
 

 

 

Limits on Log Cross-
Product Ratios for Item 
Response Models 
 

May 2006 
RR-06-10 

Research
Report

Shelby J. Haberman

Paul W. Holland 

Sandip Sinharay 

Research & 
Development 
 



Limits on Log Cross-Product Ratios for Item Response Models 

Shelby J. Haberman, Paul W. Holland, and Sandip Sinharay 

ETS, Princeton, NJ 

May 2006

 



As part of its educational and social mission and in fulfilling the organization's nonprofit charter 

and bylaws, ETS has and continues to learn from and also to lead research that furthers 

educational and measurement research to advance quality and equity in education and assessment 

for all users of the organization's products and services. 

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to 

publication. To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 

Copyright © 2006 by Educational Testing Service. All rights reserved. 

ETS and the ETS logo are trademarks of Educational Testing Service (ETS).

 

 



Abstract

Bounds are established for log cross-product ratios (log odds ratios) involving pairs of

items for item response models. First, expressions for bounds on log cross-product ratios

are provided for unidimensional item response models in general. Then, explicit bounds are

obtained for the Rasch model and the two-parameter logistic (2PL) model. Results are also

illustrated through an example from a study of model-checking procedures. The bounds

obtained can provide a basis for assessment of goodness of fit of these models.
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1 Introduction

Latent-variable models for item responses have strong implications for customary

descriptive measures from contingency table analysis such as log cross-product ratios

(Section 2). In the case of the Rasch model, this issue has been suggested by simulation

studies intended to explore model diagnostics for the Rasch model (Sinharay & Johnson,

2003). These studies indicated that the log cross-product ratios predicted by the Rasch

model showed remarkably little variability among different pairs of items. This note seeks

to explain the observed results from simulation and to provide general bounds for log-cross

product ratios for some familiar item response models. These bounds have importance

in derivation of starting values for algorithms for item response analysis and for checking

of models. Section 2 provides the required theoretical results. Section 3 illustrates their

application to an example concerned with model checking. Section 4 considers application

of results to point-biserial correlations and tables of log cross-product ratios.

2 Theoretical Results

The desired bounds for log cross-product ratios can be obtained without loss of

generality by study of just two items because all items are conditionally independent given

the ability parameters of an item response model. General expressions for log cross-product

ratios will be provided for general one-dimensional item response models. Results will be

illustrated by use of the Rasch and 2PL models.

Consider the relationship between two item responses X1 and X2. Let each Xj be a

random variable with values 0 or 1, and let X = (X1, X2), and let p(x) = p(x1, x2) be the

probability that X = x = (x1, x2) for a two-dimensional vector x with coordinates 0 or 1.

In the analysis of contingency tables, the log cross-product ratio (also known as log odds

ratio) of X1 and X2 is

γ = log
p(0, 0)p(1, 1)

p(1, 0)p(0, 1)
. (1)

The coefficient γ is positive if, and only if, X1 and X2 are positively correlated, for the

correlation of X1 and X2 is

ρ =
p(1, 1)p(0, 0)− p(1, 0)p(0, 1)

[p1(0)p1(1)p2(0)p2(1)]1/2
,
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where pj(x) is the probability that Xj = x (Bishop, Fienberg, & Holland, 1975, p. 381).

In general, the formula for the correlation implies that ρ is between 1 − exp(−γ) and

exp(γ)− 1.

In this note, the implications of item response models on the parameter γ are considered

for models with a one-dimensional ability variable. One basic result, Theorem 1, is that γ

must be positive for an item response model with an ability distribution not concentrated

at a single point and with monotone increasing item characteristic curves for the items.

Theorems 2 and 3 provide bounds on γ for the Rasch model. Similar bounds are also

considered for the 2PL model. The bounds are especially easy to apply if the ability

distribution is normal.

To define the implications of an item response model on the log cross-product ratio γ,

let the ability variable θ be a real random variable with distribution function F , let the Xj

be conditionally independent given θ, let Pj(θ) > 0 be the probability that Xj = 1 given θ,

let Qj(θ) = 1− Pj(θ) > 0 be the corresponding probability that Xj = 0 given θ, and let

λj(θ) = log
Pj(θ)

Qj(θ)

be the item logit function (ILF) of Xj. Then the probability p(x) satisfies

p(x) =

∫ 2∏
j=1

P
xj

j Q
1−xj

j dF. (2)

The log cross-product ratio can be expressed in terms of the cumulant generating

function of the item logit functions λj conditional on X1 and X2 both being 0. To verify

this claim, let λ be the vector of λj, 1 ≤ j ≤ 2, and let x′λ be
∑2

j=1 xjλj. Let V be Q1Q2.

Let t1 and t2 be real numbers, and let t be the two-dimensional vector with coordinates t1

and t2. Let 0 = (0, 0). Let

M(t) = M(t1, t2) = [p(0)]−1

∫
exp(t′λ)V dF (3)

be the moment generating function at t of λ(θ) given X = 0, and let C(t) = C(t1, t2) =

log M(t) be the conditional cumulant generating function of λ(θ) at t given that X = 0.

The Dutch identity (Holland, 1990) states that

p(x) = p(0)M(x). (4)
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By (4),

γ = C(1, 1)− C(1, 0)− C(0, 1) + C(0, 0). (5)

Thus the log cross-product ratio can be expressed in terms of the cumulant generating

function C.

The cumulant generating function C is closely related to the conditional cumulants

of λ(θ) given X = 0. Let I be the set of integer pairs i = (i1, i2) such that i1 and i2 are

nonnegative and at least one of i1 and i2 is positive, and let J be the set of i in I with

both i1 and i2 positive. Provided that, for some real rM > 0, M(t) is finite whenever

|t|2 = t21 + t22 < r2
M , there exists an rC > 0 such that, for |t| < rC ,

C(t) =
∑
i∈I

κit
i1
1 ti22

i1!i2!
.

The coefficient κi = κi1i2 is the conditional product cumulant of λ(θ) given X = 0

corresponding to the conditional expectation of λi1
1 (θ)λi2

2 (θ) given X = 0. For example,

κ01 is the conditional mean of λ1(θ), κ20 is the conditional variance of λ1(θ), and κ11(θ) is

the conditional covariance of λ1(θ) and λ2(θ). If rC > 21/2, then γ has the power series

expansion

γ =
∑
i∈J

κi

i1!i2!
.

The expansion suggests a crude approximation of γ by the conditional covariance κ11 of

λ1(θ) and λ2(θ), with a more refined approximation by κ11 +(κ21 +κ12)/2. If the conditional

distribution of λ(θ) given X1 = X2 = 0 is bivariate normal, then γ is exactly equal to κ11.

For any distribution of θ, if λ1(θ) or λ2(θ) is constant, so that X1 or X2 is independent of

θ, then γ = κ11 = 0.

A more general expression for γ can be derived by consideration of a new random

vector based on λ. This result is always available. Standard convexity properties of moment

generating functions imply that M(t) is finite for 0 ≤ tj ≤ 1, 1 ≤ j ≤ 2. As a consequence,

if 0 < tj < 1 for 1 ≤ j ≤ 2 and A(t) is a random variable with distribution function

[M(t)p(0)]−1

∫ x

−∞
exp(t′λ)V dF

at x real, then the two-dimensional random vector Λ(t) with coordinates Λj(t) = λj(A(t))

for 1 ≤ j ≤ 2 has finite moments of all orders. In particular, the expectation µj(t) of Λj(t),
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1 ≤ j ≤ 2, and the covariance τ(t) of Λ1(t) and Λ2(t) are defined and finite. The moment

generating function of Λ(t) is M(t + u)/M(t) at u if 0 < uj + tj < 1 for 1 ≤ j ≤ 2. To

explore required integrals derived from C, let T be uniformly distributed on the unit square

S of t with 0 < tj < 1 for 1 ≤ j ≤ 2.

Use of the mean value theorem of calculus shows that

γ = E(τ(T))

is the expected conditional covariance of Λ1(T) and Λ2(T) given T.

The following theorem provides a simple condition that ensures that log cross-product

ratio γ is positive. It is already known that γ ≥ 0 (Holland & Rosenbaum, 1986).

Theorem 1 Let λ1 and λ2 be monotone increasing functions. Assume that no constant c

exists such that θ is c with a probability of 1. Then γ is positive.

Proof. It suffices to show that τ(t) is positive. To verify that τ(t) is positive, let A′(t)

be a random variable independent of A(t) with the same distribution as A(t). Then 2τ(t)

is the expected value of the product

U = [λ1(A(t))− λ1(A
′(t))][λ2(A(t))− λ2(A

′(t))].

If λ1 and λ2 are monotone increasing, then U is nonnegative, and the probability is positive

that U is positive. ‖

In the special case of a Rasch model with item difficulties βj for j from 1 to 2,

λj(θ) = θ − βj, so that τ(t) reduces to the variance of A(t), and γ is the expected

conditional variance of A(T) given T. If the conditional moment generating function of θ

given X = 0 is finite in an open interval that includes 0, if κi denotes the ith conditional

cumulant of θ given X = 0, and if the conditional cumulant generating function K of θ

given X = 0 satisfies K(t) is finite and

K(t) =
∞∑
i=1

κit
i/i!

for |t| < rK for some rK > 21/2, then

γ =
∞∑
i=2

(2i − 2)κi/i!.
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If the conditional distribution of θ given X = 0 is a normal distribution with variance

σ2
c , then γ = σ2

c .

If θ has a continuous distribution with a positive density f that is twice differentiable,

then a lower bound on γ may be obtained as in the following theorem.

Theorem 2 Let the Rasch model hold, and let θ have continuous positive and twice differ-

entiable density f . Assume that real δ > 0 and real c > 0 exist such that the derivative f1 of

f satisfies the condition that

|f1(z + a)| < cf(z), −∞ < z < ∞, |a| < δ.

Let g = log f , let g1 be the derivative of g, and let g2 be the second derivative of g. Let

−g2(A(t)) have a finite positive variance η(t) for each t in S. Let ηj(t) be the expectation

of Pj(A(t)Qj(A(t)) for j equal 1 or 2. Then

γ ≥ E([η(T) + η1(T) + η2(T)]−1).

Proof. For t in S, the density of A(t) is

h = H−1f
2∏

j=1

P
tj
j Q

1−tj
j ,

where

H =

∫
f

2∏
j=1

P
tj
j Q

1−tj
j ,

so that e = log h has first derivative

e1 = g1 −
2∑

j=1

[(1− tj)−Qj]

and second derivative

e2 = g2 −
2∑

j=1

PjQj.

The first derivative of h is

h1 = e1h.

5



Consider estimation of the expectation of a random variable Z under the model that

Z − α has the distribution of A(t) for some real α with |α| < δ. Apply the Cramér-Rao

inequality (Cramér, 1946, p. 475). Then elementary calculations show that

τ(t) ≥ [η(t) + η1(t) + η2(t)]
−1.

The conclusion follows. ‖

In many cases, an upper bound on γ may be established as in the following theorem.

Theorem 3 Let the Rasch model hold, and let θ have continuous positive and twice differ-

entiable density f . Let g = log f , let g1 be the derivative of g, and let g2 be the second

derivative of g. For some constant b > 0, let g2 ≤ −b. Then γ < 1/b.

Proof. From the proof of Theorem 2, it follows that e2 < −b. As a consequence, log h

must achieve a maximum at some real z.

For any random variable Y with mean µ and variance σ2,

E([Y − z]2) = σ2 + (z − µ)2.

Thus the variance τ(t) of A(t) does not exceed the expected value of [A(t)− z]2, so that

τ(t) ≤
∫

(uvw),

where, for a real,

u(a) = (a− z)2,

v(a) = h(a)/w(a),

and

w(a) = (2π/b)−1/2 exp[−bu(a)/2].

Because h and w are density functions, ∫
w = 1

and ∫
(vw) = 1.
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Because w is the density function of the normal distribution with mean z and variance b−1,∫
(uw) = b−1.

Use of standard formulas for changes of variables yields∫
(uvw) =

∫ ∞

0

(u∗v∗w∗),

∫ ∞

0

(v∗w∗) = 1,∫ ∞

0

w∗ = 1,

and ∫ ∞

0

(u∗w∗) = b−1,

where, for a > 0,

u∗(a) = a,

v∗(a) = [v(z + a1/2) + v(z − a1/2]/2,

and

w∗(a) = (2aπ/b)−1/2 exp(−ba/2)

(Cramér, 1946, p. 168).

It follows that, for any real d,∫ ∞

0

(u∗ − b−1)(v∗ − d)w∗ =

∫ ∞

0

(u∗v∗w∗)− b−1.

The definition of z and the assumptions of the theorem imply that v∗ is a decreasing

function, so that the choice of d = v∗(b−1) implies y = (u∗ − b−1)(v∗ − d) is negative except

at b−1, and y(b−1) = 0. Thus τ(t) is less than b−1. It follows that γ is less than b−1. ‖

In the important special case of θ with a normal distribution with mean µ and variance

σ2, g2 in Theorem 2 is the constant −1/σ2, so that η(t2) = 1/σ2 and τ(t) and γ are both at

least 2σ2/(2+σ2). On the other hand, it also follows from Theorem 3 that γ is less than σ2.

So, for example, for σ2 = 1, the lower and upper bounds on γ are 2/3 and 1, respectively.

For fixed µ and σ2, if |βj| approaches ∞ for j equals 1 and 2, then γ approaches σ2. The
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proof of this claim is an application of Scheffé’s theorem (Scheffé, 1947). For example, if β1

and β2 both approach −∞, then multiplication of the numerator and denominator by

exp[−(1− t1)β1 − (1− t2)β2]

shows that, in the proof of Theorem 2, h converges to the density of a normal random

variable with mean µ− (1− t1)− (1− t2) and variance σ2. It follows that ηj(t2) converges to

0, so that the lower bound for γ converges to σ2. Because σ2 is also the upper bound for γ,

γ converges to σ2. Minor variations on the same argument apply if some βj approaches ∞.

The arguments in Theorems 2 and 3 are readily applied to the 2PL model of item

response theory. In this case, λj(θ) = aj(θ − βj) for an item difficulty βj and an item

discrimination aj > 0. The definition of A(t) is changed due to the new definition of the λj;

however, the remaining changes are quite limited. In Theorem 2, the lower bound becomes

a1a2E([η(T) + a2
1η1(T) + a2

2η2(T)]−1),

and the upper bound becomes a1a2/b in Theorem 3. In the case of θ with a normal

distribution with mean µ and variance σ2, a lower bound is

4a1a2σ
2

4 + (a2
1 + a2

2)σ
2

and an upper bound is a1a2σ
2. The previous result for the Rasch model is obtained with

a1 = a2 = 1.

3 Example

In a study of assessment of fit of common models in item response theory (Sinharay &

Johnson, 2003), prediction of log cross-product ratios for item pairs was examined under

the Rasch model for µ = 0 and σ2 = 1. The authors reported that the predicted log

cross-product ratios (from the Rasch model) among the item pairs fall within a very narrow

range, all around 0.73 in their limited simulation study. These results are consistent with

the bounds of 2/3 and 1 established in Section 2. To corroborate their findings, numerical

integration was employed to compute γ using (1) for this case (Rasch model with µ = 0

and σ2 = 1) with β1 and β2 on a grid of integer values between −4 and 4. The values of the
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log cross-product ratios are summarized in Table 1. As evident in Table 1, the smallest γ is

observed for β1 = β2 = 0. The largest values are obtained for β1 and β2 large in magnitude

and opposite in sign. The log cross-product ratios show little variation, all falling between

0.71 and 0.90.

Table 1.

Predicted Log Cross-Product Ratios for Item Pairs Under the Rasch Model

Difficulty Difficulty of Item 2

of Item 1 -4 -3 -2 -1 0 1 2 3 4

-4 0.90 0.87 0.83 0.81 0.81 0.84 0.88 0.92 0.95

-3 0.87 0.84 0.80 0.78 0.78 0.81 0.85 0.89 0.92

-2 0.83 0.80 0.77 0.75 0.75 0.77 0.81 0.85 0.88

-1 0.81 0.78 0.75 0.72 0.71 0.73 0.77 0.81 0.84

0 0.81 0.78 0.75 0.71 0.70 0.71 0.75 0.78 0.81

1 0.84 0.81 0.77 0.73 0.71 0.72 0.75 0.78 0.81

2 0.88 0.85 0.81 0.77 0.75 0.75 0.77 0.80 0.83

3 0.92 0.89 0.85 0.81 0.78 0.78 0.80 0.84 0.87

4 0.95 0.92 0.88 0.84 0.81 0.81 0.83 0.87 0.90

4 Conclusion

Although results are presented for two items, they obviously apply to more general

item response models. Given any one-dimensional model for J > 2 binary responses in

which local independence holds, the model applies to any two responses. For example,

consider J ≥ 2 items Xj with values 0 or 1. If the Xj are conditionally independent given

a normally distributed random variable θ with mean 0 and variance σ2 > 0 and if the

conditional probability Pj(θ) that Xj = 1 given θ is

Pj(θ) = [1 + exp(−θ + βj)]
−1

for some real βj, then Xj and Xk are positively correlated for each j and k. Thus Xj is

positively correlated with the sum S =
∑J

k=1 Xk, so that the point-biserial correlation is
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positive for Xj and S. The log cross-product ratio for each pair Xj and Xk is less than σ2,

so that the correlation of Xj and Xk is less than exp(σ2)− 1.

The bounds obtained can provide a basis for elementary model checking. Log

cross-product ratios, pairwise item correlations, and point-biserial correlations are readily

estimated without use of model assumptions. If one observes negative estimates of

item-pair correlations, cross-product ratios or point-biserial correlations for a data set, one

can conclude even before fitting an item response model that the data are clearly

incompatible with any one-dimensional item response model. Further, observed values of

marginal log cross-product ratios that are clearly outside the bounds (computation of

which require fitting an item response model) suggested in this paper will indicate the

misfit of the item response model employed.
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