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Abstract  

In survey research, sometimes the formation of groupings, or aggregations of cases on which to 

make an inference, are of importance. Of particular interest are the situations where the cases 

aggregated carry useful information that has been transferred from a sample employed in a 

previous study. For example, a school to be included in the sample of the High School 

Effectiveness (HSES) study must contain one or more cases transferred from the National 

Educational Longitudinal Study of 1988 (NELS:88). To calculate the aggregation inclusion 

probabilities, this study investigated three statistical models and, based on these models, 

derived the school weights for the HSES study. This study also assessed the effects of 

weighting by comparing the statistics yielded from different sets of weights: (a) those from an 

empirical population database and (b) those from data generated from simulation based on the 

principles of a superpopulation. Both categorical data and continuous variables were analyzed 

in the comparison.  

Key words: Aggregation probability, model-based weighting, goodness-of-weighting, the High 

School Effectiveness Study 
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1. Introduction 

For a typical sample design, design-based weights are generally developed as the inverse 

of the inclusion probability for sampled units. If nondesign-based adjustments, such as 

adjustments for nonresponse, are ignored, the weights will yield design consistent estimates, 

which are also known as π estimates (Horvitz &Thompson, 1952; Kish, 1990; Särndal, 

Swensson, & Wretman, 1992). Some surveys, however, define only the rules for including 

sample units, and the inclusion probabilities are not expressed explicitly. Accordingly, the unit 

weights have to be derived from statistical models instead of being directly imputed by the 

inverse of the inclusion probability. One such survey is the High School Effectiveness Study 

(HSES; Ingels et al., 1994), an independent part of the National Educational Longitudinal Study 

of 1988 (NELS:88; Ingels, Abraham, Karr, Spencer, & Frankel, 1990). To utilize the 

longitudinal information of NELS:88, the sample design of the 1990 HSES Study included high 

schools that had 10th grade classes and that had enrolled at least one student who had been 

selected in the NELS:88 study. The inclusion probability of an HSES school was not defined 

directly. Instead, it was determined by the transfer mechanism of the students who had been 

selected in NELS:88 and included in the school. By this mechanism, it is possible to build a 

statistical model to drive the inclusion probability of the school. In what follows, each  high 

school that contains a group of student cases is called an aggregation. In different contexts, such 

aggregations could also consist of hospitals, families, resident areas, cod, humpback whales, and 

so on (Bekkevold, Hansen, & Loeschcke, 2002; Palsbell et al., 1995).  

A recent example from the area of educational longitudinal surveys is the supplemental 

study of the Early Childhood Longitudinal Study Program-kindergarten cohort (ECLS-K). It was 

included in the design of the eighth grade sample for the 2007 National Assessment of 

Educational Progress (NAEP; Allen, Donoghue, & Schoeps, 2001). The ECLS-K is an ongoing 

study that focuses on children's early school experiences beginning with kindergarten and 

through middle school (Pollack, Najarian, Rock, Atkins-Burnett, & Hausken., 2006; Rock & 

Pollack, 2002). By design, the ECLS-K schools in the supplemental study were identified by 

whether a selected NAEP school contained at least one eighth grade student from ECLS-K.  

Several statistical models were developed to derive the formulas for the aggregation 

inclusion probability. The weighting procedure for the High School Effectiveness Study used three 

models. The Spencer-Foran (SF) weights in the sample were based on the hypergeometric 
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probability model (Spencer & Foran, 1991), the Qian-Frankel (QF) weights in the sample were 

derived based on the binomial probability model (Qian, 1995) , and the Kaufman (K) weights were 

estimated by the averaging of the student NELS:88 weights in a high (Frankel & Qian, 1995).  

The longitudinal nature of the HSES data provides researchers with a variety of 

information about family, school, community, and individual factors that are associated with 

school performance (Lee & Burkam, 2001; Lee, Burkam, Chow-Hoy, Smerdon, & Goverdt, 1998; 

Perkins, Kleiner, Roey, & Brown, 2004). These far-reaching results will be used to assess the 

progress of U.S. students in urban and suburban secondary schools in the 30 largest metropolitan 

statistical areas. But such analysis will yield adequate estimates only by employing weights 

appropriately provided from the HSES sample, and many users are unclear about how the 

weights are developed. This paper is intended to investigate the model-based weighting for the 

HSES school samples and to compare the weights derived from different models.  

After this introduction  to the surveys in this study and issues in weighting, section 2 

describes the HSES study and its sample design. Section 3 describes three statistical models for 

deriving the aggregation probabilities for the HSES sample. Section 4 assesses the effects of 

weighting by comparing the statistics yielded from different sets of weights with those (a) from 

an empirical population database and (b) from the samples generated from simulation based on 

the principles of a superpopulation. Section 5 summarizes the comparisons and offers some 

recommendations.  

2. The Sample Design of the High School Effectiveness Study 

The objective of HSES is to study the effectiveness of education at the school level 

across different categories, such as school type and ethnicity group, and to document U.S. 

students” ongoing progress. It is an independent longitudinal survey executed within the 

NELS:88 data collection. The HSES base year is 1990, when students were high school 

sophomores. The data in HSES covers the same sources as the data in NELS:88, including 

students, parents, teachers, and administrators (Ingels et al., 1994).  

To utilize existing longitudinal records from NELS:88, the study only sampled the high 

schools with 10th grade classes that had enrolled at least one student who had been selected in 

the NELS:88 study as an eighth grade student.. The sample design for this kind of survey is 

complicated because it involves the transition of sample units from one level of aggregation to 

another (Scott, Ingels, Sehra, Taylor, & Jergovic, 1996).  
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For the HSES base year (1990) sample, schools were selected through a two-phase 

sampling mechanism. In the first phase, there were 724 high schools with 10th grade classes in 

the 30 largest metropolitan statistical areas (MSAs) found to contain one or more students 

selected for NELS:88. This pool of schools was partitioned into eight strata: four types of 

schools (public, Catholic, NAIS, 1 and other private) at two levels of location (urban, suburban). 

In the second phase, a sample of 276 schools from this pool was drawn by stratified sampling 

(Cochran, 1977), resulting in a final baseline sample of 247 schools after the exclusion of 

illegible, unavailable, and nonparticipating schools.  

By design, the students in a selected HSES school can be classified by whether they were 

in the core sample of the NELS:88 study. Those students who were are called core cases. From 

each sampled HSES school, 10th-grade students were selected through two mechanisms: (a) a 

subsample of all core cases, and (b) an augmentation sample of additional students who did not 

participate in NELS:88. The target sample size within an HSES school was approximately 30 

students. The probability for inclusion of an aggregation in the first phase of HSES was 

determined by two factors: the selection of students in NELS:88 and the pattern of core cases that 

transitioned to  high school. The chance for an aggregation to enroll one or more core cases, P1 , 

is defined to be the aggregation probability (Spencer & Foran, 1991). Because the inclusion 

mechanism of schools did not obviously provide the aggregation probabilities, they have to be 

derived from statistical models. 

Consistent with the sample design, the inclusion probabilities of the students in the HSES 

sample were determined in three steps by computation of (a) the aggregation probabilities for the 

724 schools in the HSES school frame, (b) the conditional probabilities for the 247 schools 

selected from the HSES school frame, and (c) the conditional probabilities for students to be 

selected from each school. The product of these three components forms the inclusion 

probabilities of the students, but the main task of the weighting process is in deriving the 

aggregation probabilities for schools. This paper also focuses on comparing the weights derived 

from different models.  
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3. Three Probability Models for Weighting 

To derive aggregation probabilities, three probability models have been proposed to 

describe the sampling mechanism of schools for the HSES study. Based on these models, school 

weights can be generalized. This section also discusses some issues related to the weighting 

procedure and the applications of weights, such as the effects of missing data and the analysis of 

cross-sectional and longitudinal data.  

3.1 The Spencer-Foran Model 

The Spencer-Foran (SF) model (Spencer & Foran, 1991) is based on the probability 

model that employs the hypergeometric distribution. Schools with eighth grade classes in the 

sampling frame of NELS:88 are defined as primary sampling units (PSUs) and the student cases 

enrolled in those schools as secondary sampling units (SSUs). In HSES, high schools are the 

aggregations of interest. A PSU feeds an aggregation if at least one case from the PSU belongs to 

the aggregation.  

Let the SSUs in each PSU be partitioned into L strata. One such kind of partition variable 

is ethnicity because it affects the transition of SSUs from a school with eighth grade classes to a 

high school. Note that the partition of the student cases in the PSUs in NELS:88 is identical to 

the partition of the cases in the aggregations in HSES. Consider the PSUs to be selected with 

replacement, with selection probabilities proportional to a measure of size, and consider SSUs to 

be selected from stratum l in PSU  for 1≤ ≤j Uj by simple random sampling without replacement. 

Let be the size of stratum l within PSU  jlN j  and  be the sample size drawn from jln jlN  in 

NELS:88. Assume unless .   0>jln 0=jlN

Consider the transition of SSUs from PSUs in NELS:88 to aggregations in HSES. Let 

 be the number of the SSUs in stratum l in PSU|kl jlB j that transferred to stratum l in aggregation 

k. Then the total cases from the PSU .| . |1

L
k j kl jll

B B
=

= ∑ that transferred to the aggregation k are j . 

The total number of SSUs in aggregation k is .|.. .| .1=
= ∑U

k j k jB B , where U is the number of PSUs 

that feed aggregation k. Let , transferred from stratum l in PSU|kl jlb j to stratum l in aggregation, 

be the number of core cases in |kl jlB . Table 1 displays the transition of the cases from stratum l in 

PSU  in NELS:88 to an aggregation in HSES.  j
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Table 1 

Transition of the Cases From Stratum l in PSUj and in the National Educational  

Longitudinal Study of 1988 (NELS:88) to Stratum l in Aggregations in the  

High School Effectiveness Study (HSES)  

In aggregation k  
In NELS:88 

Yes No Total 

Yes  |kl jlb . | |l jl kl jln b−   . |l jln

No | |kl jl kl jlB b−  . | | . | |l jl kl jl l jl kl jlN B n b− − + . | . |l jl l jlN n−

Total  |kl jlB . | |l jl kl jlN B−  . |l jlN  

Note. To include the aggregation information, the symbols and jlN jln  are expressed  

as  and . . |l jlN . |l jln

Given that PSUj was selected, the probability model of the hypergeometric distribution 

can be employed in the computation of the conditional probability of . Then, the conditional 

probability that  can be calculated:  

|kl jlb

| 0kl jlb =

( )
( ) ( )

( )
|

|
| | |

! !
, if 0;

, , ! !

0, otherwise.

⎧ − −
− − ≥⎪

= = − −⎨
⎪
⎩

jl kl jl jl jl
jl kl jl jl

kl jl jl kl jl jl jl jl kl jl jl

N B N n
N B n

T H n B N N N B n

 (1) 

Given that PSUj was in NELS:88, the conditional probability that none of the core cases fed by 

PSUj in aggregation k is , and the conditional aggregation probability for 

enrolling at least one core case in aggregation k is  

.| . |1=
=∏L

k j kl jll
T T

.| .| .|.. 1
1 1

=
= − = −∏USF

k k j
P T Tk j  (2) 

.| . .| .1 π π= − +k j j j k jR T  By the SF model, the aggregation probability for k equals  Let 

1 1
1

=
= −∏USF

k jj
P .| .R , (3) 
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jπ jπwhere  is the probability that PSUj was selected in NELS:88. An approximation of  is the 

reciprocal of the school weight for PSUj (Kish, 1992). 

Based on { }|
SF

kP  in (2) and { }1
SFP  in (3), two sets of school weights can be computed 

separately. When the study is interested in analyzing the schools in the HSES sample, the 

weights based on { }|
SF

kP should be applied. When the study is interested in analyzing the pool of 

schools in NELS:88 and in HSES , the weights based on { }1
SFP should be applied. The HSES 

data file only included the weights derived based on { }1
SFP .  

The SF model for data without partitioning information. In SF model-based weighting, 

one obstacle is the burden of collecting the information of the L strata in all of the U PSUs that feed 

the aggregations in HSES, such as , , jlN jln |kl jlB , and so on. Moreover, there are always missing 

data and coding errors in the data collected. For example, among 1,823 schools with eighth grade 

classes collected in the feeder data file, there are 61 schools missing MSA indices. To impute the 

selection probabilities in NELS:88 for these 61 schools, extra information for the sampling frame 

must be collected. Missing data imputation is a vital part of the HSES weighting process. To 

address this issue, Spencer and Foran (1991) proposed a simplified model that ignored the 

stratification of SSUs because nonstratified information, such as , , .jN .jn .| .k jB , are usually readily 

available. They also suggested some methods to impute the missing data.  

The effects of missing data on the SF model. The missing data, including undercounts 

of the feeder school data or undercounts of the students, will trim the estimates of the 

aggregation probabilities derived from the SF model. This situation implies that the weight, 

approximated by the reciprocal of the inclusion probability, will be inflated. Let be the 

number of feeder PSUs with information in the data file and  be the actual number of feeder 

PSUs. Assume . So  

'U

U
'U < U

'
'

1 .|1. .|2. .| . 1 .|1. .|2. .| .
1 1= − ⋅⋅⋅ > = − ⋅⋅⋅SF SF

k k k U k k k U
P R R R P R R R . 

This shows that the estimates derived from the SF model will be smaller than it should 

be when there are data missing from the feeder data file. The small probabilities will produce 

extremely large weights. Accordingly, the design effects of weighting will be large because of 

the large variations among weights.  
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' .| ..| 1.
γ

+
= ⋅⋅⋅ k Uk U

R RLet . Thus  

'

' '

'
.|1. .|2. .| .1

1 .|1. .|2. .| ..| . .| 1.

1 1
1 γ

+

⋅⋅ ⋅−
= =

− ⋅⋅⋅ ⋅ ⋅ ⋅

SF
k k k U

SF
k k k Uk U k U

R R RP
P R R R R R

, 

and the relationship between  and  can be expressed as . 1
SFP '

1
SFP '

1 11 -γ γ= +SF SFP P

3.2 The Qian-Frankel Model 

The basis for the QF model is the probability model of the binomial distribution. As an 

alternative approach, the QF model attempts to preserve the design-based properties of the SF 

model, while eliminating the burden of obtaining the feeder pattern information required by the 

SF model.  

Given the basic sample design, assume that students in each aggregation possess similar 

characteristics related to the NELS:88 sample design, such as school type, area region, 

location, and so on. Therefore, the model assumes that the students in the same aggregation 

have about the same chance to be included in NELS:88. Note that this is different from the 

assumption that students have the same chance to move to an aggregation. 

kM be the size of aggregation k. Let Let PS  be a school selected in NELS:88 andU j

{ }PSU= ∈k kS P i j  be the chance of case i, in aggregation k, to be included in NELS:88. It is 

reasonable to assume that two events, a student transitioning to a high school and a student being 

selected in the NELS:88 sample, are independent. Let kξ  be the variate of having core cases in 

aggregation k. Assuming that the chance for students in aggregation k to be included in the 

NELS:88 study is homogeneous, kM forms a binomial distribution with index kξ  and 

probability :  kS

( ) ( )1ξ −⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
kM tk t

k k

M
P t S S

t k

. (4) 

The probability that aggregation k contains no core cases equals 

( ) ( )0 1ξ= = = − kM
k k kQ P S . (5) 

and the probability that aggregation k enrolls at least one core case is  
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( )0 1ξ= > = −QF
k kP P Qk

,P

. (6) 

Since HSES is a continual study of NELS:88, in (6) is regarded as conditional aggregation 

probability.  

QF
kP

Consider estimation of . Let  be the number of core cases in the sample in 

aggregation k. Let  be the case weight of core case i in aggregation k and  be its inclusion 

probability. The case weights in NELS:88 are approximately equal to the reciprocal of the 

inclusion probability, . The inclusion probability of the core cases in aggregation k, 

, is estimated by a harmonic mean:  

kmkS

88
,i kW 88

,i kP

88 88
, 1/i k i kW =

kS

1

88
1 ,

1 1ˆ
−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝

∑
km

k
ik i k

S
m P ⎠ . (7) 

The estimate can also be expressed by the reciprocal of the average of the weights of the core 

cases: 

88
,1

ˆ

=

=
∑ k

k
k m

i ki

m CS
W , (8) 

where C is a constant used to normalize the summation of school weights. Accordingly, by (8), 

( )ˆ ˆ1= −
kM

k kQ S and . As a result, the estimated weight for aggregation k will be the 

reciprocal of . As pointed out before, the school weights derived from {

ˆˆ 1= −QF
kP kQ

}ˆ QF
kPˆQF

kP on the HSES 

sample are appropriate for analyzing school data in the HSES study.  

The QF model for data with partitioning information. The weighting can be improved 

by partitioning the students into H strata as was done in the SF model. Although certain student 

groups are sometimes oversampled, the students in the same group have about the same chance 

to be selected in NELS:88. The variables used for stratification could be feeder schools, 

ethnicity, a combination of them, and so on. Employing partitioning information in weighting 

will allow the model design to be fit appropriately. For example, oversampling students from 

certain ethnic groups will cause unequal probability of selection. But the homogeneity in the 

probability of selection usually remains on hold within ethnic groups. Let ,k hM  be the size of 
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stratum h in aggregation k. Let  be the chance of student i, belonging to stratum h in 

aggregation k, to be included in NELS:88, and 

,k hS

,ξk h  be the binomial variate of having core cases 

in stratum h in aggregation k. Thus,  

( ) ( ) ,

, , ,0 1ξ= = = − k hM
k h k h k hQ P S

. (9) 

and the conditional aggregation probability that the aggregation k contains at least one core case is  

( ). . 1
0 1ξ

=
= > = − ,∏HQF

k k h
P P Qk h

,

. (10) 

Let h be the index for the PSUs in NELS:88. By the QF model, the aggregation probability for k 

equals  

1 1
1 1 π π

=
⎡ ⎤= − − +⎣ ⎦∏HQF

h h k hh
P Q

, (11) 

where π h  is the probability that was selected in NELS:88.  PSUh

Consider the estimation of . Let  be the number of core cases in stratum h in 

aggregation k. Let  be the NELS:88 case weight of core case i in stratum h in aggregation 

k. Similar to ,  can be estimated by  

,k hQ ,k hm

88
, ,i k hW

,k hQkQ

,

,
, 88

, ,1

ˆ
=

=
∑ k h

k h
k h m

i k hi

m C
Q

W . (12) 

So the conditional aggregation probability in (10) and the aggregation probability  in 

(11) can be estimated. Thus, the cross-sectional and the longitudinal school weights for 

aggregation k equal the reciprocal of  and , respectively.  

.
QF

kP 1
QFP

1̂
QFP.

ˆQF
kP

The effects of missing data on the QF model. Differing from the SF model, the QF 

model is not sensitive to missing data because the aggregation probability derived from the QF 

model uses only the NELS:88 weights for all the core cases transferred into an aggregation. 

There are usually no missing data among the base year weights. Therefore, missing data are not 

an issue for the QF model. Although partition information is needed when applying the 

improved QF model, these data are easier to collect.  
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3.3 The Kaufman Model 

The K model, independently proposed by Kaufman and by Spencer, estimates school 

weights by the average of the student NELS:88 weights in a high school. As a means for 

reducing the cost of collecting a feeder pattern data, the following is an alternative estimator of 

the total population of X of interest,  

88
,

1 1

1ˆ       (  | ) ( )
= =

= ∈ ∈ ⋅∑ ∑
kMA

kki k
k ik

X W I J k K I ki ∈K XM .  (13) 

In (13),  is the weight for the student case selected in NELS:88; J represents the NELS:88 

student sample; K represents aggregations on the frame of the second phase of school selection; 

88
,i kW

kM  is the size of aggregation k that contains at least one core case, and  represents the student 

in aggregation k (
ki

)1≤ ≤k A (  ) 1∈ =I k K. In addition,  is defined as k in the HSES frame and as 

0 otherwise; and is defined as  in NELS:88 given k in the frame and as 0 

otherwise.  

ki(    |  ) 1∈ ∈ =kI J k Ki

kXGiven that aggregation k was on the frame, the weight for  is its coefficient 

1
,1

 −
=∑ km

k i
88

i kM W  , where is the number of core cases in aggregation k. Use the symbol in (7): 

. So the inclusion chance of the aggregation can be approximated by the 

reciprocal of its weight 

km

( 1
1 88

,1
ˆ km

k k i ki
S m W

−
−

=
= ∑ )

1
ˆˆ K k

k
k

MP S
m

=
. (14) 

1̂
KPThe estimated chance has an inverse relationship with the number of core cases transferred into 

the aggregation, which seems contrary to what is to be expected. The K weights yield unbiased 

estimates on average of all possible NELS:88 samples and all possible HSES samples.2 However, 

the estimates would not be unbiased for a specific NELS:88 sample that has been collected.  

10 



4. Comparison of the Weights Derived From Different Models 

All three sets of derived school weights were considered in comparison. To avoid the 

confounding effects of raking, the weights used in comparison were trimmed but not raked. The 

final weights on the HSES data file were all adjusted by the trimming3 and raking4 procedures.  

To compare the weights derived from different models, one can use goodness-of-

weighting, a measure of the closeness between the weighted sample distributions and the 

estimate of population distribution. For categorical variables, the 2χ statistic was used to test the 

agreement between the weighted sample distributions and population distributions and the F-test 

was used to test the results derived from two different sets of weights in comparison. For 

continuous variables, bias and mean square error (MSE) were used as the criteria.   

In comparison, the sample distributions were obtained by two mechanisms: (a) samples 

drawn from an empirical population database and (b) simulation-based samples from populations 

drawn from a superpopulation. For the data from mechanism (a), the weighting effects are 

examined by comparing the estimates for some characteristics from the sample with the true 

characteristics from the population. Due to finite population sampling, the variance formulae for 

survey data must include a finite population correction factor (fpc), either explicitly or implicitly. 

Moreover, because of complex sampling design, this study estimated the variances by using the 

delta method, which is based on a second degree Taylor series expansion (Cochran, 1977; Wolter, 

1985) and incorporates the fpc implicitly. Under the superpopulation model, the simulation adopts 

a stochastic viewpoint in comparisons and views each finite population as a random sample drawn 

with replacement from a hypothetical infinite population (Deming & Stephan, 1941). Each finite 

population is a reflection of the possible relationships among different variables observed, and the 

replicate samples may be used to simulate the relationships of interest.  

4.1 Comparison Based on Empirical Data  

The Quality Education Data’s (QED) database5 had served as the true population in the 

analysis. Note that the sampling frame of the schools for the HSES study was created based on 

the QED database. The QED file used contains 4,628 high schools in the largest 30 MSAs and a 

number of school-level characteristics for each school on its list. Some of the variables of the 

characteristics on the list were categorical while a few were continuous. For each variable of 
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interest, the corresponding values for the 247 schools in the sample were used in conjunction 

with the school weights to produce three separate weighted estimates. 
2χTable 2 displays the statistics for 12 categorical variables under three sets of weights. 

The comparisons of the different weights are shown by the results of the F-test with α level at 

0.25. The α level was set differently from regular tests because it was used to evaluate goodness-

of-weighting. In general, the SF and QF weighting models provided closer agreement between 

the weighted sample distributions and population distributions.  

Table 2 
2χThe Test for Some Variables in the Quality Education Data (QED) File 

df  SF weight K weight QF weight 

Teacher population code 5   94.86K,Q K1782.84 190.39

School type 2   60.23K,Q K2091.53 328.14

Grade level 7 131.26K,Q   524.87 298.03K

Instruction dollars per pupil 6 78.86K   277.17      32.25K,S

MSA     29      282.57        82.46S,Q S154.36

Location 1      161.87K K1452.05 284.81

Personnel gender 1      8.94K,Q 1631.49    85.54K

K K# of students code 8 89.03 1159.55 130.09
K,Q K# of teachers code 8   52.73 1003.85 148.09

State postal code     19      129.24   104.36    73.79K,S

Enrollment change (building) 6      118.70K   252.09 113.54K

Region 3 K62.57   515.37 127.00K

Note. The weights are trimmed & nonraked. To compare the goodness of fit of the distribution of a 

certain variable between two sets of weights, an F-test at α=.25 is used to test the significance of 

difference. The letters SF, K and QF stand for Spencer-Foran, Kaufman, and Qian-Frankel 

weights, respectively. When a letter appears as a superscript of a number, it means that the 

distribution under the weights of that column is fitted better than the distribution under the weights 

represented by the letter in the superscription. For example, in the first column for the SF weight 

on the table, 94.86K,Q shows that the distribution of teacher population code is fitted better under 

the SF weights than under the K or QF weights. MSA = metropolitan statistical areas. 
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For the four continuous variables that were available in the QED file, the results are 

summarized in Table 3. Let ˆ
τ

θW be the weighted estimate of a school characteristic under a 

weight vector τW and τ be the index for the three sets of the weights. The bias of ˆ
τ

θW  is defined 

as ( )ˆE
τ

θ θ− PW ( )2ˆE
τ

θ θ− PW, and the MSE of ˆ
τ

θW  is , where Pθ is the true school characteristic 

of the QED population. For a weighted mean estimate (b̂
τ

θW ), the estimate of its bias, , is 
τ

θW

( ) ( )2ˆV̂ b
τ

θ θ+W ( )V̂
τ

θWand the estimate of its MSE equals 
τ

θ θ− PW τW , where , the variance 

estimate, is calculated by the delta method. Table 3 shows the estimates applying the SF weights 

yielded the smallest bias for all four variables, while those applying the K weights produced the 

largest. Although the comparisons in Table 2 and on the top part of Table 3 were based on the 

weights that were trimmed but not raked, the bottom part of Table 3 also displays the results 

based on the weights that were nontrimmed and nonraked. Because the QF model is not sensitive 

to missing data, there were no extreme weights and the trimming procedure was not applied to 

the QF weights. Under the nontrimmed and nonraked weights, the results are similar to those 

under the trimmed and nonraked weights. Apparently, to draw certain conclusions, the 

comparisons needed more data, to be either collected by survey or obtained by simulation. 

4.2 Comparison Based on Simulation Approach  

To obtain certainty in comparison, Monte Carlo simulation was used to approximate the 

exact sampling distribution of weighted estimates by drawing a large number of samples from 

a fixed population for a specific design (Liu, 2001; Särndal et al., 1992). Based on the outcome 

of the repeated samples, the errors of the statistics of interest can be determined as a function 

of the number of trials and other quantities. In assessing the weighting effects, the Monte Carlo 

method needs to be set up differently from regular simulation. Because of substantial 

computation and lack of auxiliary data for weighting, it is unlikely to impute a separate set of 

weights for each replicate sample. Instead, the sampling design was preserved, weights were 

kept fixed, and replicate samples were drawn from finite population with the values of the 

variable of interest. From the realized samples from finite population, the variation of weighted 

estimates can be obtained. Note that the population in simulation could be treated as a sample 

drawn from superpopulation (Cochran, 1977).  
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Table 3 

The Bias and Root Mean Square Errors of Approximation (RMSA) of the Mean Estimates for 

Some Variables in the Quality Education Data (QED) File 

  SF weight K weight QF weight 

Population 
mean Variable Bias RMSA Bias RMSA Bias RMSA 

Trimmed & nonraked weights 

No. of White 
students  

944.26 -54.42 115.39 190.33 199.57 64.47 117.60 

No. of Black 
students 

273.94 -72.50 78.01 81.56 90.24 80.14 100.15 

No. of Hispanic 
students 

190.52 -63.07 66.64 103.65 108.27 86.17 93.88  

No. of teachers 51.59 1.82 4.85 29.51 29.69 13.51 14.56  

Nontrimmed & nonraked weights 

No. of White 
students  

944.26 -64.04  120.93 209.26 219.80  64.47  117.60 

No. of Black 
students 

273.94 -73.70  79.07  80.95  89.51  80.14  100.15 

No. of Hispanic 
students 

190.52 -65.01  68.51  98.01  102.85  86.17  93.88  

No. of teachers 51.59 -4.40  7.74  28.39  28.61  13.51  14.56  

Note. The calculations for each statistic are based on those cases with nonmissing and nonzero 

values. To include the impact of the complex sample design and weighting, the standard errors of 

the weighted means are calculated by the delta method. The results for the average student 

counts in school are dropped because, according to the QED database that was used, the 

population mean of the average student counts is smaller than the population mean of the White 

student counts in school. SF = Spencer-Foran, K = Kaufman, QF = Qian-Frankel. 
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Let N be the size of finite population and n be the sample size. Let  be the variable of 

interest and 

kY

kX  be the known auxiliary value for 1≤ ≤k N . Let the population values of { }ky be 

a realization of { }kY ky and  form a general linear model  

ε= +k ky X k ,  (15) 

where and ( )E 0ε =k ( ) 2V ε σ=k k . The auxiliary values of { }kX are based on four continuous 

variables on the QED file. In particular, assume ( 20, )ε σ∼
iid

k N k  and, to set the coefficient of 

variation (cv) as a constant, σ =k cX k . A simulation probed the robustness of weighting by 

setting cv at values of 0.2 and 0.8 separately.  

In assessing the weighting effects for a given sample design, consider the criteria of 

unbiasedness and MSE. Let ρθ  be the mean of the school characteristic of interest, which was 

calculated from { }kX . Its weighted estimate, 

,1

,1

τ

τ

τ

θ =

=

= ∑
∑

n
k kk

n
kk

w y

w
W

,  (16) 

was calculated from { }ky  in (15) under τW  with index τ for weight sets. The symbol ,τ
θ aW  was 

the estimate in ath repetition under τW . Define 1
, 1τ

θ −
⋅ =
= ,τ

θ∑ A
aa

AW W , where A is the total number 

of repetitions and A = 1,000 in simulation. Given sample design and weights, the bias estimate of 

( ) ( ) ( )2 21
, , ,1

1 A
aa

A
τ τ τ ρθ θ θ θ−

⋅ ⋅=
− − +∑ W W Wτ

θW  was ,τ ρθ θ⋅ −W  , and the MSE estimate of 
τ

θW  was − .  

The results of the simulation approach are summarized in Table 4. Although the 

estimates under the SF weights still yielded the smallest bias for all four variables, as was the 

cases with the empirical approach, they are much closer here to those under the QF weights. 

The bias of the estimates applying the K weights was still largest. When the cv in the 

simulation changed from 0.2 to 0.8, the bias estimates under any of the three sets of weights 

had only very minor changes. This implied that the bias estimates were robust under different 

weighting procedures. As shown in the simulation results in Table 4, the MSEs for the 

estimates under the SF weights were slightly smaller than those under the QF weights.  
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Table 4 

The Bias and Root Mean Square Error of Approximation (RMSA) of the Mean Estimates in 

Simulation  

  SF weight K weight QF weight 

Population 
mean Bias RMSA Bias RMSA Bias RMSA Variable 

Coefficient of variation (cv) = 0.2 in models 

No. of White 
students  

944.26 -56.12  74.12  189.48  192.27  63.18  82.53  

No. of Black 
students 

273.94 -72.92  73.26  81.36  82.29  79.77  80.90  

No. of Hispanic 
students 

190.52 -63.14  63.22  103.67  103.99  86.15  87.07  

No. of teachers   51.59     1.80    2.94    29.49  29.04  13.45  13.75  

Coefficient of variation (cv) = 0.8 in models 

No. of White 
students  

944.26 -59.36  207.80  186.25  229.70  61.23  223.20  

No. of Black 
students 

273.94 -72.34  77.96  82.45  96.56  81.39  102.80  

No. of Hispanic 
students 

190.52 -63.20  64.73  103.19  108.48  85.73  100.55  

No. of teachers 51.59     1.62  9.75  29.16  30.00  13.03  17.27  

Note. Repetition = 1,000. To include the impact of the complex sample design and weighting, an 

adjustment has been made to the standard errors of the weighted means by multiplying the 

standard errors by DEFT (Kish, 1965). DEFT were calculated by the delta method from QED 

data set. The average student counts in school are not included in the simulation because, 

according to the QED database that was used, the population mean of the average student counts 

is smaller than the population mean of the White student counts in school. SF = Spencer-Foran, 

K = Kaufman, QF = Qian-Frankel. 
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5. Conclusions 

In general, the comparison of the effects of different weighting schemes could be 

summarized based on five factors: 

1.   Consistency between the weighting probability model and the sample design  

2.   Consistency between the weighting conventions and the estimation of aggregation 

probability or conditional aggregation probability  

3.   Bias in estimation (for continuous variables)  

4.   Goodness-of-fit (for categorical variables)  

5.   Cost in data collection for weighting  

Table 5 summarizes the results of the comparisons. For Factor 2, both the SF and QF 

models that yield the aggregation inclusion probabilities are consistent with the sample design. 

For Factor 2, the school probabilities derived either from the SF model or from the QF model 

are consistent with the weighting conventions. In general, the relationship between the 

aggregation probability and the number of the core cases in the aggregation is not simply a 

linear one or an inverse one. For each set of weights, based on the analysis in section 4, Table 5 

lists the characteristics for Factors 3, 4, and 5.  

Table 5 

Summary of the Comparisons 

 Three types of weights 

Property  SF weight  K weight QF weight 

a Good N/A Good 

b Good N/A Good 

c Small Largest Middle  

d Good Medium Good 

e High Low Low 

Note. SF = Spencer-Foran, K = Kaufman, QF = Qian-Frankel. 

17 



The results from the comparison offer some tips to model-based weighting and to 

application of the weights. In deriving the weights for surveys like HSES that involve the 

transition of sample units from one level of aggregation to another, the QF model is preferred 

because the cost to collect information for weighting is low, the computation is not so 

complicated, and less missing data need to be imputed. Particularly, when needed partitioning 

information is available, the QF model gains additional accuracy in weighting without the 

burden of having to collect as much extra data as for the SF model.   

In estimation, the two sets of weights, derived either from the QF model or from the SF 

model, function approximately the same. The simulation results show that the SF weights are 

as effective as the QF weights for the cross-sectional analysis of the schools in HSES. In 

theory, the set of the SF weights on the HSES file is more suitable for analyzing the pool of the 

schools in NELS:88 and in HSES. As a rule of thumb, if a set of weights is predetermined, it 

should be used through the whole analysis. In addition to educational data, the model-based 

weighting has the potential to extend its application to other fields, such as health care, 

agriculture, zoology, and ecology.  
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Notes 
1 Independent private schools are members of the National Association of Independent Schools 

(NAIS). 

2 X̂The unbiasedness of is verified in the appendix. 

3 The trimming process truncates extreme weights caused by unequal probability sampling or by 

poststratification adjustment. It reduces variation caused by extremely large weights but 

introduces some bias in estimates. The process usually employs the criterion of minimum 

mean squared error (Potter, 1990). 

4 Raking refers to the procedure that uses the Deming-Stephan algorithm to adjust weights in the 

sample to make the weighted marginal distributions of the sample agree with the marginal 

distributions of the population on specified demographic variables (Deming & Stephan, 1940; 

Haberman, 1979). The final weights on the data file were all adjusted by the raking process, 

matching weights with the marginal distributions specified by six variables obtained from the 

Quality Education Data’s (QED) database. 

5 The National Education Database was constructed and is maintained by Quality Education Data 

(QED). The database covers U.S. and Canadian educational institutions and includes 

childcare centers, elementary schools, middle/junior high schools, senior high schools, 

colleges, libraries, school personnel, and district personnel. It provides the national list of 

school districts and schools and demographic information and is updated regularly. The QED 

database has been used as the sampling frame for many educational surveys. 
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Appendix 

The Verification of Unbiasedness of the Kaufman Weights 

The estimator of the population total of X based on the K weights is  

88
,

1 1

1ˆ       (  | ) ( )
= =

= ∈ ∈ ⋅∑ ∑
kMA

kki k
k ik

X W I J k K I ki ∈K XM
, 

where 

( )
1 ,      if  k is in SES frame,

 
0 ,     otherwise;

⎧
∈ = ⎨

⎩
I k K  

and  

( )
 1 ,      if  is selected in NELS:88 given  in SES,

|  
 0 ,      otherwise.

⎧
∈ ∈ = ⎨

⎩
k

k

i k
I i J k K  

In the estimate,  is the weight for the student case selected in NELS:88, which approximately 

equals the reciprocal of the inclusion probability; J represents the NELS:88 student sample; K 

represents aggregations with size 

88
,i kW

kM  in the frame of the second phase of school selection that 

contain at least one core case; and  represents the student in aggregation k. The estimate will 

be unbiased about the expectation of the random of the NELS:88 sampling and HSES sampling. 

The expectation of  equals  
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Because, in the first stage of the HSES study, all the HSES schools are listed that contain at least 

one core case, . Hence,   ( | )kP k K Ji∈ ∈ = 1

( )  ( ( | )
( )  ( )

)∈ ∧ ∈ ∈
∈ ∈ = =
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k k

k
P J k K P Ji iP J k Ki P k K P k K

. 

23 



Therefore,  
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