plotted and compared in Figures 1 through

3. Figure 1 presents the results for Skill 1. Figure 2 corresponds to Skill 2 and Figure 3 to Skill 3.

Within each figure, four graphs represent the four different racial groups. Each graph
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Figure 1. Empirical score distributions for racial groups for Skill 1.

compares the skill distribution obtained under a single group assumption (dotted line) and a

multiple group assumption (solid line) and shows that these two assumptions have different

outcomes with respect to the estimates of skill distributions for different racial groups. In

particular, the two group assumptions do not exhibit much difference in the estimates for the

White and Asian students, but they demonstrate dramatic differences for the Black and Hispanic

students. For example, the Black students have dramatically different skill distributions under

these two assumptions for all three skills, while the Hispanic students have substantially different
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Figure 2. Empirical score distributions for racial groups for Skill 2.

skill distributions for Skill 3 under the two assumptions. It seems that the single group model

leverages the differences among groups at the extreme points. Take Skill 3 as an example (see

Figure 3). Under the single group assumption, the high percentages of the White and Asian

groups in the highest levels of this skill compensate for the lower percentages of the Black and

Hispanic groups. The multiple group model breaks apart this compensating effect and results

in a decrease of the estimates for this level. In short, this finding shows that the single group

assumption might generate biases in estimating the skill distributions for those subgroups that

are not considered in building the population model. The multiple group model will provide more

accurate estimates for the groups that are represented explicitly in the population model. In this
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Figure 3. Empirical score distributions for racial groups for Skill 3.

study, the background variables, such as gender or racial groups, were considered one at a time.

No interactions or more than one background variable were considered simultaneously. A direct

deduction from our finding is that the inference concerning the interaction between background

variables might not be as accurate as one might expect. Thus, more complicated models need to

be investigated, and that is one focus of our future research.

In addition, the group characteristics (such as mean and standard deviation) for racial groups

derived from the GDM analysis under the multiple group assumption and the operational NAEP
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analysis are compared in Table 12. Given that the GDM uses a slightly different base model (2PL

instead of 3PL) for most dichotomous items and given the limited number of located classes in the

GDM used here, the derived group characteristics based on the GDM analysis are quite close to

the operational NAEP analysis.

Table 12.
Comparison Between GDM and NAEP Operational Analysis

GDM Mean NAEP Mean Difference GDM Std NAEP Std
Skill 1

White 0.1714 0.1764 0.0050 0.9436 0.9191
Black -0.5274 -0.5240 0.0034 0.9420 0.9161
Hisp. -0.3936 -0.4041 -0.0105 1.0250 0.9913
Asian 0.0333 0.0209 -0.0124 0.9806 0.9246

Skill 2
White 0.1494 0.1703 0.0209 0.9476 0.9198
Black -0.4253 -0.4678 -0.0425 0.8802 0.9058
Hisp. -0.3566 -0.3965 -0.0399 1.0124 0.9989
Asian -0.0107 -0.0453 -0.0345 0.9851 0.9097

Skill 3
White 0.1384 0.1536 0.0152 0.9674 0.9878
Black -0.4490 -0.4866 -0.0376 0.9267 0.9738
Hisp. -0.2778 -0.2893 -0.0115 1.0455 1.0900
Asian -0.0219 -0.0715 -0.0496 1.0694 1.0468

4.3 Math Assessment: Data Description

Four subscales were measured in the 2005 NAEP grade 12 math assessment. These four

subscales were number properties and operations, measurement and geometry, data analysis and

probability, and algebra. In addition, each item was classified as being in one of three categories

of complexity: low, medium, and high (NAGB, 2004). The items of low complexity relied heavily

on recognition of learned concepts and principles. The items in the moderate complexity category

involved more flexible thinking than those in the low complexity category. The items in the high

complexity category made heavy demands on abstract reasoning, planning, analysis, judgment,

and creative thought. Thus, an item belonged to one of the four subscales and one of the three

categories. Though there were 180 items in this assessment, each student took only 30-35 items,

which was only about one sixth of the whole set. Unlike the Reading assessment, each student

took items from all subscales. This design will likely improve the estimates of the skill mastery
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for individuals compared to those from the Reading assessment. However, this small number of

items is still unreliable in providing consistent individual estimates on the student level. Instead,

the group characteristics, such as the skill distribution functions, should be estimated.

4.4 Math Assessment: Analysis and Results

As in the case of Reading assessment, the current Math assessment was not developed for

cognitive diagnosis purposes. In the current study, the four scales and the three categories were

considered as cognitive attributes. Three Q matrices were formatted from the item specifications

defined in the framework. The first Q matrix contained the four subscales only, on which the items

had Entries 1 or 0, depending on the specification in the framework. The second Q matrix included

both subscales and complexity categories, in which the items had Entries 1 or 0, according to the

item specifications. The third Q matrix was a simpler version of the second one, developed by

deleting the low complexity category. Two, three, or four levels were assumed for each attribute

in these Q matrices with consideration of identifiability. For instance, for the second and third Q

matrices, the attributes with more than two levels could lead to a huge number of latent classes

to estimate. The maximum number of levels for attributes in the first Q matrix was four. So in

this study, three models were examined and compared: the four-attribute-four-level GDM, the

six-attribute-two-level GDM, and the seven-attribute-two-level GDM.

For this analysis, the whole data set of 9,347 examinees was randomly divided into two smaller

data sets for the purpose of cross-validation. Each of them contained about 4,600 examinees. One

of the smaller data sets (denoted as data set A) was used to check the model fits of these three

models, and from this a model was chosen to analyze the data. The other data set (denoted as

data set B) was used to examine whether the item parameter estimates were close to those in the

first data set under the model chosen. The goodness-of-fit results for data set A can be seen in

Table 13.

All these models were used under the single group assumption because there are too many

population parameters to estimate otherwise. It shows that the seven-skill-two-level model is

better than the other two models in terms of log-likelihood, and the four-skill-four-level model is

better than the other two according to BIC index. Since this study was only an exploratory study

of the possibility of using cognitive diagnosis analysis for NAEP assessment data, and we wanted

both scales and complexity categories in this model, we chose the seven-skill-two-level model. We
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Table 13.

Model Comparison: Math Assessment

Models # of parameters Log-likelihood BIC

4-skill-4-level GDM 678 -92961.9838 191652.0

7-skill-2-level GDM 730 -92783.8280 191735.1

6-skill-2-level GDM 632 -93531.1921 192401.8

used this model to analyze data set B to check the stability of item parameter estimates. The

absolute differences between the item parameter estimates in the two data sets are summarized in

Table 14.

Table 14.
Frequency of Differences Between the Estimates

Obtained From Two Data Sets

Bin Slope I Slope II Intercept Total number
0 80 80 126 286

0.05 35 26 28 89
0.1 30 25 22 77
0.3 33 42 50 125
0.5 0 5 7 12

More 2 2 10 14

The values of these differences are divided into six bins: 0, 0-0.05, 0.05-0.1, 0.1-0.3, 0.3-0.5,

and more. Three types of estimates are listed in this table. The Slope I column represents the

slope parameter estimates for the subscales, the Slope II column stands for the slope parameter

estimates for the complexity categories, and the Intercept column means the intercept parameter

estimates. The entries under Slope I, Slope II, and Intercept are the frequencies of differences

falling into different categories. For instance, 80 in the first row in the Slope I column is the

frequency of those differences having a value of zero. According to this table, 452 item parameters

out of a total of 603 have differences of less than 0.1 across the two data sets. Considering

the small relative ratio of the number of examinees per parameter for these two data sets,

4668/603 and 4679/603, the parameter estimates are quite stable across data sets. This result

was consistent with what we found in the simulation study, where the item parameters can be

21



recovered satisfactorily.

Table 15 lists the marginal probabilities of attribute mastery (including subscales and

complexity categories) for subgroups of interest, such as gender, racial groups, limited English

proficiency (LEP), and individual education plans (IEPs) for disabled students.

Table 15.
Marginal Skill Mastery Given Background Characteristics:

Using Anchor Points -1.73205 and 1.73205

Subgroups Scale I Scale II Scale III Scale IV Low Medium High
Male 0.471 0.485 0.495 0.493 0.394 0.392 0.389
Female 0.458 0.466 0.478 0.476 0.354 0.352 0.350
White 0.495 0.512 0.523 0.519 0.432 0.430 0.427
Black 0.363 0.348 0.369 0.364 0.173 0.170 0.169
Hispanic 0.389 0.382 0.396 0.390 0.218 0.216 0.215
Asian 0.507 0.544 0.544 0.559 0.514 0.512 0.509
IEP (Y) 0.279 0.253 0.278 0.265 0.106 0.104 0.105
IEP (N) 0.474 0.502 0.509 0.519 0.523 0.522 0.519
IEP (Missing) 0.479 0.491 0.502 0.499 0.392 0.390 0.387
LEP (Y) 0.309 0.296 0.309 0.313 0.134 0.132 0.131
LEP (N) 0.472 0.482 0.494 0.491 0.383 0.381 0.378
LEP (Fomerly) 0.480 0.498 0.502 0.515 0.443 0.442 0.438

Table 15 shows that the female group had smaller probabilities of mastery in all attributes

than the male group, which is consistent with the results from operational NAEP analysis. The

White and Asian students tended to have larger probabilities of mastery than the Hispanic and

Black students. Students who did not have an IEP or who were not identified as having LEP

tended to have greater probability to master these attributes than those who had an IEP or who

were identified as having LEP. These conclusions are very similar to those found in operational

NAEP analysis.

5. Discussion

As observed by von Davier and Yamamoto (2004), the GDM is an extension of the partial

credit model (PCM; Masters, 1982) derived by decomposing the unidimensional latent trait into

item-dependent linear combinations of K underlying discrete traits. This makes the model similar

to that of confirmatory factor analysis, while operating with categorical item response variables,

rather than continuous variables. These underlying latent traits are what we were interested in
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knowing for each examinee and for each group. Though the goodness of fit and model selection

criteria (such as BIC and Akaike information criterion [AIC]) are still important for model

selection in fitting latent trait models, they may not be the only criteria used for model selection

when the interest lies in identifying the underlying latent traits of students and subpopulations.

Cognitive diagnosis modeling provides a tool to extract the needed information.

Through simulation and real data implementations, this paper demonstrated satisfactory

recovery of item parameters when using the GDM to fit a spare data matrix, and it demonstrated

possible applications with NAEP assessment data. At the present, only simple Q matrices are

being used in the analysis of NAEP data because the NAEP assessments were not designed for

cognitive diagnosis purposes. A single group assumption and a multiple group assumption for

the population distribution are used to fit the Reading assessment data. It is shown that these

two assumptions lead to different conclusions for certain subgroups, such as Hispanic and Black

students, whose latent attribute distributions are more likely leveraged by the performances of

White and Asian students under the single group assumption than the multiple group assumption.

These observations are compatible with those from operational NAEP analysis.

Group characteristics for policy relevant reporting variables are the focus of NAEP. The

effectiveness and accuracy of the estimates of subgroup characteristics lie in carefully choosing

predictors and deliberately confining the interpretations to a certain extent. The inclusion of a

latent regression model to predict skill distributions conditioned on group membership increases

model complexity proportional to the total number of subgroups. Previous criticism of operational

NAEP procedures addressed a similar issue. One major point of this criticism was whether the

same or almost the same accuracy of subgroup distribution estimates can be achieved with latent

regression models of much lower levels of complexity for the operational NAEP analysis. This

question urgently needs to be addressed if models are used to predict subgroup distributions on a

multitude of discrete skills rather than a few continuous proficiency variables. Our future research

will focus on the best trade-off between model complexity and accuracy of inference.
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