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Abstract
This study addressed 2 issues of using loglinear models for smoothing univariate test score
distributions and for enhancing the stability of equipercentile equating functions. One issue was a
comparative assessment of several statistical strategies that have been proposed for selecting 1
from several competing model parameterizations. Another issue was an evaluation of the
influence of the selection strategies on equating function accuracy. These issues were considered
in a simulation study, where the accuracies of 17 selection strategies for loglinear models and
their effects on equating function accuracies were assessed across a range of sample sizes, test
score distributions, and population equating functions. The results differentiate the selection
strategies in terms of their accuracies in selecting correct model parameterizations and define the

situations where their use has the most important implications for equating function accuracy.
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Introduction

The loglinear modeling used to smooth test score distributions (Holland & Thayer, 1987,
Kolen, 1991; Livingston, 1993; Skaggs, 2004) is a psychometric procedure that is both flexible
and complex. There are many possible parameterizations for loglinear models, ranging from
simple models with few parameters to complex models with many parameters. There are also
many ways to select models’ parameterizations, including extensive analyses and comparative
evaluations (e.g., Holland & Thayer, 2000; von Davier, Holland, & Thayer, 2004), and
programmable selection strategies that are data driven (Agresti, 2002; Bishop, Feinburg, &
Holland, 1975; Haberman, 1974a) and even sample-size driven. Although research has evaluated
the use of smoothing in equating, not much is known about how selection strategies for loglinear
models affect test equating results. The purpose of this study was to compare several selection
strategies for loglinear models in terms of their accuracies and to evaluate the influence of

selection strategies on test equating accuracy.

Univariate Loglinear Smoothing Models

The loglinear models considered in this study are those used to produce smooth versions
of the frequency distribution for one test, X, with possible scores xi,...,X;, or X, with j = 1,...,J.
The transposed row vector of observed score frequencies, n = (ny,...,n;)", sums to the total sample
size, N. The loglinear model expresses the log of the expected (not actual) score probabilities in
terms of a polynomial function of the test scores,

| .
loge(pj):ﬂo+i§1ﬁix'j , (1)

where the xij are score functions of the possible score values of test X (e.g., xlj , sz, x:;’ x} ),

B, is a normalizing constant that forces the sum of the expected probabilities ( p;) to equal 1,

and the g are parameters to be estimated in the model-fitting process. The value of | determines

the extent of smoothing and, when maximum likelihood estimation is used, the number of
moments of the actual test score distribution that are preserved in the smoothed distribution. If |
= 1, then the smoothed distribution preserves only the first moment (the mean) of the observed

distribution. If I = 4, then the smoothed distribution preserves the first, second, third, and fourth



moments (mean, variance, skewness, and kurtosis) of the observed distribution. The value of |

also determines the extent to which the smoothed frequencies, m; = Np, , approximate the

observed frequencies, n;.

Model Selection Strategies

Selection strategies for selecting loglinear models like Equation 1 with different values of
I can be categorized into distinct classes. The major classes considered in this paper are strategies
based on significance tests of overall model fit statistics, on model fit relative to model
parameterization (i.e., parsimonious fit), and on sample size.

Significance testing class. Statistical significance tests based on the extent to which a
model’s smoothed frequencies fit the observed frequencies in the total distribution can be useful
in comparing and selecting loglinear smoothing models. Several asymptotically equivalent chi-
square goodness-of-fit statistics have been developed, based on the assumption that the
frequency data being modeled follow either a Poisson or a multinomial distribution (Bishop et
al., 1975; Fisher, 1922; Haberman, 1974a; Read & Cressie, 1988). Four chi-square statistics are

considered in the current study, including the likelihood ratio chi-square,

n.
GZ:ZZn.Iog —J, (2
=) T8I m.
J
the Pearson chi-square,
2
2 (nj'mjj
){P:Z—, (3)
i "

the Freeman-Tukey chi-square,

XIZZT =%(ﬂ+\/nj +1-\/4mj +1j2, (4)

and the Cressie-Read chi-square,




CR=18%n, Al (5)

For a set of nested models that can be arranged in a sequence of simple to complex
parameterizations (e.g., nine models from Equation 1, where models’ | = 2, 3, 4,....,10), the
significance testing of models’ chi-square statistics could proceed in two directions. The testing
could begin with the most complex models and make comparisons with simpler models
(complex-to-simple strategy) or could begin with the simplest models and make comparisons
with more complex models (simple-to-complex strategy).

The general complex-to-simple strategy was described in Haberman (1974b) and applied
to test score distribution problems by Hanson (1990, 1996; Hanson & Feinstein, 1995). This
strategy evaluates the improvement in fit of a complex model relative to a model that is one term
simpler based on a chi-square significance test of the difference in the models’ chi-square
statistics and degrees of freedom. A nonsignificant chi-square test indicates that the term in the
complex model and not in simpler model is fitting sampling noise (i.e., there is support for the
null hypothesis that the simpler model's | is correct). A significant chi-square test indicates that
the term in the complex model and not in the simpler model is in the population model so that all
models with parameterizations less than the complex model are simultaneously rejected (i.e.,
there is support for the alternative hypothesis that the complex model's I is correct). While there
is no theoretical basis for selecting among the remaining model parameterizations, Hanson
recommended selecting the final model with the smallest of the remaining I’s.

For choosing among possible | = 2 through 10 with a simple-to-complex strategy, the
selection process begins by testing the improvement in model fit of the 3-parameter model
relative to the 2-parameter model, based on the difference in the models’ chi-square statistics and
degrees of freedom. If the fit of the 3-parameter model is significantly better than that of the 2-
parameter model, the 3-parameter model is selected. Then, the improvement in fit of the 4-
parameter model relative to the three-parameter model is tested. If the fit of the 3-parameter
model is not significantly better than that of the 2-parameter model, the 2-parameter model is
selected. Then, the improvement in fit of the 4-parameter model relative to the 2-parameter
model is tested. The improvements of fit for the 5- through 10-parameter models are similarly



considered. If none of the models has significantly better fits than the 2-parameter model, then
the 2-parameter model is selected. The simple-to-complex strategy considered here uses a Type |
error level of 1-(1- o)) /#*Mo%1) for each significance test.

A third significance testing strategy considered in this study tests the overall fit of each
individual model relative to the models’ degrees of freedom. The selected model from this
individual-models strategy is the simplest model (i.e., the model with the smallest 1) that has an
insignificant chi-square fit statistic. No adjustment is made for the overall Type I error level.

Parsimony class. The parsimony class of model selection strategies contains statistics that

evaluate a model’s G with respect to the parameterization needed to achieve that G Four
parsimony class statistics considered in this study are the Akaike information criterion (AIC;
Akaike, 1981),

AIC=G2+2(1 +1), (6)

the Bayesian information criterion (BIC; Schwartz, 1978),
BIC=GZ+Ioge(N)(I +1), )
the consistent Akaike information criterion (CAIC; Bozdogan, 1987),
CAIC:GZ+(1+Ioge(N))(I +1), )

and a statistic attributed to Goodman (Agresti, 2002),

2
J-1 -1_!{ ®)

The strategy of model selection based on the parsimony class is to select the model from a set of

Goodman =

competing models with the smallest statistic.
Sample size selection. Some statistical analysis teams at ETS base their model selections
on sample size rather than on the fit of the observed and smoothed distributions (e.g., Table 1).

An advantage of selecting models based on sample size relative to other strategies is increased



efficiency for the smoothing and equating work that must be completed under increasingly tight

time constraints.

Table 1
Sample Size Guidelines Commonly Used for Selecting the Parameterization of a Loglinear

Model for a Score Distribution

Sample size No. of moments to preserve (1)
Less than 40 2
40-199 3
200-299 4
300 or more 5

Studying Selection-Strategy Accuracy

One issue with the application of loglinear models and selection strategies to test
equating is that in the situations where loglinear models are relied on to smooth test score
distributions, sample sizes may be too small for the selection strategies to work (Fienburg, 1979;
Haberman, 1988; Koehler & Larntz, 1980). Test distribution and equating studies have
discouraged the use of selection strategies such as complex-to-simple likelihood ratio chi-square
tests in favor of fixed-model strategies because the chi-square tests have displayed accuracy
problems in small samples (Hanson, 1990, 1991). Another issue is that the accuracy of selection
strategies may not be as closely related to equating function accuracy as equating practitioners
might expect, because selection strategies evaluate model fit in terms of frequency distributions
rather than in terms of the cumulative frequency distributions that are used by equipercentile
equating methods. These issues are the basis of this study, in which the accuracies of the
reviewed selection strategies were compared in terms of the test score distributions and sample
sizes typically encountered in practice. The selection strategies also were evaluated with respect

to equating function accuracy.

Method
This simulation study evaluated the accuracy of different model selection strategies on
loglinear model parameterization accuracy and on equating function accuracy. Accuracy
statistics for the model selection methods were computed based on 200 replications of each of
the following combinations of distributions and sample sizes.



Eight Univariate Population Distributions

Three observed univariate test score distributions were used to create population
distributions of interest. The distributions are most clearly distinguished in terms of their
skewness, though they also differ in their other moments. The most skewed test distribution
(skew = -.72) was estimated from 13,185 examinees. Another distribution (skew = -.41) was
estimated from 8,746 examinees. The third distribution (skew = -.22) was estimated from 8,215
examinees. Loglinear models were selected for each of these distributions and used as the
population distributions in the study. For the skew = -.72 distribution, a loglinear model
preserving eight moments was selected. For the skew = -.41 and skew = -.22 distributions,
loglinear models preserving six moments were selected. A final, simulated, and approximately
normal distribution (skew = 0) was generated and modeled with a loglinear model that preserved
two moments. The observed and smoothed probabilities for the four distributions are plotted in
Figures 1-4, and the summary statistics are given in Table 2.

Four additional univariate distributions were also used to assess the accuracies of the
model selection strategies with respect to the complicated score distributions that arise from the
use of rounded formula scores (i.e., the test scoring practice that corrects for score inflation due
to guessing by subtracting a proportion of the total number of incorrect answers from the total
number of correct answers). The selected models of the two tests (Xp and Yg) and two external
anchors (Ap and Ag) were those used in the nonequivalent groups with anchor test (NEAT)
design example of von Davier et al. (2004), but for this study these models are used simply as
population univariate distributions (i.e., the bivariate aspects of von Davier et al.’s models are
not considered in this study). The characteristics of the modeled Xp, Ap, Ag, and Yq score
distributions are plotted in Figures 5-8 and described in Table 2. In particular, the abnormally
low frequencies that occur at every fifth score interval (i.e., the “teeth”) and the abnormally high
frequencies at the zero scores are structures that would not be modeled well by loglinear models

that preserve only the overall moments in the distribution.

Simulating Sample Distributions From the Population Distributions
Datasets of a desired sample size were created based on the population distributions using
the following procedure. First, cumulative probabilities were calculated from the score

probabilities of a population distribution. Then, a desired sample size of (0, 1) uniform random
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Figure 2. Skew = -.41 and six-parameter loglinear model.
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Figure 4. Skew = .00 and two-parameter loglinear model.

deviates was generated. The score with the largest cumulative probability that was less than the

uniform deviate was assigned to each uniform deviate. The resulting datasets resembled the



population distributions upon which they were based, but with a degree of random noise that
corresponded to the sample size.

Table 2

Eight Univariate Population Distributions

Skew

ltem 72 41 -22 00 Xp A Yo Ao
Score range 0-40 040 040 040 O0-78 0-35 0-78 0-35
Population moments 8 6 6 2 9?

Mean 30.04 28.09 25.18 20.00 39.25 17.05 32.69 14.39
SD 707 744 703 6.88 1723 833 16.73 8.21
Skew -0.72 -041 -0.22 0.00 -0.11 -0.01 024 0.26
Kurtosis -0.17 -063 -055 -0.19 -0.77 -0.85 -0.69 -0.75

% Four overall moments, four moments for the teeth distribution, and one lump at score zero.
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Figure 5. Xp score distribution from a nine-parameter loglinear model.

Sample sizes. Three sample sizes were considered: (a) 100, (b) 1,000, and (c) 5,000.

Parameterization selection for the individual replications. For each individual sample,
loglinear model parameterizations were selected based on 16 data-based selection strategies: the
simple-to-complex, complex-to-simple, and individual-models significance testing strategies
using each of the four overall chi-square statistics (3 x 4 = 12 strategies) and minimization

strategies for the four parsimony class statistics (= 4 strategies). These selections were made out

9



of nine possible parameterizations (I = 2-10). The individual-models significance testing strategy
used a Type | error criterion of .05. The simple-to-complex and complex-to-simple significance
testing strategies used a Type | error criterion of .00639 = 1 - (1 - .05)"8. The sample size

guidelines shown in Table 1 were also considered.
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0.03
pu=" EHng, .
0.02 - "
a ] ] " ]
= .. [ ] = "u,
-% .l - [ -l-.
Ke) [ ] ™
o s
pul ] ]
o m n " .l
0.01 + = s =
[ - -
=
" n =
= =
- = ..l
s
O T T T T T T T ......
0 10 20 30 40 50 60 70 80
Score

Figure 7. Yq score distribution from a nine-parameter loglinear model.
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Loglinear model estimation issues. To maximize convergence rates for model estimation,
the loglinear models were fit using orthogonal polynomials of the test scores (degrees = 2-10)
rather than the powers shown in Equation 1. All of the models for the sample sizes of 1,000 and
5,000 converged. A number of the models of degrees 9 or 10 did not converge for the sample
sizes of 100. For these cases, the model selection procedures used the reduced range of
converged models rather than the original range of 2-10 moments.

Traditional equipercentile and kernel equating or linking function evaluation. The
implications of the model selection strategies on X-to-Y equating accuracy were assessed. For
this assessment, pairs of the eight distributions were used to set up 14 equivalent groups equating
or linking situations (Table 3). In some of the considered scenarios, the X and Y distributions
were sampled from the same population distribution so that equating was not truly needed. In
other scenarios, test X was sampled from a different population distribution than test Y, so that
equipercentile equating was needed, the extent of which was based on how much the X and Y
population distributions differed.

For each of 200 total replications, loglinear models for the two distributions were selected
based on the model selection strategies. Then, equating was performed for the scores of the X

distribution to the scores of the Y distribution. Results were evaluated with respect to the

11



Table 3

The Distributions Used for the 14 Evaluated X-to-Y Equating/Linking Situations

X distribution

Y distribution

Equating/linking needed?

Skew = -.72 Skew = -.72 No
Skew =-.41 Skew = -.41 No
Skew = -.22 Skew = -.22 No
Skew =.00 Skew = .00 No
Xp Xp No
YQ YQ No
Skew = -.72 Skew =-.41 Some
Skew = -.41 Skew = -.22 Some
Skew = -.22 Skew =0 Some
Skew = -.72 Skew = -.22 Lots
Skew = -.41 Skew =0 Lots
Xp Ap Lots
YQ AQ Lots
Xp YQ Lots

equating functions computed in the population distributions. The traditional equipercentile

method based on percentile ranks (Kolen & Brennan, 2004) and the kernel method based on

cumulative density functions continuized by Gaussian kernel smoothing (as described in von
Davier et al., 2004) were both evaluated.

For example, one considered situation from Table 3 involved equating X to Y, where X
was the skew = -.41 distribution and Y was the skew = 0 distribution. Six hundred sample
distributions were simulated based on the population skew = -.41 distribution and six hundred
additional sample distributions were simulated based on the population skew = 0 distribution.
The 600 sample distributions included 200 sample distributions of 100 observations each, 200
additional sample distributions of 1,000 observations each, and 200 additional sample
distributions of 5,000 observations each. Two hundred kernel and traditional equipercentile
equating functions were computed for 200 pairs of the X and Y sample distributions of a given
sample size (the X and Y sample distributions were of equal sample size), and these sample
equating functions were aggregated to assess equating function accuracy. This process was
repeated for the remaining 13 equating conditions summarized in Table 3.

Equating function accuracy was assessed in terms of weighted-average absolute

differences (WAD) and weighted-average variability (WAV). These indices were computed as,

12
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]

WAVSampIeSize,Selection:Z O-ey,SampIeSize,Selection (Xj )P(X Population :Xj ) ' (11)

]

luey,SampIeSize,Selection (Xj )_ey,PopuIations (Xj )‘ P(X Population:Xj ) ’ (10)

where the us and the os denote the average and standard deviation of the 200 equated scores at

X} €, poputations (X; ) 1S the equated score at x; based on the population distributions, and the P()

terms are the population probabilities at score x;. In preliminary analyses, versions of Equation
10 based on actual, squared, and absolute values were considered, and the absolute values were
found to be most informative. Measures of actual equated score differences tended to
underestimate the extent to which equating functions differed because the curvilinear equating
functions weaved around each other so that the positive and negative equated score differences
cancelled out. Measures of average squared differences, such as the squared bias part of mean
squared error, are similar to the measure of absolute differences in Equation 10 but more directly
focused on average squared differences (or root mean-squared differences) rather than on the
average absolute differences (i.e., mean root-squared differences) that were of interest in this

study.

Results

Model Selection Accuracy

The model selection accuracy results were tabulated to comparatively evaluate the 17
model selection strategies across the eight population distributions and three considered sample
sizes. These results were organized into 8 X 3 = 24 total tables, from which 9 especially
representative tables were selected for this section’s discussion. The accuracies of the model
selection strategies are summarized in Tables 4-12 for the skew = -.41 distribution (Tables 4-6),
the skew = 0 distribution (Tables 7-9), and the Xp distribution (Tables 10-12). Each table
summarizes the selection strategies’ preferences in terms of the average parameters selected and
the percentage of models with 2, 3, ...., 10 parameters selected for 200 random samples of a
particular size and drawn from a particular population distribution. For the skew = -.41 and skew
= 0 distributions, the population parameterizations were included in the range of considered
models (i.e., I’s of 6 and 2 were in the range of the considered | = 2, 3, ...., 10), so that the

results

13



Table 4

Model Selection Accuracy Percentage for the Skew = -.41 Distribution, N = 100, Six Parameters in the Population Model

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

14}

Selection strategy selected 2 3 4 5 6° 7 8 9 10
G2

Complex-to-simple 2.62 83 3 7 1 2 1 3 2 1

Simple-to-complex 2.31 88 3 6 1 1 0 1 1 1

Izndividual-models 2.06 99 0 1 0 1 0 1 0 0
xXP

Complex-to-simple 3.10 72 2 8 3 7 4 3 2 2

Simple-to-complex 2.57 83 2 8 2 3 1 1 1 1

Igdividual-models 2.04 99 0 1 0 0 0 1 0 0
XFT

Complex-to-simple 2.40 89 1 6 0 1 0 3 1 1

Simple-to-complex 2.16 94 1 4 0 0 0 1 1 0

Individual-models 2.03 100 0 0 0 0 0 1 0 0
CR

Complex-to-simple 2.68 81 2 8 2 3 2 2 1 1

Simple-to-complex 2.36 89 2 5 1 1 0 1 2 0

Individual-models 2.03 100 0 0 0 0 0 1 0 0
AlC 3.57 47 11 20 5 8 3 4 2 2
BIC 2.24 86 5 8 1 0 0 0 0 0
CAIC 2.14 91 4 5 0 0 0 0 0 0
Goodman 5.16 30 14 6 7 8 8 10 7 12
Sample size selection 3.00 0 100 0 0 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

& Population model.



Table 5
Model Selection Accuracy for the Skew = -.41 Distribution, N = 1,000, Six Parameters in the Population Model

qT

Average no. Selected no. of parameters (out of 200 replications): % accuracy

Selection strategy parameters selected 2 3 4 5 6° 7 8 9 10
G2

Complex-to-simple 4.13 14 7 54 10 12 1 1 2 1

Simple-to-complex 4.43 7 3 57 14 16 2 1 1 1

I2ndividual-models 2.97 49 15 31 4 2 0 0 0 1
xp

Complex-to-simple 4.27 22 3 36 20 14 2 2 2 2

Simple-to-complex 4.40 17 3 37 22 17 3 1 1 1

Igdividual-models 2.82 61 15 15 8 1 1 0 1 1
XFT

Complex-to-simple 3.96 18 6 56 13 7 1 0 1 1

Simple-to-complex 4.23 9 4 56 19 12 1 0 0 0

Individual-models 2.75 59 14 23 3 2 0 0 0 0
CR

Complex-to-simple 4.20 20 3 43 17 14 1 1 2 1

Simple-to-complex 4.40 14 3 42 21 19 1 2 1 0

Individual-models 2.79 60 14 18 7 2 0 0 0 1
AIC 5.68 0 1 26 20 36 8 4 4 4
BIC 3.60 27 8 51 11 5 0 0 0 0
CAIC 3.24 41 8 42 8 2 0 0 0 0
Goodman 5.22 11 17 21 16 11 7 4 6 10
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

& Population model.



Table 6
Model Selection Accuracy for the Skew = -.41 Distribution, N = 5,000, Six Parameters in the Population Model

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

o7

Selection strategy selected 2 3 4 5 6° 7 8 9 10
G2

Complex-to-simple 5.67 0 0 5 33 58 2 2 0 1

Simple-to-complex 5.69 0 0 3 33 61 3 1 0 1

Izndividual-models 5.06 0 0 32 49 15 1 1 0 4
xXP

Complex-to-simple 5.65 0 0 3 42 51 2 2 1 1

Simple-to-complex 5.68 0 0 2 40 53 3 2 1 1

Igdividual-models 5.06 0 0 25 60 11 2 0 0 4
XFT

Complex-to-simple 5.59 0 0 5 39 53 1 2 0 1

Simple-to-complex 5.70 0 0 3 36 56 3 1 1 1

Individual-models 4.88 0 0 37 49 11 1 0 1 2
CR

Complex-to-simple 5.63 0 0 3 41 53 2 2 0 1

Simple-to-complex 5.68 0 0 2 39 54 3 1 1 1

Individual-models 5.02 0 0 29 56 11 1 0 0 4
AlC 6.50 0 0 0 4 67 16 8 2 5
BIC 5.42 0 0 10 40 50 1 0 0 0
CAIC 5.31 0 0 13 45 42 1 0 0 0
Goodman 6.66 0 0 5 35 20 11 8 9 15
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

& Population model.



Table 7

Model Selection Accuracy for the Skew = 0 Distribution, N = 100, Two Parameters in the Population Model

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

LT

Selection strategy selected 2° 3 4 5 6 7 8 9 10
G2

Complex-to-simple 2.40 92 1 1 2 1 1 1 1 2

Simple-to-complex 2.05 98 1 1 1 0 0 0 0 0

Izndividual-models 2.18 98 0 0 1 0 0 0 0 2
xp

Complex-to-simple 3.16 75 4 3 4 3 1 9 1 3

Simple-to-complex 2.49 86 4 3 2 2 2 2 1 1

Igdividual-models 2.17 95 2 2 0 0 0 0 1 1
XFT

Complex-to-simple 2.07 99 0 1 1 0 0 0 0 1

Simple-to-complex 2.01 100 0 1 0 0 0 0 0 0

Individual-models 2.00 100 0 0 0 0 0 0 0 0
CR

Complex-to-simple 2.58 87 2 2 2 1 1 3 1 3

Simple-to-complex 2.14 96 2 1 1 0 1 0 0 1

Individual-models 2.11 98 1 0 0 0 1 0 0 1
AIC 2.94 71 9 5 3 5 2 3 1 2
BIC 2.06 96 3 1 1 0 0 0 0 0
CAIC 2.03 98 2 1 0 0 0 0 0 0
Goodman 541 25 14 8 9 5 11 6 10 14
Sample size selection 3.00 0 100 0 0 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

Population model.



Table 8

Model Selection Accuracy for the Skew = 0 Distribution, N = 1,000, Two Parameters in the Population Model

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

8T

Selection strategy selected 2° 3 4 5 6 7 8 9 10
G2

Complex-to-simple 2.37 93 1 1 0 1 1 1 3 1

Simple-to-complex 2.09 98 1 1 0 0 0 1 1 0

Izndividual-models 2.37 95 1 0 0 0 0 0 0 5
xXP

Complex-to-simple 2.40 92 2 1 0 2 2 1 2 1

Simple-to-complex 2.12 97 2 0 0 0 0 1 1 1

Igdividual-models 2.22 97 1 0 1 0 0 0 0 3
XFT

Complex-to-simple 2.29 94 1 1 0 1 1 1 2 1

Simple-to-complex 2.10 97 1 2 0 0 1 1 0 0

Individual-models 2.40 95 0 0 0 0 0 0 1 5
CR

Complex-to-simple 2.25 96 1 0 0 1 1 1 2 1

Simple-to-complex 2.04 99 1 0 0 0 0 1 0 0

Individual-models 2.22 97 1 0 1 0 0 0 0 3
AlC 2.88 69 12 8 4 2 2 1 3 2
BIC 2.02 99 2 0 0 0 0 0 0 0
CAIC 2.01 99 1 0 0 0 0 0 0 0
Goodman 5.61 26 8 13 7 7 6 5 10 19
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

Population model.



Table 9

Model Selection Accuracy for the Skew = 0 Distribution, N = 5,000, Two Parameters in the Population Model

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

67T

Selection strategy selected 2° 3 4 5 6 7 8 9 10
G2

Complex-to-simple 2.37 92 1 1 2 1 1 2 1 1

Simple-to-complex 2.08 98 1 0 0 0 0 1 0 1

Izndividual-models 2.23 97 0 0 1 0 0 0 1 2
xp

Complex-to-simple 2.34 94 1 0 2 1 1 2 1 1

Simple-to-complex 2.07 98 1 1 1 0 0 0 0 1

Igdividual-models 2.16 97 1 1 1 0 0 0 1 1
XFT

Complex-to-simple 2.36 92 2 0 2 1 1 2 1 1

Simple-to-complex 2.09 98 2 0 0 0 0 1 0 1

Individual-models 2.21 97 0 0 1 0 0 0 1 2
CR

Complex-to-simple 2.36 93 1 0 2 1 1 2 1 1

Simple-to-complex 2.08 98 1 1 1 0 0 0 0 1

Individual-models 2.16 97 1 0 1 0 1 0 1 1
AIC 2.88 69 12 6 5 3 2 3 1 1
BIC 2.01 100 1 0 0 0 0 0 0 0
CAIC 2.01 100 1 0 0 0 0 0 0 0
Goodman 5.87 19 11 9 9 10 9 6 11 18
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.

Population model.



Table 10
Model Selection Accuracy for the Xp Distribution, N = 100

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

0¢

Selection strategy selected 2 3 4 5 6 7 8 9 10
G2

Complex-to-simple 2.55 83 2 8 2 3 2 1 1 1

Simple-to-complex 2.32 89 2 6 1 3 2 0 0 0

Izndividual-models 2.69 88 1 3 0 1 1 1 1 7
xp

Complex-to-simple 3.43 67 4 6 5 5 3 4 4 4

Simple-to-complex 2.62 82 5 4 3 2 1 2 1 2

Igdividual-models 2.28 93 2 2 0 1 0 0 0 3
XFT

Complex-to-simple 2.29 92 1 4 1 1 0 1 1 1

Simple-to-complex 2.08 97 1 1 1 1 0 0 0 0

Individual-models 2.05 99 0 1 0 0 0 0 0 1
CR

Complex-to-simple 2.81 79 4 5 3 4 3 1 1 3

Simple-to-complex 241 86 4 4 2 2 1 2 0 1

Individual-models 2.18 97 0 1 0 1 1 0 0 2
AIC 3.69 43 10 21 9 9 3 3 2 2
BIC 2.22 87 6 7 1 0 0 0 0 0
CAIC 2.10 94 4 2 1 0 0 0 0 0
Goodman 5.53 19 14 11 12 8 8 9 8 14
Sample size selection 3.00 0 100 0 0 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.



T¢

Table 11
Model Selection Accuracy for the Xp Distribution, N = 1,000

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

Selection strategy selected 2 3 4 5 6 7 8 9 10
G2

Complex-to-simple 4.20 16 8 59 4 3 5 3 2 3

Simple-to-complex 4.36 9 7 64 6 4 4 5 1 2

Izndividual-models 5.01 26 10 30 4 3 3 4 1 21
xp

Complex-to-simple 4.20 23 16 34 8 5 8 4 2 3

Simple-to-complex 451 16 12 38 11 5 9 7 2 2

Igdividual-models 4.30 37 17 16 4 5 4 4 1 13
XFT

Complex-to-simple 4.14 14 8 64 3 1 5 3 1 3

Simple-to-complex 4.27 9 7 68 4 4 3 3 1 3

Individual-models 4.72 30 10 30 5 1 2 3 1 19
CR

Complex-to-simple 4.09 24 12 41 6 4 7 4 1 3

Simple-to-complex 4.44 15 10 46 10 5 7 5 1 3

Individual-models 4.45 35 15 19 4 4 6 3 1 15
AIC 5.99 0 2 36 17 7 13 8 10 9
BIC 3.29 34 9 55 3 1 0 0 0 0
CAIC 3.10 42 10 46 2 1 0 0 0 0
Goodman 7.09 4 3 14 13 8 11 10 17 23
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = consistent Akaike information criterion.



Table 12
Model Selection Accuracy for the Xp Distribution, N = 5,000

Avg. no. parameters  Selected no. of parameters (out of 200 replications): % accuracy

(44

Selection strategy selected 2 3 4 5 6 7 8 9 10
G2

Complex-to-simple 7.18 0 0 22 7 5 15 16 20 16

Simple-to-complex 7.81 0 0 11 7 6 13 18 25 22

Izndividual-models 9.96 0 0 0 0 0 1 1 1 98
xp

Complex-to-simple 7.51 0 0 9 10 8 18 20 22 14

Simple-to-complex 7.85 0 0 6 7 7 16 23 25 17

Igdividual-models 9.91 0 0 0 0 1 1 1 2 96
XFT

Complex-to-simple 7.03 0 0 28 7 4 10 15 19 18

Simple-to-complex 7.64 0 0 19 6 5 9 14 26 23

Individual-models 9.95 0 0 0 0 0 1 2 1 97
CR

Complex-to-simple 7.36 0 0 13 12 7 17 18 22 14

Simple-to-complex 7.80 0 0 8 7 6 16 20 27 17

Individual-models 9.93 0 0 0 0 1 1 2 1 97
AIC 9.04 0 0 2 2 2 8 12 22 54
BIC 4.56 0 0 72 17 4 2 3 2 1
CAIC 4.35 0 0 78 16 2 2 2 1 0
Goodman 9.26 0 0 1 1 1 7 12 20 60
Sample size selection 5.00 0 0 0 100 0 0 0 0 0

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion.



given in Tables 4-9 are indicative of selection strategies’ accuracies. For the Xp distribution, the
population parameterization and sample distributions included score-specific features (i.e., teeth)
that were not included in the range of considered models (i.e., models with 1 =2, 3, ...., 10 do
not directly fit the distributions of the teeth), so that the Xp results given in Tables 10-12 are
indicative of selection strategies’ preferences when considering a series of incorrect models.

One important result in Tables 4-12 is the influence of sample size on the model
selection strategies across the population distributions. When the population model contained
many parameters (e.g., the skew = -.41 population distribution contains 6 parameters, Tables 4—
6), the selection strategies were least accurate for small sample sizes (N = 100, Table 4) and most
accurate for large sample sizes (N = 5,000, Table 6). The accuracies of the model selection
strategies for the skew = 0 distribution (two parameters in the population distribution, Tables 7-
9) were relatively high and not strongly influenced by the three sample-size conditions. When
the population model was not among the considered models, such as for the Xp distribution
(Tables 10-12), then large sample sizes caused all of the selection strategies to select models
with many parameters (e.g., N = 5,000, Table 12).

The AIC selection strategy tended to select models with more parameters than most of
the other selection strategies, resulting in relatively high selection accuracy in selecting models
for the skew = -.41 population distribution (Tables 4-6) and relatively low selection accuracy for
selecting models for the skew = 0 population distribution (Tables 7-9). In terms of the other
parsimony-class selection strategies, the BIC favored models with fewer parameters than the
AIC, and the CAIC favored models with fewer parameters than the BIC (corresponding with the
penalties with which these statistics were designed, Equations 6-8). The Goodman selection
strategy favored models with many parameters and was so inconsistent in its selection that it
cannot be recommended for general practice.

The selection strategies based on the likelihood ratio, Pearson, Freeman-Tukey and
Cressie-Read chi-square statistics favored simple models with two or three parameters for the
sample sizes of 100 (Tables 4, 7, and 10). The complex-to-simple selection strategies selected
models with more parameters than the simple-to-complex strategies for sample sizes of 100. The
differences between these two approaches were small and inconsistent for the sample sizes of
1,000 and 5,000. The individual-models selection strategy favored the simplest models out of all
the selection strategies for the skew = -.41 and skew = 0 distributions but selected models with
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many parameters when samples of 5,000 were drawn from the Xp distribution (Table 12). No
overwhelming winner emerged in terms of accuracy among the four chi-square statistics, though

model selections based on the Freeman-Tukey statistic were typically the least accurate.

Equating Function Accuracy

To assess the impact of the 17 model-selection strategies on equating function accuracy,
results were assessed across three sample sizes, 14 equating conditions, and two equating
methods (kernel and traditional equipercentile), for a total of 28 results tables. This section
summarizes the 28 tables’ results by focusing on 5 representative tables involving the kernel
equating results, which are very similar to the traditional equipercentile results; 3 of the 6 no-
equating-needed result tables, and 2 of the 5 lots-of-equating needed result tables. The omitted
results are similar to and within the range of the results that are presented. The presented results
show three no-equating-needed situations, where the X and Y samples were drawn from the same
population distribution, including (a) the skew = -.41 distribution (Table 13), (b) the skew =0
distribution (Table 14), and (c) the Xp distribution (Table 15). Two lots-of-equating needed
situations are also presented, one where the X samples were drawn from the skew = -.41
distribution and the Y samples were drawn from the skew = 0 distribution (Table 16), and
another where the X samples were drawn from the Xp distribution and the Y samples were drawn
from the Yq distribution (Table 17). All of the results tables present the WAD and WAV values
for the 16 data-based, model-selection strategies; the sample-size selection strategy (Table 1);
and, for reference, an additional set of WAD and WAYV values for evaluating equatings based on
using the population models for all replications (i.e., always-fit-the-population models). The
results of the remaining nine equating situations considered in this study (Table 3) were similar
to the results of the situations summarized in Tables 13-17.

A general result across Tables 13-17 is the influence of sample size on the sample
equating functions’ absolute deviations from the population equating function (WAD) and on the
sample equating functions’ variability (WAV). Large sample sizes reduced WAD values because
they created situations where the model selection strategies were more accurate (Tables 4-6) or
highly parameterized (Tables 10-12). In addition, large sample sizes produced more stable
equating results and smaller WAYV values for the equating functions based on all of the selection

strategies.
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Table 13
The X-to-Y Kernel Equating Situation, X and Y Sampled From the Skew = -.41 Distribution, No Equating Needed

Nx= NY= 100 Nx= NY= 1,000 Nx= NY= 5,000

q¢

Se2lection strategy WAD WAV WAD WAV WAD WAV
G

Complex-to-simple 0.056 1.261 0.010 0451 0.029 0.202

Simple-to-complex 0.047 1.254 0.013 0.444 0.028 0.199

Izndividual-models 0.045 1197 0.023 0.478 0.028 0.206
xXP

Complex-to-simple 0.048 1.291 0.012 0471 0.029 0.200

Simple-to-complex 0.047 1.259 0.007 0.470 0.029 0.199

Individual-models 0.045 1203 0.031 0469 0.029 0.202
XFT

Complex-to-simple 0.050 1.239 0.012 0458 0.029 0.202

Simple-to-complex 0.043 1237 0.012 0447 0.028 0.200

Individual-models 0.044 1193 0.023 0470 0.028 0.205
CR

Complex-to-simple 0.047 1269 0.008 0.470 0.029 0.200

Simple-to-complex 0.047 1.251 0.008 0.461 0.029 0.200

Individual-models 0.044 1193 0.032 0472 0.029 0.202
AlC 0.064 1360 0.012 0436 0.029 0.194
BIC 0.053 1.264 0.017 0.473 0.029 0.203
CAIC 0.049 1.242 0.016 0.486 0.029 0.206
Goodman 0.071 1304 0.024 0.461 0.028 0.201
Sample size selection 0.048 1.279 0.010 0.412 0.028 0.186
Always-fit-the-population models 0.060 1386 0.011 0.425 0.028 0.190

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion,

WAD = weighted-average absolute differences, WAV = weighted-average variability.



Table 14
The X-to-Y Kernel Equating Situation, X and Y Sampled From the Skew = 0 Distribution, No Equating Needed

Nx= NY= 100 Nx= NY= 1,000 Nx= NY= 5,000

9¢

Sezlection strategy WAD WAV WAD WAV WAD WAV
G

Complex-to-simple 0.016 1.125 0.020 0.372 0.018 0.165

Simple-to-complex 0.018 1.102 0.018 0.370 0.018 0.163

Izndividual-models 0.017 1.081 0.018 0.369 0.018 0.164
xXP

Complex-to-simple 0.033 1177 0.022 0.374 0.018 0.165

Simple-to-complex 0.020 1.137 0.019 0.370 0.018 0.164

Igdividual-models 0.017 1.088 0.018 0.365 0.019 0.164
XFT

Complex-to-simple 0.015 1.100 0.019 0.371 0.018 0.165

Simple-to-complex 0016 1077 0.018 0.370 0.018 0.163

Individual-models 0.016 1.076 0.018 0.366 0.018 0.164
CR

Complex-to-simple 0.019 1.141 0.022 0.372 0.018 0.165

Simple-to-complex 0.019 1.111 0.019 0.368 0.018 0.163

Individual-models 0.017 1.079 0.019 0.365 0.018 0.164
AlC 0.037 1196 0.023 0.396 0.018 0.179
BIC 0.021 1113 0.017 0.364 0.018 0.162
CAIC 0.017 1.098 0.017 0.364 0.018 0.162
Goodman 0.025 1.198 0.021 0418 0.018 0.185
Sample size selection 0.035 1.167 0.021 0419 0.018 0.187
Always-fit-the-population models 0.016 1.075 0.018 0.357 0.018 0.161

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion,

WAD = weighted-average absolute differences, WAV = weighted-average variability.



Table 15
The X-to-Y Kernel Equating Situation, X and Y Sampled From the Xp Distribution, No Equating Needed

Nx= NY= 100 Nx= NY= 1,000 Nx= NY= 5,000

Le

Sezlection strategy WAD WAV WAD WAV WAD WAV
G

Complex-to-simple 0.060 3.024 0.093 1.143 0.053 0.494

Simple-to-complex 0.082 3.035 0.09 1107 0.053 0.490

I2ndividual-models 0.057 2966 0.097 1.174 0.053 0.481
xXP

Complex-to-simple 0.058 3.100 0.090 1188 0.052 0.492

Simple-to-complex 0.060 3.060 0.090 1.153 0.053 0.490

Igdividual-models 0.071 2972 0.087 1.178 0.053 0.482
XFT

Complex-to-simple 0.063 2962 0.094 1.138 0.053 0.497

Simple-to-complex 0.081 2947 0.092 1101 0.052 0491

Individual-models 0.066 2903 0.095 1.183 0.054 0.482
CR

Complex-to-simple 0.052 3.036 0.090 1.180 0.053 0.494

Simple-to-complex 0.062 3.033 0.095 1142 0.053 0.490

Individual-models 0.071 2925 0.092 1.185 0.053 0.481
AlC 0.056 3211 0.087 1.079 0.053 0.484
BIC 0.072 3.045 0.093 1.182 0.053 0.493
CAIC 0.074  3.008 0.087 1.199 0.053 0.494
Goodman 0.047 3.179 0.087 1.096 0.053 0.483
Sample size selection 0.058 3.116 0.086 1.042 0.053 0.462
Always-fit-the-population models 0.064 3.183 0.082 1.023 0.053 0.454

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion,

WAD = weighted-average absolute differences, WAV = weighted-average variability.



Table 16
The X-to-Y Kernel Equating Situation, X sampled From the Skew = -.41 Distribution and Y Sampled From the
Skew = 0 Distribution, Lots of Equating Needed

Nx = Ny=100 Nx=Ny=1,000 Nx=Ny=5,000

8¢

Sezlection strategy WAD WAV WAD WAV WAD WAV
G

Complex-to-simple 0.307 1.277 0.102 0409 0.026 0.193

Simple-to-complex 0.316 1265 0.086 0401 0.021 0.191

I2ndividual-models 0.333 1246 0.184 0410 0.071 0.195
XP

Complex-to-simple 0.274 1.311 0.091 0417 0.027 0.191

Simple-to-complex 0.298 1.281 0.082 0412 0.026 0.190

Irzldividual-models 0.333 1.244 0.207 0.406 0.068 0.193
XFT

Complex-to-simple 0.317 1.258 0.111 0409 0.028 0.192

Simple-to-complex 0.328  1.250 0.094 0403 0.025 0.191

Individual-models 0.339 1239 0.210 0.404 0.075 0.194
CR

Complex-to-simple 0.292 1.289 0.094 0413 0.027 0.192

Simple-to-complex 0.318 1.264 0.079 0406 0.025 0.191

Individual-models 0.339 1241 0.204 0405 0.071 0.194
AIC 0.211 1.352 0.044 0411 0.008 0.194
BIC 0.311 1.271 0.114 0.407 0.034 0.193
CAIC 0.328 1258 0.135 0415 0.042 0.195
Goodman 0.219 1.340 0.087 0.428 0.037 0.201
Sample size selection 0.282 1.304 0.070 0.404 0.063 0.193
Always-fit-the-population models 0.149 1.339 0.018 0.387 0.006 0.185

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion,
WAD = weighted-average absolute differences, WAV = weighted-average variability.



Table 17
The X-to-Y Kernel Equating Situation, X Sampled From the Xp Distribution and Y Sampled From the Yq Distribution,
Lots of Equating Needed

Nx = Ny=100 Nx=Ny=1,000 Nx=Ny=5,000

6¢

Sezlection strategy WAD WAV WAD WAV WAD WAV
G,

Complex-to-simple 0.657 2979 0.101 1.067 0.046 0.487

Simple-to-complex 0.645 2983 0.059 1.056 0.044 0.485

I2ndividual-models 0.665 2950 0.193 1.101 0.066 0.477
XP

Complex-to-simple 0.490 3.089 0.150 1.107 0.040 0.487

Simple-to-complex 0.490 3.049 0.111 1.089 0.046 0.485

Irzldividual-models 0.693 2932 0295 1.105 0.065 0.477
XFT

Complex-to-simple 0.739 2921 0.091 1.058 0.050 0.487

Simple-to-complex 0.746 2905 0.064 1053 0.045 0.487

Individual-models 0.756 2894 0.221 1.096 0.065 0.476
CR

Complex-to-simple 0.595 3.023 0.160 1.108 0.041 0.488

Simple-to-complex 0.617 2997 0.101 1.081 0.045 0.484

Individual-models 0.722 2908 0.292 1.107 0.065 0.477
AIC 0.281 3.158 0.035 1.029 0.058 0.480
BIC 0.579 2989 0.210 1.114 0.056 0.481
CAIC 0.658 2942 0292 1.124 0.063 0.480
Goodman 0.273 3.178 0.033 1.049 0.059 0.479
Sample size selection 0.356 3.075 0.079 0.997 0.068 0.455
Always-fit-the-population models 0.349 3428 0.055 0974 0.050 0.447

Note. AIC = Akaike information criterion, BIC = Bayesian information criterion, CAIC = consistent Akaike information criterion,
WAD = weighted-average absolute differences, WAV = weighted-average variability.



For the three no-equating-needed situations (Tables 13-15), the WAD values of the
selection strategies from the criterion identity equating function were so small (< 0.1 raw score
point) that they might be considered negligible in actual equating practice. Because WAD values
were so small, no overwhelming winners or losers emerged from the selection strategies in
Tables 13-15. One interesting finding is that the AIC, which selected models with more
parameters than many of the other strategies, produced equating functions with slightly larger
WAD values than other strategies for the sample sizes of 100 and 1,000. Always-fitting-the-
population models did not have large advantages over the selection strategies in terms of
accuracy in estimating the population identity equating function.

For the two lots-of-equating needed situations (Tables 16-17), the differences in selection
strategies” WAD values were more visible than for the no-equating-needed situations. WAD
values were above 0.3 and 0.6 raw score points for sample sizes of 100, and they differentiated
the selection strategies according to strategies’ tendencies to select more and fewer parameters.
The AIC strategy (which usually selected models with the largest number of parameters) often
produced the most accurate equating functions, with relatively small WAD values that were
usually the closest out of all the selection strategies to the WAD values produced from always-
fitting-the-population models. The chi-square-based individual-models selection strategies
(which usually selected models with relatively few parameters) produced equating functions with
larger WAD values than those of other selection strategies. The CAIC selection strategy
produced equating functions with larger WAD values than the BIC and AIC selections,
corresponding to the CAIC strategy’s preference for models with few parameters. For the sample
sizes of 100 and 1,000, the sample-size selection strategy selected models with more parameters
than the chi-square selection strategies, resulting in equating functions with smaller WAD values
than those from the chi-square strategies and, probably as a result of its consistency, smaller
WAV values. For sample sizes of 5,000, the chi-square selection strategies selected more than
the five parameters selected by the sample-size selection strategy, resulting in the chi-square
strategies that produced equating functions with smaller WAD values than the sample-size
selection strategy.

In the X-to-Y equating situation in Table 17, the models considered by the selection
strategies did not include the X (Xp) and Y (Yq) population distributions used to generate the
sample distributions. With large sample sizes, the selection strategies addressed the complex,
score-specific features of the population distributions (Figures 5 and 7) by selecting models with

large numbers of parameters (Tables 11 and 12). The result was that for large sample sizes
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(1,000 and 5,000) the equating functions computed based on many of the selection strategies did
not deviate much from the population equating functions in terms of the WAD values (Table 17),
even though all of the selected models were incorrect. One apparent implication of these results
is that the impact of score-specific features from rounded formula score distributions on equating
functions can be adequately addressed in terms of loglinear models that include large numbers of
distribution-level parameters (i.e., I > 5). The conditions that produce this implication are
probably too complex to make the implication useful for practice, because interactions between
sample size and the loglinear models make the performances for the selection strategies
inconsistent (e.g., the AIC across the sample size conditions) and difficult to explain (e.g., some
of the simple-to-complex selection strategies select models with relatively few parameters but
have very good WAD values in Table 17). The approach to modeling rounded formula score
distributions through the use of indicator functions (i.e., always-fit-the-population models)
avoids some of the complex results produced by the considered selection strategies’ use of highly

parameterized but incorrect models.

Discussion

The purpose of this study was to compare several common strategies for selecting
loglinear models in terms of their accuracy in selecting population models and their effect on
equating function accuracy. The study considered a range of sample sizes, population
distributions, and population equating functions. The results suggest that selection strategies for
loglinear models are most accurate with large sample sizes, and that strategies that favor
complex loglinear models over simpler models (i.e., minimizing the AIC statistic) result in the
most accurate equating functions across a range of test score distributions. There is always a
possibility that the selection process for loglinear models in sample data may add bias and
variability to equating, but the added inaccuracy appears to be most serious when the selected
models include too few parameters (i.e., fewer than three parameters or moments for most

situations) rather than too many parameters.

Implications of Loglinear Model Selection on Equating Function Accuracy

The results of this study may be somewhat unexpected in terms of how small equating
inaccuracy was for this study’s models and selection strategies. Whereas the accuracies of many
selection strategies were not all that high in samples of 1,000 (Table 5), the equating functions

that used strategies’ selected models in samples of 1,000 were often not problematic in terms of

31



accuracy (Tables 13 and 16). Three issues that influence the association between selection
strategies and equating function accuracy are (a) the differences in focus of traditional goodness-
of-fit statistics and equated score differences, (b) the complexity of the population distributions
and equating function being evaluated, and (c) the measures used to evaluate equating function
accuracy.

The focus of loglinear model selection strategies is somewhat different from
equipercentile equating, in which the selection strategies try to minimize the misfit in the score
frequencies; equipercentile equating is based on continuized, cumulative versions of the score
probabilities (e.g., percentile ranks or Gaussian kernel cumulative density functions). The extent
of misfit that can occur in frequencies across the test score range is much greater than the misfit
that can occur in cumulative probabilities. Frequencies at individual scores can vary somewhat
independently of other frequencies, whereas cumulative probabilities vary in a much narrower
range because, unlike frequencies, cumulative probabilities cannot decrease with increasing
scores and are always forced to a final, maximum value of one. Even when a selection strategy
selects a loglinear model that does not approximate the population frequency distribution as well
as other models, the cumulative probabilities based on that model may fit the population
cumulative probabilities very closely. Thus, the accuracy of the equating function that is based
on the cumulative probabilities does not necessarily suffer from the inadequate loglinear model.

Another implication for how loglinear model selection influences equating function
accuracy is the complexity of the equating function (i.e., the extent of difference in the
distributions involved in the equating). When the score distributions were sampled from
populations that did not differ, so that the identity equating function was appropriate, the entire
complexity of the distributions did not need to be modeled in order to accurately produce the
identity function. Only when the distributions and equating functions differed in complicated
ways having to do with their shapes were the more complicated loglinear models needed. For
situations where distribution differences are small and equipercentile equating is not needed, the
equating function can be produced accurately from very simple loglinear models.

Finally, this study evaluated equating accuracy in terms of WAD, one of many possible
indices with which equating accuracy could have been evaluated. The WAD measure was
consistent with many of the loglinear model fit statistics in terms of weighting misfit based on
where most of the population data were. Other accuracy indices could be of interest, especially
those that give more weight to the misfit of equated scores at specific parts of a score range.

These other indices are somewhat inconsistent with the focus of the fit of entire distributions that
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is the basis of many loglinear model fit statistics, and so evaluations of equating accuracy based
on these alternative indices could produce results that differ from those reported in this study.
Focusing on accuracy at specific score regions that may not necessarily be where most of the
data are could be of interest to testing programs that pay great attention to the minimum or

maximum scale scores, or to passing rates at particular cut scores.

Implications and Extensions

All of the selection strategies could be studied more thoroughly to specify the situations
in which they function best. A broad guideline from the results of this study is that many of the
selection strategies require sample sizes of at least 1,000 for selecting accurate loglinear models
of univariate distributions. This guideline could be the focus of some extensions that study the
strategies across wide ranges of sample sizes; considered models (e.g., I’s from 2--10 vs. I’s
from 3-8); and, for the significance tests, Type | error levels. Specific recommendations could be
developed to define effective use for each of the selection strategies with respect to selection
accuracy and equating function accuracy.

This study also could be extended to consider the use of other proposed statistics for
selecting loglinear models. This study’s results are broad enough to comment on some
alternative measures. Bozdogan (1987) introduced a consistent AIC with Fisher information
(CAICF) statistic along with his CAIC statistic. The CAICF is designed to select fewer
parameters than the CAIC and therefore would produce equating functions that would not be as
accurate as those from the strategies considered in this study. Gilula and Haberman (1994)
introduced a modification to the AIC statistic that is theoretically appropriate for selecting
among incorrect models. Preliminary investigations of Gilula and Haberman’s statistic for this
study showed that its performance is almost indistinguishable from that of the AIC. Bootstrapped
versions of the goodness-of-fit statistics considered in this study have been developed and
studied under sparse data situations that arise with item-level response data (von Davier, 1997),
and the use of bootstrappng could address accuracy problems when modeling small-sample test
score distributions.

A promising, alternative pursuit to additional comparisons of alternative goodness-of-fit
statistics could be the development of a new class of measures that directly connect loglinear
model fit to equating function accuracy. The development and evaluation of fit statistics for
cumulative densities along the lines of the Kolmogorov-Smirnov (Smirnov, 1948) statistic and
for inverse cumulative densities (i.e., equated scores) would avoid some of the difficulties of
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relating the fit of frequencies to the implications on equated scores. These alternative fit statistics
would be especially useful for relating loglinear models to more complicated equating methods,
such as the chained and poststratification or frequency estimation methods.

An extension to this study’s focus on overall moments could include subset moments and
indicator functions. The use of subset moments has been described in previous works (Holland &
Thayer, 2000; von Davier et al., 2004) for modeling aspects of distributions that are known to
cause systematic structures not attributable to sampling variability. The application of subset
moments to modeling specific score regions or to abnormally large residuals may enhance
equating function accuracy in specific situations. The small equating inaccuracy is produced
from this study’s always-fit-the-population models imply that data-driven applications of subset
moments could improve model selection above what overall moments are able to accomplish for
distributions that have complicated structures. In particular, combinations of strategies that first
select parameters for the overall distribution and then try to improve model fit at specific regions
or at scores where residuals are very large may be promising. Another potential strategy for
reducing the influence of large residuals is to use a weighted average of raw frequencies and the
smoothed frequencies in equating.

A final extension of this study would be the consideration of selection strategies to
bivariate problems. Data sparseness in bivariate frequency tables typically makes chi-square
significance testing based on the fits of one model unfeasible, because chi-square statistics are
smaller than the degrees of freedom, even for models that do not fit the data well. Bivariate
situations are likely to differentiate chi-square statistics more than the univariate situations
considered in this study, as some chi-square statistics are known to respond differently than
others in conditions of extreme data sparseness (e.g., the likelihood ratio and Pearson chi-square
statistics in Holland & Thayer, 2000, p. 174). Suggestions for modeling bivariate distributions
are to work from the outside in (Holland & Thayer), in which case the results of this study
suggest that using an AIC minimization strategy for univariate distributions is an especially
effective start to modeling bivariate distributions.
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