

Multilingual Generalization
of the ModelCreator
Software for Math Item
Generation

April 2005
RR-05-02

Research
Report

Derrick Higgins

Yoko Futagi

Paul Deane

Research &
Development

Multilingual Generalization of the ModelCreator Software for Math Item Generation

Derrick Higgins, Yoko Futagi, and Paul Deane

ETS, Princeton, NJ

April 2005

As part of its educational and social mission and in fulfilling the organization's nonprofit

charter and bylaws, ETS has and continues to learn from and also to lead research that

furthers educational and measurement research to advance quality and equity in education

and assessment for all users of the organization's products and services.

ETS Research Reports provide preliminary and limited dissemination of ETS research

prior to publication. To obtain a PDF or a print copy of a report, please visit:

www.ets.org/research/contact.html

EDUCATIONAL TESTING SERVICE, ETS, and the ETS logo are registered

trademarks of Educational Testing Service.

Copyright © 2005 by Educational Testing Service. All rights reserved.

Abstract

This paper reports on the process of modifying the ModelCreator item generation system to

produce output in multiple languages. In particular, Japanese and Spanish are now supported in

addition to English. The addition of multilingual functionality was considerably facilitated by the

general formulation of our natural language generation system, which proceeds in three stages,

whereby the first two stages are largely language-independent. This multilingual capability is

very promising for the domain of educational assessment because, when combined with item

modeling, it provides the potential to produce a large pool of automatically constructed items,

with difficulty estimates and balanced forms for speakers of different languages.

Key words: Natural language generation, Spanish, Japanese, item modeling, natural language

processing (NLP)

 i

Acknowledgements

We would like to thank Aurora Graf, Kathy Sheehan, and Isaac Bejar for insightful discussion

regarding this project. Cecilia Rosenblum was instrumental in ensuring the quality of the Spanish

language generation system. ETS also has our gratitude for its support of this work.

 ii

Overview

This research report concerns the development of a multilingual adaptation of the

ModelCreator item generation system. Whereas the original version of ModelCreator produced

test items in English, the newest version uses a common generation system to produce items in

English, Spanish, or Japanese.

ModelCreator is a system for automatic item generation (AIG; cf. Irvine & Kyllonen,

2002; Bennett, in press), specifically the creation of mathematical word problems. Deane (2003)

is a general description of the motivation, aims, and progress of the ModelCreator project. In the

current report, we will reprise Deane’s major points regarding the general design of

ModelCreator, but the remainder of the report focuses on the goal of multilingual adaptation of

the system.

In particular, we will describe ongoing work to extend ModelCreator’s capacity to

Japanese and Spanish. While English and Spanish are closely related languages, Japanese

substantially differs from English in syntax, morphology, and the formal realization of semantic

distinctions. A long-term goal of the project is to enable the system to handle a larger set of

languages, but our experience with Spanish and Japanese has been revealing as these are the first

set of adaptations we have undertaken. Moreover, they represent the range of languages that our

underlying model can potentially deal with. While Spanish represents a sort of lower bound in

the amount of development effort required to add a new language, Japanese provides an estimate

of the upper end of the difficulty spectrum because Japanese and English represent entirely

different historical and typological language groups.

Test Adaptation and Item Generation
One of the major topics of this paper is test adaptation (Stansfield, 2003; Hambleton &

Patsula, 1999; Hambleton & Kanjee, 1995), which is the modification of an existing test for

application to a new group of individuals who typically speak another language than that of the

original test. The specific contribution we hope to make here is the facilitation of automatic,

multilingual item generation, and the ability to generate test items of the same content in multiple

languages.

While addressing this task is of great importance for test adaptation, it is still only a part

of the complete set of considerations involved in adapting a test. As Hambleton and Patsula

(1999) and Sireci and Berberoğlu (2000) point out, having two forms of a test, where one is a

 1

translation of the other, does not guarantee that the test has been suitably adapted for a given

population. Cultural factors must also be taken into consideration in the adaptation process, and

steps must be taken to ensure construct equivalence between the two forms.

The main advantages that ModelCreator has to offer in the domain of test adaptation are

as follows:

• Because we generate all linguistic variants of an item from the same abstract item

model, there is no asymmetry between these variants, and the task of establishing

uniformity of content across languages is accordingly simplified. (For example, we

do not need independent treatment of active-voice and passive-voice variants of the

same basic item.)

• The automatic nature of the generation of items in different languages guarantees a

uniform linguistic correspondence between test items in different languages, which

would be difficult to achieve using manual translations.

• The relative ease with which new languages and new content can be incorporated into

ModelCreator has beneficial consequences for the entire test adaptation process,

because it enables test developers to focus on the more subtle issues of adaptation,

such as cultural appropriateness, rather than the gross outlines of translation.

Beyond test adaptation, of course, the ModelCreator generation system may simply be

used as a way of generating items in each of the single languages in its repertoire (which is the

aim of Bejar, Fairon, & Williamson, 2002). Even in a setting where there is no need for the

cross-linguistic generation capability made possible by ModelCreator’s architecture, the

generation of test items in Japanese or other languages will be of value.

The Problem Domain: Generation of Math Word Problems
The ModelCreator item creation system is constantly undergoing modifications to extend

the set of questions that it can produce. The initial set of items added to the system was distance-

rate-time problems. Since that first stage of development, the English-language generation

capacity of the system has been extended to produce interest-accrual problems, while work-rate

problems are currently being added. At present, only distance-rate-time items are supported in

Spanish and Japanese.

 2

All of these items are in the quantitative comparison (QC) format. QC items have a stem,

in which general information relevant to the item is presented, followed by two columns, which

express quantities the test taker is asked to compare. The task presented to the examinee is to

choose whether the first quantity is greater, the second quantity is greater, the two are equal, or

their relative magnitude cannot be determined. Figure 1, a screen shot from the English version

of ModelCreator, illustrates this format:

Figure 1. Distance-rate-time item produced by the ModelCreator system.

As Deane (2003) pointed out, the distance-rate-time domain is particularly well-suited for

an item generation system because the verbal material is taken from a fairly circumscribed and

well-defined domain, which lends itself to modeling because of the straightforward underlying

mathematical construct (D = R × T), and the fact that the elements of the test construct (such as

distance and time) can be mapped fairly directly to elements in the eventual item (such as

distance and rate expressions). The same holds true of the interest and work problem item types

that are currently being added.

Template-Driven Generation vs. Natural Language Processing
Much previous work in AIG, including Singley and Bennett (2002), has used item

templates as a primitive in the generation process. An item template basically consists of a

sentence frame, with all details of wording determined beforehand, in which words of certain

types may be substituted from a list. The coverage of the item generation system under such an

approach would be jointly determined by the set of templates and the set of word lists available

for substitution.

 3

Figure 2 illustrates this with a simple example of a template-based approach to creating

distance-rate-time word problems in the quantitative comparison format. In the stem of the item

and each of its columns, a template sentence must first be chosen from each shaded box. As

shown at the bottom of the figure, a completed template may also specify the key of items

derived from it, and any constraints that the variables of the template must satisfy. The filler lists

in Figure 3 are then used to populate the templates with English words. Since there are three

template choices for each of the four sentences, and four choices for the person name and vehicle

type, this simple example already can produce 3 × 3 × 3 × 3 × 4 × 4 × 4 = 5,184 distinct items,

even disregarding the possible variation in the numbers used for rates and times. (Of course, not

all of these item instances may be equally intersubstitutable. Names and vehicle types are likely

to function as incidentals, which do not affect difficulty, whereas the specific numbers used in an

item are more likely to be radicals, which may be relevant to the item’s difficulty. See the first

chapter of Irvine & Kyllonen, 2002, for additional discussion.).

Figures 2–3 represent what is known as an item model (cf. Bejar et al. 2002; LaDuca,

Staples, Templeton, & Holzman, 1986), a specification for a class of isomorphic items that have

comparable content and the same psychometric properties. Particular items derived from the

same item model may be referred to as instances of the model. Templates are one way of

specifying an item model (by manually creating all of the linguistic content that is common to

items derived from the model), but it is not the only way. As we shall see below, ModelCreator’s

fundamental innovation is its capacity to automatically construct item models.

A template-based approach is attractive for its initial simplicity; a large number of new

items can be created with minimal effort. All that is required is the specification of a template,

along with the possible variations in each slot. Given this immediate payoff from the template-

based approach, moving beyond this to more sophisticated natural language processing (NLP)

techniques requires some justification.

Templates run into problems when the domain is extended beyond the simple range of

items covered in this example. First, the development effort expended in creating a set of

templates does not help to reduce the effort required in creating new templates. (This is the issue

of linguistic generalization.) Because templates are composed of sentences that are all but

complete and thus do not include generalizations over grammatical structures, the model

designer must start from scratch in creating new templates. The ModelCreator approach we

 4

describe below addresses this problem by allowing for the automatic construction of item

models, which are in essence like templates.

Column A Column B

a) The quantity in column A is greater

b) The quantity in column B is greater

c) The two quantities are equal

d) The relationship cannot be determined from the information given

KEY: C

Constraints: TIME1 = X / W

 TIME2 = Y / Z

 TIME1 = TIME2

PERSON2 drives Y miles at a speed of Z miles per hour in a VEHICLE.

PERSON2 drives a VEHICLE Y miles at a speed of Z miles per hour.

PERSON1 drives X miles at a speed of W miles per hour in a VEHICLE.

PERSON1 drives a VEHICLE X miles at a speed of W miles per hour.

The time it takes PERSON2 to travel Y miles

The time it takes PERSON2 to drive the VEHICLE Y miles

The time required by PERSON2 to travel Y miles by

The time it takes PERSON1 to travel X miles

The time it takes PERSON1 to drive the VEHICLE X miles

The time required by PERSON1 to travel X miles by

Figure 2. Example template for a mathematics quantitative comparison item.

Z:integer

W:integer

Y:integer

X:integer VEHICLE
car

truck
camper

van

PERSON
Maria
Tom
Tazi

Orhan

Figure 3. Example lists of fillers for template slots.

Second, the structure of a template-based item model makes it difficult to encode the

dependencies among the filler items chosen (the interslot dependency problem). For example, it

is reasonable to create items that involve cars traveling at 35 miles per hour, but not at 400 miles

per hour, whereas jet airplanes are more likely to travel at 400 mph than at 35 mph. Since the

 5

filler items for template slots are chosen independently of one another, these generalizations are

not easily represented. It is true that a set of constraints may be added to the specification of a

template in order to account for these dependencies, but this straightforward approach is fraught

with complications when attempted on a large scale. The relevant set of constraints (whether it

has to do with the expected speeds for different classes of vehicles or the class of motion verbs

that may be used with an explicitly expressed endpoint, etc.) must be specified independently for

each template used for generation. In addition, no set of constraints incorporated into a template-

based generation system can control for the sort of dependencies that may hold between the

words chosen for a template slot and the grammatical structure of the item. Since the basic

linguistic structure of the template is fixed, any words that are incompatible with it simply have

to be excluded.

Third, developing a large-scale generation system based on templates can lead to a

system that is excessively fragile. To cover a large fragment of the domain under consideration, a

large set of templates may be required, which can quickly become unmanageable. Finally, and

most importantly, a template-based approach to generation is not ideal for generation in multiple

languages, since the templates must be developed independently for each language.

The ModelCreator Approach
The approach to generation taken in the ModelCreator project introduces an additional

degree of abstraction and automation, compared with a template-based system. The user need

only specify high-level generation parameters via the graphical user interface, rather than the full

set of options comprising an item model, as in a template-based approach. This basically

amounts to automatic generation of item templates, a move necessitated by the problems of

scalability and self-consistency we have noted with the manual production of templates.

In fact, there are intermediate levels of automation between the manual specification of

templates and a fully automatic system for template generation as found in the ModelCreator

project, just as there are intermediate steps between manual item writing and schematic use of

item models specified by templates. The work of Fairon and Williamson (2002) represents a

sort of “third path” between a straightforward template-based approach to generation and the

deep generation done by ModelCreator. Their system is basically template driven and uses

canned text for much of the content it produces; however, it does have some local rules that

 6

allow it to enforce grammatical constraints such as subject-verb agreement in its automatically

generated text.

The approach to generation taken in the ModelCreator project requires a more intensive

initial development effort than a template-based approach, but is also more scaleable and robust.

It is scaleable in that it can more easily be extended to handle a wider range of constructions

within a language or to entirely new languages and content areas. It is robust in that the back-end

linguistic processing takes care of such niceties as subject-verb agreement and gender concord,

so that malformed item instances are less likely to result from carelessly constructed models.

Through the use of natural language processing techniques, this system also solves the problems

of interslot dependency and linguistic generalization alluded to above.

The problem of interslot dependency is addressed in part by using a frame-semantic

representation (cf. Fillmore 1968, 1985; Baker, Fillmore, & Lowe, 1998; Fillmore & Baker,

2001) for the vocabulary of the item domain. This frame database indicates the semantic

relationships between different participant roles in the activity described in a given item type, so

that only permissible combinations are produced. For instance, a distance-rate-time event frame

might contain the role types AGENT, VEHICLE, DISTANCE, TIME, RATE, ORIGIN, and

GOAL, among others, reflecting our knowledge that a traveling event involves a person

navigating a vehicle from some origin to an endpoint, covering a certain distance at a certain

rate. In addition to specifying these roles, our frame semantic representation indicates constraints

on the lexical elements that may fill each role. For instance, if the RATE role is chosen to be

greater than 35 miles per hour, the VEHICLE chosen should not be a bicycle, and if the verb of

motion used is sail, the VEHICLE role must be filled by some sort of watercraft.

This frame database consists of an inheritance hierarchy of frames, in which a more

specific frame may inherit most of its values from a more general one. For instance, we can

implement a general frame that expresses the properties of travel events conducted by air. This

frame will indicate, among other things, that the vehicle involved in an air travel event can be a

jet or an airplane, that the typical motion verb for these events is fly, and that a typical endpoint

of travel is an airport. We could also introduce a more specific “helicopter-travel” frame that

inherits all of the properties of the more general air travel frame, but augments these with

attributes that hold only for travel by helicopter. For example, a helipad is a fine landing point

for a helicopter, but not for any other sort of aircraft.

 7

In addition to the filler dependencies that arise from semantic factors and are handled by

the ModelCreator frame database, there are dependencies that arise from more formal (less

content-related) aspects of language. For example, if the element filling the VEHICLE role (say,

camper) has been mentioned previously in the item, then subsequent uses must refer to it as the

camper rather than a camper. In Japanese, a VEHICLE used as a direct object requires the case

suffix を (-o), while as a subject it requires another case suffix: が (-ga). Such facts can be

handled directly by writing them into templates, as in Figure 2. However, doing so is a less than

ideal solution because general facts about case marking and definiteness have to be encoded

anew for each template sentence that is added to the generation system.

Such are the complications and ad hoc solutions that a large-scale template-based

approach would require in order to get acceptable results for a reasonable range of grammatical

phenomena. To avoid such problems, ModelCreator employs a full-fledged linguistic model,

which determines the correct grammatical structure to produce on the fly. This automation of the

process of producing templates helps to alleviate their deficiencies. In particular, automatic

generation of item templates entails a preexisting categorization of them, which constitutes a

solution of the linguistic generalization problem. In addition, the interslot dependency problem is

solved by our use of a semantic frame database that specifies the admissible participants for

various event types and reasonable constraints that may be placed on them.

In a first pass, general information about the item type desired is used to construct a

pseudological representation, which is largely language-neutral, but represents the participants

involved in the event to be described and how this information is packaged in the stem and query

expressions of the item. From this logical representation of the item, a linguistic generation step

produces the completed item, using linguistic analysis to produce the sentence forms for the item.

This process is represented in Figure 4 below.

The generation parameters in Figure 4 consist of a set of choices made through the

program interface by choosing from graphical menus, checking boxes, and so forth. They include

such aspects of the distance-rate-time item as the number of vehicles traveling, the distances

involved in each event, and whether the item should query the examinee for a rate, time, or

distance quantity.

 8

generation lan

logic creation

Inflectional

Tables

Lexicon

Frame

Database

Finished

Item

Logical

Representation

Generation

Parameters

A car travels 175 miles in 5 hours.

A camper travels 160 miles in 4 hours.

Column A: The rate at which the car travels

Column B: The rate at which the camper

travels

VEHICLE1 DRIVE(DISTANCE1=175,TIME1=5)

VEHICLE2 DRIVE(DISTANCE2=160,TIME2=4)

Column A: RATE::VEHICLE1 DRIVE()

Column B: RATE::VEHICLE2 DRIVE()

...

Events = 2

First Distance = 175 miles

First Time = 5 hrs

Second Distance = 160 miles

Second Time = 4 hrs

Query = RATE

Key = C

language generation

Figure 4. ModelCreator's generation process.

These item parameters are considerably more abstract than the information found in an

item template, and therefore more easily incorporated into a point-and-click style user interface.

This allows us to use an entirely menu-driven interface for ModelCreator, which gives the user

fine control over the specific details of items the system generates, yet does not require

programming skills or other technical knowledge on the user’s part.

The level of logical representation in Figure 4 roughly corresponds to the information

that must be specified in an item template. In template-based approaches, the templates are

individually authored, a process that can be time-consuming and requires considerable expertise.

Using ModelCreator, however, these templates are generated automatically given a specification

of the generation parameters. The logical representation is the output of a logic creation process,

which packages the information for the item into discrete propositions and determines which

 9

information will be provided in the stem of the item and which will be part of the options in each

column. The semantic frame database is applied at this stage to determine constraints on which

participant roles can occur together. For example, a TIME expression occurring together with a

VEHICLE expression and a DISTANCE expression has two different permissible expressions.

One way of packaging the information is to use a DRIVE-type predicate (e.g., The car drove 100

miles in 2 hours). Another is to use both a REQUIRE predicate and a DRIVE predicate (The car

required 2 hours to drive 100 miles).

Finally, the finished item is created from this logical representation by means of our

natural-language generation (NLG) component. This process adds the linguistic substance to the

logical outline. It uses the lexicon to look up appropriate terms for each of the logical elements,

which is analogous to filling out the slots in a template. However, this slot-filling is done in a

linguistically informed way, using our knowledge of the language’s structure to ensure that the

language generated for the item is well-formed. Among other things, this involves using our

inflectional tables to ensure that each word appears in the correct form to reflect tense, case,

gender, or whatever other features may influence its realization.

The Strategy for Multilingual Generalization

The design of the generation process described above, in which a logical representation

of the content is generated as a first step and language-specific elaboration of this logical

structure is performed afterwards, has clear consequences for the strategy to be pursued in

extending the item generation system to a new language. Ideally, the generation of a semantic

representation ought to be a largely language-independent matter, although as we shall discuss

below, in some cases the structures encode some language-specific phrasing options. The bulk of

the work, then, for extending the ModelCreator system to a new language consists in redesigning

the component of the system that fleshes out the frame semantics for a given item, adding the

lexical and grammatical “meat” to the semantic skeleton.

Modifications for Japanese

In this section, we present a broad outline of the modifications that were necessary in

order to produce a working NLG program to generate test items in Japanese, starting with the

English version of the ModelCreator software. On the whole, it is remarkable how localized

 10

these changes were in the ModelCreator code, given the great differences between English and

Japanese.

Historically and typologically, English and Japanese are radically different languages

(Comrie, 1987). There is no known genetic relationship between the two languages; even the

most distant known relatives of English, such as Farsi and Sanskrit, are members of the Indo-

European family, to which Japanese does not belong. Structurally, while Japanese does not have

features such as an ergative-absolutive case system or noun incorporation, which are perhaps the

most exotic from the viewpoint of an English speaker, it nevertheless represents a very different

linguistic type from English and other Western European languages. Where in English, nominal

case is marked only on pronouns and even there only in a very restricted paradigm, Japanese has

a full-fledged case system. In English, “functor” categories such as verbs and prepositions

generally precede their arguments, so that the normal phrase order for an active declarative

sentence is subject-verb-object (SVO). In contrast, Japanese is a head-final language, in which

the default word order is subject-object-verb (SOV), and “prepositions” follow the noun (so they

are actually postpositions).

Despite extensive linguistic differences such as these, though, the development of

Japanese ModelCreator did not require complete duplication of the effort expended in

developing the English system. Rather, only certain areas of the program code needed to

modified. Thanks to the very general architecture of the original English ModelCreator system,

the modifications for Japanese could be restricted to the bare minimum, targeting those respects

in which the grammar of Japanese differs from that of English. Note that in a template-based

generation system, there is no clear distinction drawn between language-specific grammatical

generalizations and more universal aspects of item structure (such as how information is

packaged in the different textual parts of an item).

Japanese Grammatical Structure
In this subsection, a more specific description of differences between Japanese and

English is given. Since it is impossible to discuss every single difference between the two

languages, we will limit ourselves to those parts of Japanese grammar that anyone attempting

sentence generation both in English and Japanese must address. We will start with the writing

system and then move on to more syntactic and morphological differences.

 11

Writing system. Besides grammatical differences, one major difference between English

and Japanese is the writing system. English employs an alphabet, in which one or more letters

represent a segment (a single speech sound). For example:

(1) English alphabet:

 a pp le - conventional spelling

 | | |

 [æ p l] - phonetic representation

In this example, a letter a stands for the segment [æ], a sequence of letters pp for [p], and

le for [l] (or l stands for [l] and e is silent).

On the other hand, Japanese uses two writing systems, which are both different from an

alphabet, simultaneously: Kanji, or Chinese characters, in which each character represents one or

more syllables as well as some semantic content, and a syllabary, in which each letter represents

a single syllable rather than a segment. The following is an illustration of the system:

(2) Japanese writing system:

 a. Kanji:

 Each complete character represents a meaning:

 for example, 手 “hand” 寺 “temple” [ji]

 持 “hold; have” [ji]

 b. Kana

 Each symbol represents a syllable, rather than a segment:

 for example, く る ま “car”

 [ku ru ma]

In (2a), a simplified form of an existing Kanji 手 “hand” becomes a part of another Kanji

持 “hold; have” (in this case, the left half). Here, “hand” is contributing a part of the meaning of

持 “hold; have” in that it has something to do with hands. At the same time, another existing

character 寺 “temple” becomes the right half of 持, contributing the sound [ji].1 For a

noncomposite Kanji like 手, one must learn its pronunciation(s), for there is nothing in the

 12

character to provide a clue. Even for composite characters like 持, one must learn various

pronunciations to which no clue is found in the character itself.

On the other hand, Kana, a syllabary, is closer to an alphabet in that it is a writing system

that represents sounds, not meaning. There are two variants of Kana: Hiragana and Katakana. In

the last few decades, Katakana has come to be used almost solely for loan words. Chinese loan

words are still usually written in Kanji, but their pronunciation is almost always written in

Katakana. Loan words from other languages are always in Katakana. The major difference

between Kanji and either system of Kana, as mentioned above, is that each kana represents a

syllable, which, in the case of Japanese, is a combination of one optional onset (syllable-initial)

consonant and a nucleus (the most sonorous and prominent part of a syllable; in Japanese, a

vowel). The modern Japanese syllabary uses separate letters for optional coda (syllable-final)

consonants, of which there are only two possibilities: ん for a nasal consonant, or small っ (as

opposed to full-size つ) for a geminate consonant. Kana has also come to mark long consonants

by either using the vowel symbol which actually represents the long vowel (for vowels [a, i, u])

or a vowel symbol that represents the sound that is higher than the actual long vowel, making the

long vowel look as if it is a diphthong ([u] for [o] and [i] for [e]). The example in (2b) is a simple

one, in which each syllable represented by a kana is CV (consonant-vowel).

There is a basic division of labor between Kanji and Kana in the Japanese writing system

in normal circumstances. Kanji, whose main characteristic is representing meaning, are used for

content words and morphemes such as nouns and the (partial) stem of verbs, adjectives, and

adjectival nouns. Kana, which represent sounds, are used for function words/morphemes, such as

case markers, postpositions, various suffixes such as tense, aspect, negation, and so forth. The

following is an example to illustrate this division of labor:

(3) ジョンは、 白い 車を 持 っている。

 John-TOPIC white car-Acc have-STATIVE-PRES

 “John has a white car.”

First, let us look at the content words. ジョン “John” is a foreign name, thus is written in

Katakana, one of the two types of Kana. 白 “white” is an adjective stem, thus it is in Kanji. 車

“car” is a noun, and 持 “have” is a verb stem, so they are also written in Kanji. Now turning to

 13

function morphemes, the topic marker は, adjective inflection い, the accusative marker を, the

stative aspect suffix いる and the verbal conjugation form that is required by the suffix って are

all written in Kana. However, if we are writing for younger children, for example, lower-grade

elementary-school children, all or much of this writing is in Kana. This is because more complex

Kanji are generally taught at a higher grade level. This means that different age groups require

not only different vocabulary in their reading material, but a different proportion of Kanji in the

writing system for the same vocabulary, starting from all-Kana for very young children.

Word order. One of the major differences between English and Japanese is the basic

word order. English is a so-called SVO language. Thus, the arguments of a verb other than the

subject in English always follow the verb. For example:

(4) John drove a car to the airport.

 S V O Goal

On the other hand, Japanese is an SOV language, in which arguments of a verb always

precede the verb. The following example is the Japanese counterpart of (4) above:

(5) ジョンが 車を 空港に 運転していった｡

 John-ga kuruma-o kuukou-ni untenshite-it-ta.

 John-NOM car-ACC airport-to drive-go-PAST

 S O Goal V

 “John drove a car to the airport.”

In the English example (4), the verb is in the middle of the sentence, while in the

Japanese counterpart (5), it is at the end of the sentence.

Nouns: Case and topic markers and pre- vs. postpositions. These examples also show

other syntactic and morphological differences between English and Japanese. One such

difference is the presence of “(syntactic) case markers” on nouns in Japanese but not in English.

There are three nouns in each example: John/ジョン, car/車, and airport/空港. In (4), none of

the nouns are marked for case, while in (5), ジョン and 車 are marked nominative (NOM)

が (-ga) and accusative (ACC) を (-o), respectively. The other noun, airport, is preceded by the

 14

preposition to in English, while its counterpart, 空港 ,is followed by the postposition –ni in

Japanese.

Modern English is not particularly rich in morphology. Syntactic case marking is still

observable in its pronoun system—for example, I for subject, me for object, and my for

possessive—but regular nouns and names are only marked for the possessive: John’s as opposed

to John (either subject or object). On the other hand, Japanese nouns and names, as well as

pronouns, are almost always followed by a case or topic marker unless they are followed by a

postposition. (Note 空港 in (5), which is followed by a postposition, thereby ruling out a

case/topic marker.)

There are four case markers in Japanese: nominative -ga, which typically marks subjects;

accusative -o, which typically marks the direct object; dative –ni, which marks the direct object

of some verbs and indirect object of other verbs; and genitive –no, which marks the possessive.

Japanese also has a topic marker, -wa, which is often used to mark subjects instead of –ga, as

well as topic noun phrases.2

As is typical of SVO languages, English has prepositions such as at, to, from, for, of, by,

and so on which always precede their complement nouns. Japanese, as is typical of SOV

languages, has postpositions, which always follow their complement nouns (Greenberg , 1966).

While there is some semantic correspondence between English prepositions and Japanese

postpositions, it is far from complete. This is to be expected when dealing with two or more

languages, because languages differ in lexicalization of semantic concepts. This is true even

between two closely related languages and is certainly true between such unrelated languages as

English and Japanese.

One of the major differences in noun phrases between English and Japanese, which

pertains to the distance-rate-time problem type, is the relative clause construction. In English, a

head-initial language, a relative clause follows the head noun, and there is a relative pronoun that

refers to the head noun (although sometimes the relative pronoun is dropped):

(6) the car, [relative clause which John drove __]

Here, the relative clause which refers to the head noun car. In a declarative sentence, “the

car” would be in the underlined direct object position. Japanese differs from English in two

 15

major points: Being a head-final language, a relative clause precedes the head noun; and there is

no relative pronoun, so the relative clause looks like there is a gap:

(7) [ジョンが__運転した relative clause] 車

 John-NOM __ drive-PAST car

While the exact construction of relative clause is a target of much debate in the field of

linguistics, it is beyond the scope of current task to go into it. The important thing is to recognize

the difference in word order and the lack of relative pronouns.

Verbs in Japanese. Unlike English, Japanese verbs are not free morphemes. They must be

followed by at least one suffix, namely tense, which is either nonpast or past:

(8) nom- “drink”:

 a. Mizu-o nom-u -Nonpast (present, future, habitual etc.)
 water-ACC drink-NONPAST

 “[I] drink water.”

 b. Mizu-o non-da -Past
 water-ACC drink-PAST

 “[I] drank water.”

 c. *Mizu-o nom-Ø - No tense suffix (impossible)

Besides tense, Japanese verbs conjugate for various syntactic and/or morphological contexts,

such as before negation, before a polite suffix, before a noun, in an imperative sentence, and

so on. Traditional Japanese grammar recognizes 6 conjugated forms. For the purpose of

adapting ModelCreator for Japanese, we have extended the number to 10, in order to handle

a wider and more complete set of verb forms. At the same time, the exact form of each

conjugated form depends on the stem-final sound, which can be either a consonant or a

vowel. In all, there are 16 such conjugation types. The following figure, Figure 5, presents

the Japanese verb conjugation table from the Microsoft Access database in which we stored

this morphological information. This table lists the appropriate suffix for a verb form,

depending on its conjugation class and the desired inflectional category.

 16

Past tense
suffix for
a verb of

e aru
conjugation

class

th

Figure 5. Verb conjugation table.

Adjectives and adjectival nouns. It was mentioned above that complete one-to-one

correspondence of members of a lexical category is rare between two languages. This is true of

lexical categories themselves. Japanese has so-called adjectival nouns (or “nominal adjectives”),

whose syntactic distribution resembles that of adjectives, but whose morphological pattern more

closely resembles that of nouns. It is necessary to list separate inflectional forms for adjectives

and adjectival nouns. The following two figures, Figure 6 and Figure 7, show the adjective

inflection table and adjectival noun inflection table, which similarly list the appropriate suffixes

for different forms of adjectives and adjectival nouns:

Past tense
adjective
suffix

Figure 6. Adjective inflection table.

 17

Past tense
adjectival
noun suffix

Figure 7. Adjectival noun inflection table.

Modifications to ModelCreator’s Lexical Resources
Lexicon. The source for the lexicon was taken from ipadic (Matsumoto et al., 1999), a

freeware dictionary developed and distributed by Nara Institute of Science and Technology.

Ipadic was originally packaged with several NLP tools for Japanese such as ChaSen3

(morphological analyzer) or Kakasi (kana-kanji converter). It consists of several EUC-encoded

text files, one file for each lexical category. (EUC is a type of encoding for Japanese.) In each

file, each line contains a lexical entry and the information that goes with that entry (its category,

inflection type, etc.), as well as information related to the organization of the dictionary.

(9) An example entry from ipadic:

 (品詞(形容詞 自立))((見出し語(あさい 3206))(読みアサイ)(活用型 形容詞・アウオ段))

gloss: (category(adjective free)) ((entry (あさい 3260)) (pronunciation アサイ) (inflection adjective auo))

The letters/characters in bold face indicate lexical information, while those in regular

type are organizational information. For the purpose of Multilingual Math ModelCreator, we

decided to use Microsoft Access for easy manipulation and organization of large number of

entries and UTF-8 for Japanese encoding. Thus, it was necessary to modify ipadic by stripping

superfluous information, adding occasional supplementary information, and converting as much

information as possible into English/ASCII.

The first step was to strip the original dictionary of any information that was unnecessary

for ModelCreator. For example, the parentheses and numbers in the original entry needed to be

removed, as well as superfluous spaces. This was done using Perl scripts and Nimax, a Japanese

version of the UNIX text editor emacs. A single tab replaces a string of unnecessary information,

 18

making the entry more suitable for importing to Microsoft Access. After this stripping, the

example entry in

(9) looked like the following:

(10) 形容詞 自立[tab]あさい[tab]アサイ[tab]形容詞・アウオ段

The deleted words such as “category” or “pronunciation” would be replaced by a column

label in Microsoft Access.

The second step was to convert category and conjugation/inflection information into

English (ASCII), so that those who do not read Japanese can understand the structure of the

lexical database. Thus, the entry became:

(11) adj_free[tab]あさい[tab]アサイ[tab]adj

The information contained in this new entry is, respectively:

(12) category[tab]word entry[tab]pronunciation[tab]inflection type

That is, in (11), the category of the word is “adj_free,” the word entry is あさい, pronunciation

is “アサイ,” and the inflection type “adj.”

The third step was to convert the pronunciation (underlined アサイ in (10) and (11)) into

ASCII transcription. Thus, the final entry became as follows:

(13) adj_free[tab]あさい[tab]asai[tab]adj

Note that the pronunciation entry was originally in Katakana as in (10) and (11) (underlined).

In order to avoid having to manually convert each pronunciation entry into ASCII as in

(11) (underlined), a freeware program called Kakasi4 was used. Kakasi, a component of the

Japanese full-text search engine Namazu, is a program that converts between ASCII

representation and Kanji, Kana, or combinations thereof, and also between Kana and Kanji.

There were well over 200,000 entries, so this was much more efficient than manual conversion,

even though there were quite a few errors in conversion due to most Kanji having more than one

possible pronunciation.

 19

At this point, the text dictionary files were imported into Microsoft Access, so that the

query function of the software could be used to further process the dictionary.

The fourth step was to add information about the stem of words that belong to lexical

categories that inflect/conjugate, such as adjectives and verbs. Here, the term stem is not used in

a strict morphological sense, but rather as that part of the written word that does not change

throughout conjugation/inflection, which is more appropriate for this project. As is mentioned

above, adjectives, adjectival nouns, and verbs have various inflectional forms according to their

position in the sentence and the suffixes that follow them (e.g., tense, aspect, negation, etc.). It is

possible to list the fully inflected/conjugated forms of each verb/adjective/adjectival noun.

However, inflection/conjugation in Japanese is very systematic, so it is easy to simply enter the

stem and inflection/conjugation type for each word and attach inflectional/conjugation suffixes

to it. The latter is the method we chose for this project.

In the Access database, a column was added for the stem in ASCII (Stem) and another for

the stem in Japanese (J stem). The entry form of verbs/adjectives/adjectival nouns is a nonpast

form. To derive the desired Japanese stem from the entry form only required using a query to

identify the correct category, then copying the entry form in the Japanese column into the J Stem

column minus the last kana. Adjectives and adjectival nouns, fortunately, have only one type of

inflection each, thus we encountered no problem. Deriving the stems in ASCII was more

involved than for verbs because there are several types of verb conjugation, and moreover, as we

have shown above, one kana may correspond to one or two segments. There are verbs whose last

syllable is onset-less (only the nucleus). This means that simply copying the ASCII stem under

“Roman” column minus the last letter or last two letters across the board would not do the trick;

rather, some verbs need to have the last letter eliminated to arrive at the stem, others need to have

the last two letters eliminated.

When all the stems were derived, all the lexical-category-based dictionaries were

concatenated into one large dictionary, a snapshot of which appears below in Figure 8:

 20

Figure 8. Finished dictionary.

Once the main dictionary was finished, we created two conjugation/inflection tables each

for verbs, adjectives and adjectival nouns: one in Japanese and one in ASCII. The

conjugation/inflection table in Japanese for each category is seen above in Figure 8. The verb

conjugation table in ASCII looks like the following in Figure 9:

Stem form

adjective
atatakai
“warm”

of Japanese

Suffix
for a

Japanese
verb of
the aru
conjuga-
tion
class

Figure 9. Verb conjugation table in ASCII.

 21

Frame database. The frame database stores semantic frame information. As is discussed

above, it is structured in such a way that a more specific frame can inherit many of its properties

from a more generic one. It was necessary not only to “Japanize” the lexical items but also to

modify the relationships among some frames to move from English to Japanese

Modification of the frame database required less labor than creating the dictionary. It

consisted of:

1. Changing the lexical items to Japanese

2. Suppressing the roles that have no equivalence in Japanese

3. Finding the ID number of each lexical item in the above dictionary and inserting it

below each lexical item

4. Changing the inheritance properties of each model where necessary

Tasks 1 and 2 were carried out simultaneously. A role would be suppressed if the

syntactic structure for which the role is provided is ungrammatical, either in the language as a

whole or in the distance-rate-time (DRT) context. For example, Role 12 lists verbs of

transporting passengers, such as fly, as in “The pilot flew the passengers to Rome.” In Japanese,

the direct object of such verbs as drive or fly has to be the vehicle. Transportation of passengers

would be expressed by a participle construction, closer to “The pilot flew an airplane, carrying

the passengers.” Another example is the passive construction, such as “A truck was driven at 25

mph.” A passive does exist in the language, but it is not used in the DRT context. Nominalization

of a vehicle-operating event into a noun is also rare in Japanese, if not impossible. For example,

the event expressed by “John drove to NYC” may be nominalized as “John’s drive to NYC” in

English. This is not a common phenomenon in Japanese;5 the nominalization needs to apply to

the whole sentence, thus requiring a completely different construction from English. Thus, the

roles corresponding to nominalization were suppressed.

Once Task 1 and 2 were done, Task 3 involved simply going into the dictionary, finding

the word, and copying the unique ID into the frame database. Task 4 took some time to finalize.

The inheritance properties between frames cannot be the same between the English and the

Japanese frame databases, largely because the proper combinations between a vehicle and verbs

(whether the vehicle is the subject or the object) are rarely (if ever) the same between any two

languages. For example, in English one can drive a car, a bus, a motor boat, or a sleigh; on the

other hand, Japanese equivalent of the verb drive (unten-suru) can be used for the first two, but

 22

not for the latter two and their cousins. This is an example in which a Japanese verb has more

specialized use than its English counterpart. In order to have the correct vehicle-verb pairing,

inheritance between an automobile-type frame and motorboat- or sleigh-type frames needed to

be blocked in Japanese and appropriate verb(s) introduced in the sleigh-type frames.

Modifications to ModelCreator’s Grammatical Generation Rules
As shown earlier, Japanese syntax differs substantially from English syntax. Clearly,

these differences had to be reflected in the course of developing a Japanese version of

ModelCreator.

Dominant word-order pattern. First, Japanese is an SOV language with postpositions,

whereas in English, verbs and prepositions precede their objects. Implementing this difference

was relatively simple, given the ModelCreator architecture, in which largely language-neutral

logical structures are used as the basis for generating test items. An eventual verb phrase, such as

“drove 40 kilometers” in English or “４０キロメートル運転した” in Japanese will be

represented at this logical level by a predicate expression such as DRIVE(DISTANCE=40).

When a logical phrase such as this is parsed by the language generation engine, the only

syntactic change needed for Japanese (besides, of course, changing the words!) is the directive

that the verb realizing the logical element DRIVE should be printed at the end of the phrase,

rather than at the beginning. The handling of Japanese postpostions is analogous. When, during

the generation process, the conversion from logic demands that a prepositional phrase be output,

the Japanese version of the code will output a postposition at the end of the phrase, whereas the

English version will output a preposition at the beginning.

Figures 10 and 11 illustrate how the logical structure of a sentence (in fact, an entire

item) can be carried over largely unchanged form English to Japanese in many cases, while the

realization of the logical relations is language-specific. (The birdcage-like structures below are

meant to schematically represent the logical structures that ModelCreator produces.)

Disregarding the order of arguments, this logical structure is common to the English and

Japanese sentences below. In each language, the information about the travel event is packaged

into a biclausal structure (with each clause represented in the diagram as a single nexus at which

the lines connected to logical arguments meet—the roof of a birdcage). The embedded clause

expresses the vehicle and distance slots of the event, connected by a TRAVEL-class verb. The

 23

main clause in each language forms a query regarding the time required for the travel event. (The

dashed line connecting the VEHICLE argument to the higher clause indicates that this is a

control structure [cf. Rosenbaum, 1967; McCawley, 1998; Chomsky, 1981; Chierchia, 1984], in

which a single element can function grammatically as an argument of multiple clauses.)

In mapping this logical structure to a finished sentence, though, the Japanese ModelCreator

system must respect the SOV word order of Japanese (VEHICLE-DISTANCE-TRAVEL),

whereas English ModelCreator selects SVO order (VEHICLE-DISTANCE-TRAVEL).

EV
EN

T

D
IS

TA
N

C
E

R
EQ

U
IR

E

V
EH

IC
LE

TR
A

V
EL

TI
M

E

The time required for the ship to sail 40 miles

Figure 10. English mapping, logic to surface.

船が 40 マイルを 走るのに かかる 時間

D
IS

TA
N

C
E

TR
A

V
EL

EV
EN

T

V
EH

IC
LE

R
EQ

U
IR

E

TI
M

E

Figure 11. Japanese mapping, logic to surface.

 24

Inflection. Second, Japanese differs from English in the inflectional paradigms of nouns

and verbs (and in the case of Japanese, verbal nouns and adjectival nouns). Here, the term

inflection refers to the use of affixes (suffixes in particular for Japanese and English) to mark

syntactic or semantic relationships within a sentence. In the case of English nouns, this

comprises the distinction between singular and plural forms, and in the case of English verbs, the

marking of tense with suffixes like –ed and –en, and also subject-verb agreement marking in the

present tense (e.g., “She walks” vs. “They walk”).

In Japanese, the number of nouns is not morphologically marked, which slightly

simplifies the task of natural language generation. However, Japanese does systematically mark

nouns for case, so that direct objects receive a different suffix (を) from subjects (which are

usually marked with が), and oblique arguments to a verb may be marked with a number of other

suffixes. Some internal bookkeeping had to be introduced to handle case marking for Japanese

nouns, but fortunately, a good deal of this mechanism already existed in the English version of

ModelCreator.6 In order to assign the proper case marker to a Japanese nominal, we need to

keep track of the grammatical function (such as subject, object, or indirect object) assigned to

each noun during generation. As it turns out, this information was already present in the English

version of the software, to support such linguistic options as the passive voice.

In English, the direct object of a verb is not marked with a case suffix, but it is still useful

to identify which argument is the direct object during generation. For one thing, certain verbs

have restrictions on what sorts of expressions they can have as a direct object. (Reach takes a

destination as its object, whereas drive can take a vehicle or a distance expression, rate, or

perhaps even a time expression.) For another, in producing passive sentences, we have to know

which argument of a verb would be the direct object in an active sentence, so that we can

suppress it, and assign it the subject role.

While the Japanese verbal paradigm differs from the English one, these differences turn

out not to demand substantial changes in the grammatical rules used for generating Japanese. For

both Japanese and English, the only tense distinction made by ModelCreator is between one

tense used for past events and another used for ongoing action (past and present tense for English

and past and nonpast for Japanese). Japanese has no subject-verb agreement, so again in this case

Japanese inflection turns out to be simpler for our system to handle than in English inflection.

 25

Discourse marking. Third, the two languages differ in how the discourse status of entities

mentioned in an item is expressed. In English, the definiteness of noun phrases is primarily

indicated through the choice of determiner, so ModelCreator uses rules concerning which entities

are mentioned in each part of the item in order to determine whether a noun such as ship should

be output as a ship, a certain ship, or the ship, for example. In Japanese, however, definiteness is

not marked by means of a determiner, although under certain conditions related to the discourse

status of entities named, the topic marker は is used instead of the subject marker が. Since these

conditions do not coincide with those for any of the English determiner choices, ModelCreator’s

discourse module had to be largely replaced for Japanese.

Differences relating to logical structure. Fourth, while the pseudological representation

we produce as an intermediate step toward generating complete test items is intended to be

largely language-independent, some cases have arisen in which it seems that even this level must

differ for English and Japanese. For instance, the English system uses a subordinate clause in

query expressions such as “the speed maintained by a truck traveling 4 kilometers in 2 hours,”

which is generated from a “biclausal” logical representation that contains two separate

propositions—one headed by a predicate to eventually be realized as the verb maintain and

another headed by a predicate that will be expressed as travel. In Japanese, however, this content

is best expressed using a single clause, without introducing a higher verb such as maintain in

English.

In addition, English and Japanese sometimes differ in the order in which arguments to a

predicate are expressed such as, whether the distance expression or time expression comes first

in a verb phrase. Since the order of arguments is specified at our logical level, it is difficult to

adequately cover the linguistic facts without changing the logic for Japanese. On the whole,

though, the modifications to the logical level for Japanese were quite restricted in scope, so that

this level can still be regarded as quite general.

Special cases. Finally, as is common in linguistics, once we have done our best to

describe the domain in question using general grammatical rules, there remains a residue of

idiosyncratic cases that must be handled in an ad hoc fashion. As it happens, Japanese prefers for

a distance expression to precede a time expression in a verb phrase when the subject of the

clause is a vehicle. However, when the vehicle is the object, and the subject is a human agent

(the driver), the time precedes the distance. No general grammatical principle suggests itself to

 26

capture facts like these, so in developing Japanese ModelCreator, they simply had to be encoded

as such.

Of course, this sort of arbitrariness is to be found in English grammar as well. We use

plural agreement with the quantifier all (e.g., “All cats hate water”), but singular agreement

with each (“Each cat hates water”). If this sort of idiosyncrasy were the rule, rather than the

exception, the general architecture of ModelCreator would be of little value; fortunately, this

is not the case.

Interface Modifications
In addition to these substantive changes to the underlying item generation system,

a number of modifications to the user interface for the program were necessary in porting

ModelCreator’s functionality to Japanese.

Unicode. First, the set of characters used in writing Japanese is much larger than the

English alphabet. As mentioned above in the general discussion of Japanese grammar, Japanese

uses two syllabaries (Hiragana and Katakana), as well as an ideographic set of characters

borrowed from Chinese (Kanji). To present items to the user in Japanese, we thus needed to

Unicode-enable the ModelCreator application, which involved rewriting the text-processing

routines of the program to handle multiple-byte characters and adding Unicode support to the

display engine.

Line breaking. Second, whereas English text conventionally separates words with spaces,

a Japanese sentence typically does not include any explicit delimitation of words. To

accommodate this option for displaying Japanese, it was necessary to implement some smart text

handling behind the scenes, so that word boundaries would be respected for line breaking, but

not explicitly marked in the finished item.

Interface parameters. Third, some of the generation parameters available for English are

inappropriate for Japanese, given the different structure of the two languages. In such cases, the

parameter was simply dropped from the Japanese version of ModelCreator or modified to behave

in a way that makes more sense for Japanese. One example of a parameter that had to be

modified for the Japanese version of the program is that of sentence structure. In the English

version of ModelCreator, there are four possible options for the basic structure of a clause used

to express a travel event:

• Active voice, agent and vehicle expressed (e.g., “Claude drove a van 50 miles.”)

 27

• Active voice, only vehicle expressed (e.g., “A van traveled 50 miles.”)

• Active voice, only agent expressed (e.g., “Claude drove 50 miles.”)

• Passive voice, only vehicle expressed (e.g., “A van was driven 50 miles.”)

In the Japanese version of the program, the final two options above have been removed.

The passive structure in Japanese is not as natural for this context as it is in English, and we

decided therefore to disable it entirely. The third option, in which the vehicle type is suppressed,

is also unacceptable in Japanese. Note that there is a strong dependency between the vehicle type

and the verb chosen in the sentence. (“Claude drove to Phoenix” implies a land vehicle, whereas

“Claude flew to Phoenix” assumes an aircraft.) In Japanese, this dependency cannot comfortably

be left implicit without mentioning the vehicle.

Other generation options which needed to be modified in the Japanese version of the

program include the use of event nouns in event descriptions (e.g., “Stacy made a trip of 100

miles” rather than “Stacy traveled 100 miles”) and the periphrastic statement of speeds in the

form “a speed of 100 miles every 2 hours.” The linguistic resources that are used to express a

given content will vary to some extent from language to language, so we need to be circumspect

in deciding which generation options to allow for each new language. However, languages are

likely to agree on a large number of these possible options, so that much of the work of

developing the English version of the ModelCreator system could be carried over directly to

Japanese. For instance, English and Japanese both permit travel events to be expressed in active

sentences with the agent expressed or left implicit, as shown above. Both languages allow these

sentences to appear in multiple tenses. Both languages allow times to be expressed as an absolute

duration (e.g., 5 hours) or as a sequence of clock times (e.g., from 1:00 to 6:00). Both allow rates

to be explicitly qualified as average speeds or constant speeds.

Default parameters. Finally, the change from English to Japanese as the target language

demanded a rethinking of the default generation parameters for the program. In particular, the

default units for distance and rate in English were set to miles and miles per hour, respectively.

In Japanese, these were set to kilometers and kilometers per hour, respectively.

In English, the default structure for describing a travel event is the passive (e.g., “A truck

is driven for 5 miles at 60 miles per hour.”). In Japanese generation, though, this structure is not

available, as noted above, so the default structure uses the active voice.

 28

Insights gained from the modifications. Because we started out with the English version

of ModelCreator, there were quite a few cases where we had to translate from English to

Japanese. Despite the fact that ModelCreator’s architecture is fairly language-neutral, this still

means that the structure of the English language was sometimes imposed on Japanese, making

some of the Japanese output less than optimal and causing some linguistic content to remain

uncovered. These are possible clues to where the language-neutrality of the ModelCreator can be

further improved.

Summary
All in all, the modifications to create a working version of the ModelCreator software for

Japanese were relatively minor, given the vast difference in grammatical structure between

Japanese and English. The most comprehensive adaptations were in the areas of lexical resources

for Japanese (such as a dictionary of names, a table of inflectional suffixes, and the Japanese

frame database), the language-specific generation rules that flesh out ModelCreator’s logical

structures, and finally, the user interface for the program. While this process was far from trivial,

it was much more straightforward than any strategy for producing a Japanese version of a

template-based NLG program could be. A template-based system would require the manual

translation of each template, and grammatical and semantic restrictions on the filler elements for

each template slot would have to be devised and stated anew for the new target language.

Modifications for Spanish

In this section, we describe the changes made to ModelCreator in the course of adding

Spanish functionality. Compared to the changes needed for Japanese, these were relatively few

in number and small in scope. Of course, Spanish is a language much closer to English,

historically and typologically, so it is not surprising that more of the functionality developed for

English could be carried over for Spanish in ModelCreator.

As with Japanese, the major categories of modifications that we made to the basic

program for Spanish involved the lexical resources we used (namely, the dictionary and frame

database) and changes to the grammatical generation rules. Before discussing these

modifications in detail, however, we provide a short survey of the grammatical characteristics of

Spanish, highlighting differences from English that are relevant for this generation project.

 29

General Grammatical Structure
English and Spanish are both Indo-European languages, which puts them together in a

broad class containing such other languages as Russian, Sanskrit, and Farsi. However, Spanish

and English are even more closely related typologically than their genealogy would suggest.

Spanish belongs to the Romance subfamily of Indo-European, and while English is a Germanic

language, it has been heavily influenced by Romance through extended contact with French

during the Norman invasion of England.

Both Spanish and English are SVO languages, in which the subject of a transitive clause

precedes the verb, while the object follows it. Both languages have prepositions rather than

postpositions. The largest difference in word order between the two languages is the fact that

adjectives in Spanish typically follow the noun, whereas in English, adjectives precede it.

Both languages exhibit subject-verb agreement (though the English paradigm is less

extensive), and neither has overt case marking of nominals. However, Spanish nouns have

inherent gender (masculine or feminine), which is not a feature of English.

In short, Spanish is a much more similar language to English than Japanese, which

immensely simplified the task of accommodating it in the ModelCreator interface.

Modifications to Lexical Resources
Lexicon. The Spanish lexicon is derived from the MULTEXT Lexicons version 1.0,

distributed by European Language Resources Association (ELRA/ELDA). It contains word

forms for five European languages: English, French, German, Italian, and Spanish. Among these

languages, Spanish has the greatest number of word forms listed (510,710 word forms), in part

due to the fairly extensive morphological system of the language. (The full paradigm is explicitly

provided for each entry.) The word forms for a given language are contained in a single text file,

in which each line contains a word form, its lemma, and a lexical tag in a tabulated format.

Figure 12 presents a few example lines from the paradigm of the verb recorrer (travel). Without

going into too much detail, the codes for the first line indicate that recorriéramos is a main verb

(Vm) in the subjunctive (s) mood and imperfect (i) tense, with first-person plural (1p) agreement

inflection.

 30

Figure 12. Example of Spanish entries from MULTEXT Lexicons version 1.0.

recorriéramos recorrer Vmsi1p-

recorriésemos recorrer Vmsi1p-

recorrió recorrer Vmis3s-

recorro recorrer Vmip1s-

Because the file is already in ASCII characters, it did not need to go through the same

clean-up/conversion process used for the Japanese source.

Frame database. The original English frame database was modified to work in Spanish,

as in the case of Japanese. However, not all of the four steps used in converting the Japanese

database, repeated below, were necessary for Spanish:

1. Changing the lexical items to Japanese

2. Suppressing the roles that have no equivalence in Japanese

3. Finding the ID number of each lexical item in the above dictionary and inserting it

below each lexical item

4. Changing the inheritance properties of each model where necessary

Specifically, Step 3 was not necessary, because Spanish does not use two-byte characters.

Instead, the orthographic forms of each lexical item could simply be listed in the file.

As members of the European branch of Indo-European language family, overall

grammatical difference between Spanish and English is not as great as between English and

Japanese. This meant fewer changes in frame database than for Japanese. They mostly consisted

of: (a) the lack of nominalization of DRT-type verbs such as fly – flight, arrive – arrival, or depart

– departure; and (b) the lack of some of the vehicle-specific verbs, such as John bicycled to Rome.

The Spanish counterpart of (b) is a verb corresponding to go, travel, and so on, plus instrumental

PP, “en (‘by’) vehicle,” a construction that is quite common in English as well. This necessitated

an additional role for the verb in this construction and changing the inheritance properties of

frames. Difference (a) above necessitated Step 2, suppressing the roles corresponding to

nominalizations that have no appropriate counterpart in Spanish.

Once the initial modifications were made, which consisted primarily of changing the

vocabulary, a native speaker was consulted as to the appropriateness of the Spanish words and

 31

some basic sentence constructions. Afterwards, necessary changes were made as the grammatical

generation rules became developed, in consultation with the native speaker.

Modifications to Grammatical Generation Rules
Because of the grammatical differences, the rules used to generate the finished text for

the Spanish version of ModelCreator had to be modified somewhat from those used for English.

Word order. The dominant word-order pattern is SVO, as in English. However, English

and Spanish word order does not correspond in all respects. Most notably, Spanish differs in that

adjectives typically follow the nouns that they modify, whereas in English, adjectives precede

the noun. In fact, matters are not entirely so simple, since certain adjectives in Spanish precede

the noun (typically those which describe inherent qualities of an entity).

For this and other minor word order differences between English and Spanish,

accommodation had to be made within the generation rules.

Inflection. The biggest grammatical difference between English and Spanish for the

purposes of natural language generation is the area of verbal and nominal inflection. Nouns in

Spanish have inherent gender (masculine or feminine), which must be kept track of in the course

of generating a sentence. Adjectives agree in gender and number with the nouns that they

modify, and verbs agree in gender and number with the subject noun.

The necessity of associating each noun with its gender is addressed by means of the

Spanish dictionary described above. Whereas in the English version of ModelCreator, the

dictionary was only used for person names, Spanish ModelCreator makes more extensive use of

lexical resources because of the more complex inflectional information used for each word.

Miscellaneous differences. Finally, there are a number of minor details in wording

between Spanish and English that needed to be addressed in the transition. For example, the

phrasing of time expressions is somewhat different in Spanish: three o’clock translates as las

3:00, using a definite article. Ultimately, an exhaustive review of the content generated by the

system is the only way to be sure that no aspect of grammar has been overlooked in the

transition.

Interface Modifications
In regard to the interface as well, adding Spanish required fewer changes than adding

Japanese. Spanish and English both use the Latin alphabet, and although Spanish does have some

 32

accented characters not used for English, these do not require a change in the codepage used to

represent text. Therefore, there was no analogue to the difficulty encountered with Japanese, in

response to which Unicode support was added.

In fact, the only changes we needed to make to the interface in adding Spanish support

fall into the category of default parameters, as discussed above for the Japanese integration. A

few of the default generation options offered for English had to be changed for the Spanish

version due to cultural or linguistic differences. For example, the choice of units for distance was

changed from miles to kilometers (as in Japanese), and the voice used in generation was changed

from passive to active. (Unlike in Japanese, however, the Spanish version does allow the

generation of passive-voice items).

Ensuring the Quality and Validity of Multilingual Generation

In implementing any automatic item creation system, it is essential to have some way of

ensuring the quality of the items produced. This in turn requires attention to the use of the

system, especially whether it is being used to produce items for a specific language or whether

the system is being used to produce items simultaneously in various languages. The first use is

not different from item modeling. In this case, the goal is for all items produced by an item

model to be not only acceptable in terms of content and psychometric characteristics but also to

function equivalently as part of some assessment (see e.g., Bejar et al., 2002). That is, we need to

be sure that the language produced for each item is appropriate and that the validity of the

measurement construct is not compromised in any of the item instances produced. When the

system is used to produce items in a single language other than English, a similar process would

be required.

However, the use of the system to produce items simultaneously in various languages

requires a far more extensive process. Typical applications of multilingual test development such

as international surveys of adult literacy (e.g., Murray, Kirsh, & Jenkins, 1998) or international

surveys of educational achievement (e.g., Porter & Gamoran, 2002) aim to develop assessments

that yield scores with an equivalent interpretation regardless of the language in which they are

administered. This introduces constraints on our items in addition to the requirement of validity

for the target language group. Since we are producing items in multiple languages from

essentially the same logical representations, potentially with the aim of producing the same items

on different language forms of an assessment, we must in addition ensure that the linguistic

 33

expression of an item does not vary too widely or inappropriately across languages. Otherwise,

the item’s difficulty could vary across languages in ways unrelated to the construct.

At present, we address this issue by having a broad sample of the program’s output

examined by native speakers of the target languages (Japanese or Spanish) and by monitoring the

grammatical expressions used for each construction, in order to ensure that they do not differ

from the English version of each construction in grammatical complexity. Of course, more

thorough evaluation of the validity of our items is possible. We could, for instance, study the

cognitive processing of students from different language groups who are presented with

automatically generated parallel items from different languages. At present, we have no plans to

pursue this, but the option may become more attractive once ModelCreator begins to be

implemented for practical item creation tasks.

Ultimately, the proper balance between the ideal expression of an item in a single

language and the fulfillment of cross-linguistic constraints on item difficulty will depend on the

type of assessment under construction. ModelCreator should facilitate the process but in no way

solves the significant challenges of test adaptation. However, to the extent that test adaptation

principles are captured in the item models and the linguistic constraints within ModelCreator, it

should be an asset over time for the design of assessments in several languages.

Conclusion

The ModelCreator item generation system is a flexible, easily extensible program, which

currently can create quantitative comparison math problems in English, Spanish, and Japanese.

The multilingual adaptation of the system has been considerably aided by the general

architecture of the program, in which generation is broken down into an initial step of creating a

logical representation of the item, followed by a language-specific generation step in which this

logic is fleshed out.

The system is still under development, and the range of item types covered in all three

languages is slated to expand. In future work, we hope to add additional languages to

ModelCreator’s repertoire and to simplify the task of adding content types to the system. Finally,

the challenge of evaluation lies just over the horizon for ModelCreator. Once the system begins

to be applied to actual item creation tasks, we will be better able to assess to what extent it serves

as an aid to test developers and how successful it is in generating usable items.

 34

References

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet Project. In

Proceedings of the 17th International Conference on Computational Linguistics: Vol 1

(pp. 86-90.). Morristown, NJ: Association for Computational Linguistics.

Bejar, I. I., Fairon, C., & Williamson, D. M. (2002). Multilingual item modeling as a mechanism

for test adaptation: Applications to open ended and discrete items. In D. Bartram (Chair),

Item & test generation. Symposium conducted at the International Conference on

Computer-Based Testing and the Internet: Building Guidelines for Best Practice (ITC

Conference 2002), Winchester, England.

Bejar, I. I., Lawless, R., Morley, M., Wagner, M., Bennett, R., & Revuelta, J. (2002). A

feasibility study of on-the-fly item generation in adaptive testing (ETS RR-02-23).

Princeton, NJ: ETS.

Bennett, R. E. (in press). Automatic item generation: An overview. Princeton, NJ: ETS.

Chierchia, G. (1984). Anaphoric properties of infinitives and gerunds. In M. Cobler, S.

MacKaye, & M. Wescoat (Eds.), Proceedings of the Third West Coast Conference on

Formal Linguistics (pp. 28–39). Stanford, CA: Stanford Linguistics Association.

Chomsky, N. (1981). Lectures on government and binding. Dordrecht, the Netherlands: Foris.

Comrie, B. (1987). The world’s major languages. New York: Oxford University Press.

Deane, P., & Sheehan, K. (2003). Automatic item generation via frame semantics: Natural

language generation of math word problems. Retrieved February 14, 2005, from the ETS

Web site: http://www.ets.org/research/dload/ncme03-deane.pdf

Fairon, C., & Williamson, D. (2002). Automatic item text generation in educational assessment.

In Proceedings of TALN 2002 (pp. 395–401).

Fillmore, C. J. (1968). The case for case. In E. Bach and R. T. Harms (Eds.), Universals in

linguistic theory (pp. 1–88). New York: Holt, Rinehart and Winston.

Fillmore, C. J. (1985). Frames and the semantics of understanding. Quaderni di Semantica, 6(2),

222–254.

Fillmore, C. K., & Baker, C. F. (2001, June). Frame semantics for text understanding. In

Proceedings of the WordNet and Other Lexical Resources Workshop, Pittsburgh, PA.

 35

Greenberg, J. H. (1966). Some universals of grammar with particular reference to the order of

meaningful elements. In J. H. Greenberg (Ed.) Universals of language (pp.73–113).

Cambridge, MA: MIT Press.

Hambleton, R. K., & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be

avoided and guidelines for improving test adaptation practices. Journal of Applied

Testing Technology, 1, 1–12.

Hambleton, R. K., & Kanjee, A. (1995). Increasing the validity of cross-cultural assessments:

Use of improved methods for test adaptations. European Journal of Psychological

Assessment, 11, 147–157.

Irvine, S. H., & Kyllonen, P. (Eds.). (2002). Item generation for test development. Mahwah, NJ:

Lawrence Earlbaum Associates, Inc.

LaDuca, A., Staples, W. I., Templeton, B., & Holzman, G. B. (1986). Item modeling procedure

for constructing content-equivalent multiple-choice questions. Medical Education, 20(1),

53–56.

Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., & Asahara, M. (1999).

Japanese morphological analysis system ChaSen version 2.0 manual (2nd ed.; Technical

Rep. No. NAIST-IS-TR99009)., Kansai Science City, Japan: Nara Institute of Science

and Technology.

McCawley, J. (1998). The syntactic phenomena of English (2nd ed.). Chicago: University of

Chicago Press.

Murray, T. S., Kirsh, I. S., & Jenkins, L. B. (1998). Adult literacy in OECD countries: Technical

report on the First International Adult Literacy Survey (NCES 98-053). Washington DC:

U.S. Department of Education. National Center for Education Statistics.

Porter, A. C., & Gamoran, A. (Eds.). (2002). Methodological advances in cross-national surveys

of educational achievement. Washington, DC: National Academy Press.

Rosenbaum, P. S. (1967). The grammar of English predicate complement constructions. MIT

Press, Cambridge, MA.

Singley, M. K., & Bennett, R. E. (2002). Item generation and beyond: Applications of schema

theory to mathematics assessment. In S. Irvine & P. Kyllonen (Eds.), Item generation for

test development. Mahwah, NJ: Lawrence Erlbaum Associates.

 36

Sireci, S. G., & Berberoğlu, G. (2000). Using bilingual respondents to evaluate translated-

adapted items. Applied Measurement in Education, 13(3), 229–248.

Stansfield, C. W. (2003). Test translation and adaptation in public education in the USA.

Language Testing, 20(2), 189–207.

 37

Notes

1 The pronunciation of the Kanji employed in Japan is not quite this straightforward. The system

represented in (2a) works mostly for On-yomi, a pronunciation of a Kanji that came into

Japanese when a word was borrowed from Chinese and then modified to fit the Japanese

phonological/phonetic system. There may be more than one On-yomi associated with one

Kanji, due to various reasons (different loan words from different dialects of Chinese; different

loan words at different time periods; different loan words in different parts of Japan, etc.).

There is another kind of pronunciation of Kanji, called Kun-yomi. This came about when a

borrowed Kanji was matched with existing Japanese words based on (sometimes rough)

meaning correspondence. There may be may be more than one Kun-yomi associated with one

Kanji. Combined, some Kanji have three or more pronunciations associated with them.
2 The exact details of when –wa marks subjects as opposed to –ga are focus of much debate and

are also beyond the scope of this report.
3 The following is the Web site for ChaSen: http://chasen.aist-nara.ac.jp/hiki/ChaSen/
4 Kakasi was obtained from: http://kakasi.namazu.org/
5 Japanese does have some nouns corresponding to this type of event, such as hikou (“flight”) or

koukai (“sea voyage”); there are also English loan words such as drive or cycling. However,

their meaning is often more specialized; for example, cycling is not for general bicycling

activity but refers to more sports- or leisure-oriented type of bicycling.
6 Given that this new mechanism for case marking had to be introduced for Japanese, one might

question how language-independent the underlying linguistic generation system truly is. We

concede that there are attested linguistic phenomena that the current system is not set up to

handle (say, a Russian-style case marking system in which the case suffix of a noun may

depend on whether it refers to an animate entity). However, the range of constructions that the

current generation system can implement with relatively little language-specific adaptation is

sufficiently large that it constitutes a great benefit in doing multilingual item generation.

Moreover, as we increase the set of languages in ModelCreator’s repertoire, so also will its

coverage of linguistic phenomena increase.

 38

	Overview
	Test Adaptation and Item Generation
	The Problem Domain: Generation of Math Word Problems
	Template-Driven Generation vs. Natural Language Processing
	The ModelCreator Approach

	The Strategy for Multilingual Generalization
	Modifications for Japanese
	Japanese Grammatical Structure
	Modifications to ModelCreator’s Lexical Resources
	\(??\(??? ??\)\)\(\(????\(???3206\)\)�
	Modifications to ModelCreator’s Grammatical Gener
	Interface Modifications
	Summary

	Modifications for Spanish
	General Grammatical Structure
	Modifications to Lexical Resources
	Modifications to Grammatical Generation Rules
	Interface Modifications

	Ensuring the Quality and Validity of Multilingual Generation
	Conclusion
	References
	Notes

