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Abstract 

All differential item functioning (DIF) methods require at least a moderate sample size for 

effective DIF detection. Samples that are less than 200 pose a challenge for DIF analysis. 

Smoothing can improve upon the estimation of the population distribution by preserving major 

features of an observed frequency distribution while eliminating the noise brought about by 

irregular data points. This study applied smoothing techniques to frequency distributions and 

investigated the impact of smoothed data on the Mantel-Haenszel (MH) DIF detection in small 

samples. Eight sample-size combinations were randomly drawn from a real data set to make the 

study realistic and were replicated 80 times to produce stable results. The population DIF results 

were used as the criteria to evaluate sample estimates using root-mean square difference 

(RMSD), bias analysis, and Type II error rate. Loglinear smoothing was found to provide slight 

to moderate improvements in MH DIF estimation with small samples. 

Key words: DIF, small samples, Mantel-Haenszel, loglinear smoothing, bias 



ii 

Table of Contents 

Page 

Introduction..................................................................................................................................... 1 

Method ............................................................................................................................................ 2 

Sample ..................................................................................................................................... 2 

Mantel-Haenszel Procedure..................................................................................................... 3 

Smoothing Procedures .................................................................................................................... 5 

Evaluation of Results ...................................................................................................................... 7 

Results............................................................................................................................................. 9 

Sample Estimates, Root-Mean Square Difference, and Bias.......................................................... 9 

Type II Error Rate......................................................................................................................... 22 

Summary and Discussion.............................................................................................................. 27 

References..................................................................................................................................... 32 

 



iii 

List of Tables 

Page 

Table  1. An Example of a 2 x 2 Contingency Table at Score Level K....................................... 3 

Table  2. Summary of Studied Items............................................................................................ 9 

Table  3. RMSD and Bias Estimates for All Items .................................................................... 20 

Table  4. Type II Error Rates for DIF Items .............................................................................. 26 

 



iv 

List of Figures 

Page 

Figure 1.    Score distribution of a formula-scored test. ................................................................. 6 

Figure 2.    Boxplots for Item 4..................................................................................................... 11 

Figure 3.    Boxplots for Item 6..................................................................................................... 12 

Figure 4.    Boxplots for Item 7..................................................................................................... 13 

Figure 5.    Boxplots for Item 10................................................................................................... 14 

Figure 6.    Boxplots for Item 12................................................................................................... 15 

Figure 7.    Boxplots for Item 13................................................................................................... 16 

Figure 8.    Boxplots for Item 49................................................................................................... 17 

Figure 9.    Boxplots for Item 75................................................................................................... 18 

Figure 10.  Boxplots for Item 59................................................................................................... 19 

Figure 11.  Plots of root-mean square difference for Items 4, 6, 7, and 10. ................................. 23 

Figure 12.  Plots of root-mean square difference for Items 12, 13, 49, and 57. ........................... 24 

Figure 13.  Plot of root-mean square difference for Item 59. ....................................................... 25 

Figure 14.  Bar graph for error rates for all items......................................................................... 25 

 



 

1 

Introduction 

Differential item functioning (DIF) examines conditional item performance across groups 

and DIF analysis has become a standard operational procedure for many testing programs. All 

DIF methods require at least a moderate sample size for effective DIF detection. For example, 

the Mantel-Haenszel (MH) method (Holland & Thayer, 1988), one of the most popular DIF 

detection procedures with a known advantage of working effectively with small number of 

examinees, requires a sample size of 200 to be adequate (Mazor, Clauser, & Hambleton, 1992). 

In real testing situations, however, small samples (less than 200) occur, which poses a challenge 

for DIF analysis. 

Research on detecting DIF in small samples is limited. Parshall and Miller (1995) 

proposed an exact test as an approach preferred over the standard asymptotic procedure for DIF 

analysis using the MH method on small samples and found that the two methods produced very 

similar results. Roussos and Stout (1996) studied the Type I error inflation with small samples 

for the MH and the simultaneous item bias test (SIBTEST) methods and showed that the Type I 

error rate did not differ much between the two procedures. Zwick, Thayer, and Lewis (1997, 

1999, 2000) and Zwick and Thayer (2002) developed an empirical Bayes (EB) enhancement of 

the MH DIF method and found that the EB methods using the same priors produced improved 

DIF estimates over the standard MH approach, especially for small samples. Sinharay et al. 

(2006) applied a full Bayesian approach using different prior information for different item types 

in the MH DIF analysis with small samples and found that the Bayesian approach improved DIF 

estimation over other existing methods. The Bayesian approach may be a promising option in 

dealing with the small sample issue, but it does require the accumulation of enough past data that 

can be used to specify the prior information. 

Sample size is important in attaining statistical precision. When sample sizes are small, 

irregularities in score frequency distributions are likely to occur. The number of test-takers with 

a given score may not change gradually as the scores increase. Instead, the numbers may 

fluctuate. Such irregularities cause problems, as they may not be generalizable to other groups of 

examinees. Therefore, DIF results obtained with one small sample may not be replicable when 

another small sample is used. 

A population distribution can be estimated based on an observed sample distribution. 

Smoothing an observed distribution improves upon the process of estimating the population 
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distribution, as smoothing is intended to preserve the major features of an observed frequency 

distribution while eliminating the noise brought about by irregular data points due to sampling. 

Loglinear smoothing and kernel smoothing are two major smoothing techniques. Loglinear 

smoothing smoothes the data based on loglinear models by preserving a number of moments 

(e.g., mean, variance, skewness, or kurtosis) in the smoothed distribution, using the same values 

as those obtained in the observed distribution. Kernel smoothing refers to a class of functions 

that use different weighting schemes to compute local averages. The Gaussian kernel function, 

one of the functions that can be employed with kernel smoothing, uses the Gaussian distribution 

(commonly known as the normal distribution) as the weighting function. With this function, 

scores around a particular evaluation point receive most of the weight (Lyu, Dorans, & Ramsey, 

1995). Both loglinear smoothing and kernel smoothing were used in the current study to smooth 

the frequency distributions of examinee responses by group. 

The Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988) is a well-established, 

practical, and powerful method for detecting DIF. It estimates the ratio of the probabilities of the 

reference and the focal groups answering an item correctly using K x 2 x 2 contingency tables. 

The current study applied smoothing techniques to frequency distributions and investigated the 

impact of using smoothed data on MH DIF detection in small samples. DIF analysis was 

conducted on three types of data: unsmoothed or raw data, loglinear-smoothed data and kernel-

smoothed data. Varying sample sizes were randomly drawn from a real data set to make the 

study as realistic as possible. Each sample size condition was replicated 80 times to produce 

stable results. DIF results based on the complete data set were used as the criterion to evaluate 

the results obtained from the samples using root-mean square difference (RMSD), bias analysis, 

and Type II error rate. 

Method 

Sample 

A large admission test that was formula scored was used in the study. There were five 

options for each item. The population consisted of 47,686 examinees, of whom 11,910 were 

Asians and 21,494 were Whites. In the Asian-White comparison, eight items were detected as 

demonstrating significant DIF, and all of them were used in the current study. An additional 

item, one that contained the least amount of DIF among all the items of the test, was also 

included. This minimum DIF item provided an examination of DIF detection in small samples 
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from a perspective that was different from what was provided by the other DIF items. Realistic 

samples of the real data were randomly drawn with replacement from the population for eight 

sample size combinations of the focal and reference groups, which included 50/300, 75/300, 

100/300, 150/300, 200/300, 300/400, 300/700, and 700/2100. Each sample size combination was 

replicated 80 times for stability of results. 

Mantel-Haenszel Procedure 

The Mantel-Haenszel procedure, applied to DIF analysis by Holland and Thayer (1988), 

studies performance differences between matched groups on dichotomously scored items. The 

procedure compares the ratio of the probabilities of two groups answering an item correctly 

across all score levels (K). The obtained estimate is known as the odds ratio. In this procedure, 

data are constructed as a K x 2 x 2 contingency table. Table 1 presents an example of a 2 x 2 

contingency table at a given score level k. Such a table is required for each score level, resulting 

in a K x 2 x 2 contingency table to be used in the MH procedure. 

Table 1 

An Example of a 2 x 2 Contingency Table at Score Level K 

Item score  
    1 0 Total 

Focal RFk WFk NFk Group 
Reference RRk WRk NRk 

 Total RTk WTk NTk 

The common odds ratio is computed using the following formula: 

Rk Fk Tkk
MH

Fk Rk Tkk

R W N
a

R W N
=∑
∑ . 

RkR  and FkR  represent respectively the number of examinees in the reference and the focal groups 

answering an item correctly at score level k; RkW  and FkW  denote respectively the number of the 

examinees in the reference and focal groups answering an item incorrectly at that score level; TkN  

refers to the total number of the examinees at the same score level. As mentioned earlier, the data 

used in the study came from a formula-scored test with 5-choice items. Formula score is a scoring 
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method that corrects the total score for wrong answers. In this study, correct responses were scored 

as 1, incorrect response as -.25, and omitted or not-reached responses as 0. 

The null hypothesis test associated with the MH procedure is a chi-square test, which 

tests the hypothesis that the focal and the reference groups at a given k level of ability have the 

same odds of answering the item correctly across all K levels. It is expressed symbolically as 

follows  

H0:  Rk Fk
Rk Fk

R R
W W=   k =1, …, K. 

The alternative hypothesis is  

Ha:  Rk Fk
Rk Fk

R R
W W≠   k =1, …, K, 

or 

Ha:  Rk Fk

Rk Fk

R R
a

W W
=  k =1, …, K and 1a ≠ , 

and when 1a= , the alternative hypothesis is equal to the null hypothesis. 

The odds ratio provides an estimate of DIF effect size. To facilitate interpretation, the 

MH DIF statistic is transformed onto the ETS delta scale of difficulty by taking its natural log 

and multiplying the result by –2.35: 

2.35 ln( )MHMH D DIF a− = − . 

Negative values indicate that the item is more difficult for the focal group, and positive values 

indicate that the item is more difficult for the reference group. 

As part of the MH procedure, significance testing is also carried out. The absolute value 

of MH D-DIF and the significance test are used jointly to determine the level of severity of DIF, 

classifying all items into C-, B-, A, B+, and C+ categories using the ETS classification rules. An 

item is identified as showing significant amount of DIF and is assigned the category of C if MH 
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D-DIF is significantly different from 1 in absolute value and the absolute value is greater than or 

equal to 1.50. 

Smoothing Procedures 

Two smoothing procedures—loglinear smoothing and kernel smoothing—were used in 

this study. Loglinear smoothing fits a loglinear model to the observed discrete data using 

maximum likelihood estimation (Holland & Thayer, 1987; 2000). The following formula is used 

for loglinear smoothing: 

 

where x is the test score with possible values of 0,  ,  ... k K .  kp  is the probability of obtaining 

test score kx . α  is a constant that restricts the sum of all probabilities to 1. 1β , 2β , 3β  and iβ are 

parameters to be estimated in order to preserve in the smoothed distribution the moments 

obtained from the observed distribution. For example, if I = 3 ( 1,2,... )i I= , the loglinear model 

will preserve three moments: mean, standard deviation, and skewness of the observed 

distributions in the smoothed distribution. The estimated probabilities ˆ( )kp  need to meet this 

condition: 

ˆ ( )i i K
k k k

k k

nx p x
N

=∑ ∑ , 

where kn  is the number of examinees at score level k and N  is the total number of examinees. 

Specifically, the probability for the mean, standard deviation, and skewness will be estimated 

using the following: 

1 1

2 2

3 3

ˆ ( )

ˆ ( )

ˆ ( ).

k
k k k

k k

k
k k k

k k

k
k k k

k k

nx p x
N
nx p x
N
nx p x
N

=

=

=

∑ ∑

∑ ∑

∑ ∑

 

2 3
1 2 3log ( )  ... ,i

e k k k k i kp x x x xα β β β β= + + + +
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The test used in this study was formula scored, and the scores were rounded to the nearest 

integer. This rounding of formula scores produces low frequencies at regular intervals known as 

teeth, and they would occur at exactly the same score levels in a different sample of examinees. 

An example of a score distribution of a formula-scored test is presented in Figure 1. The teeth 

feature of the data complicates the smoothing process, however. Loglinear smoothing makes it 

possible to smooth the teeth separately from other score levels by assigning them to a subset 

selection vector. Therefore, loglinear smoothing smoothes the teeth in the distribution as well as 

the main distribution. Three overall moments and two moments of the teeth distributions were 

preserved throughout. The likelihood ratio chi-square statistics of overall fit were generally close 

to the degrees of freedom for the largest sample sizes considered in this study. This suggests that 

this fixed model was reasonable for most considered conditions, though somewhat 

overparameterized for the smallest sample sizes considered. 

Frequency Distribution
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Figure 1. Score distribution of a formula-scored test.  

Kernel smoothing uses weighting functions to compute local averages. The four 

frequency distributions (i.e., frequency distributions of rights and wrongs for the reference and 

focal groups) were kernel smoothed separately. For instance, kernel smoothing of the frequency 
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distribution of the reference examinees answering the item correctly ( RkR for all K levels) is as 

follows: 

( )Rk j k Rj
j

KSR w x R=∑ , 

where  

2

2

1exp
2

( )
1exp
2

j k

x

j k

i k

i x

x x
h

w x
x x

h

σ

σ

⎡ ⎤−⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦=
⎡ ⎤⎛ ⎞− ⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∑
, 

where ( )j kw x is the weight applied to score kx , and h is the kernel bandwidth parameter set 

based on the reference sample who got the item right, 
.2

1.1
−

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑ RK

K

h R . Similar relationships 

hold for the other three groups, including the reference sample who got it wrong, the focal 

sample who got it right, and the focal sample who got it wrong.. 

Adjustments were made to account for conditions that were not possible (such as the 

maximum score on the matching variable for the students who did not get the item right). The 

final kernel-smoothed rights and wrongs of the reference and focal groups would sum to the 

observed total sample sizes. 

Evaluation of Results 

Three sets of MH D-DIF statistics were produced for each item for various sample size 

combinations for three types of data: one for unsmoothed or raw data, one for loglinear-

smoothed data, and one for kernel-smoothed data. The sample estimates were compared to the 

MH D-DIF values obtained from the population consisting of all examinees. The population 

values were used as the criteria to evaluate the sample estimates using three methods: RMSD, 

bias, and Type II error rate. 

RMSD. Root-mean square difference was computed between the average of sample 

estimates at a given condition and the criterion using the formula: 
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80
2

1

1(  ) ( )  
80 NMH

N

RMSD MH D DIF α α
=

− = −∑  

80
2

1

1(  ) ( )
80 NLS

N

RMSD MHLS D DIF α α
=

− = −∑  

80
2

1

1(  ) ( )
80 NKS

N

RMSD MHKS D DIF α α
=

− = −∑ , 

where Nα  represents the sample estimate for item N  using a given method and α  represents the 

criterion value. The larger the RMSD, the more the sample estimate deviates from the criterion 

value. The smaller the RMSD, the closer the sample estimate is to the criterion value. 

Bias. Sample estimates, Nα , are used to estimate the criterion value, and how far the 

average value of the sample estimates differ from the criterion value, known as bias, can also be 

evaluated. Bias is the expected difference between the average estimate and the criterion. It was 

estimated in the current study using the following: 

80

1

1
80MH NMH

N

Bias α α
=

⎛ ⎞
= −⎜ ⎟⎝ ⎠∑  

80

1

1
80MHLS NLS

N

Bias α α
=

⎛ ⎞
= −⎜ ⎟⎝ ⎠∑  

80

1

1
80MHKS NKS

N

Bias α α
=

⎛ ⎞
= −⎜ ⎟⎝ ⎠∑ . 

While RMSD can take on only positive values, bias can be positive or negative. Positive values 

indicate that, on average, sample values overestimate the population or criterion value. Negative 

values indicate that, on average, sample values underestimate the population value. 

Type II error rate. A Type II error occurs when an item that is flagged as C DIF in the 

population fails to be identified as having C DIF in a particular combination of focal and 

reference groups. Eight items included in this study contained known true large DIF. Identifying 

the rate at which they were not detected in various combinations of sample sizes was important. 
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Type II error rate was calculated in a particular sample combination by dividing the number of 

times where DIF was not identified by the total number of replications, which was 80. 

Results 

Included in the study were eight C DIF items and one item with no DIF identified in the 

Asian-White comparison in the population. The Asian was the focal group and the White was the 

reference group. Among the eight DIF items, four were negative DIF, indicating that the items 

were unexpectedly more difficult for the focal group, conditioning on the total score; four were 

positive DIF, indicating that the items were unexpectedly easier for the focal group, conditioning 

on the total score. Using the absolute value of 1.5 as the criterion, the amounts of DIF in these 

items also varied, with some containing larger amount of DIF (e.g., Item 10) and some smaller 

(e.g., Item 6). Characteristics of these items from the population analysis are presented in Table 

2. Delta values and r-biserial correlations are based on the total of the focal and reference groups. 

Table 2 

Summary of Studied Items  

Category Item MH D-DIF Delta R-biserial
  6 -1.51   7.64 0.47 
  7 -2.63   9.34 0.59 
10 -2.96   9.49 0.55 

Negative DIF  

12 -1.64 12.40 0.54 
No DIF 49   0.06 11.99 0.38 

  4   1.66 11.46 0.50 
13   2.81 13.71 0.43 
57   1.63 12.50 0.45 

Positive DIF  

59   1.81 13.20 0.46 

Note. MH = Mantel-Haenszel. 

Sample Estimates, Root-Mean Square Difference, and Bias  

The MH D-DIF estimates over the 80 replications are summarized in box-and-whisker 

plots, which provide a method for summarizing data measured on an interval scale using the 

median, upper and lower quartiles, minimum, and maximum values. Take, for example, the plot 

at the left bottom of Figure 2 for Item 4 at the focal sample size of 75 and the reference sample 
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size of 300. The box itself contains the middle 50% of the data. The upper line of the box 

represents the upper or the third quartile, which 75% of the values fall at or below, and the lower 

line of the box represents the lower or the first quartile, which 25% of the values fall at or below. 

The box length that covers these two quartiles is known as the interquartile range (IQR) and 

indicates sample variability. The line inside the box is the median or the middle of the 

distribution, with half of the estimates above it and half below. The mean of the distribution is 

symbolized with a “+” sign. The vertical lines that extend from the two sides of the box are 

whiskers, which end with cross bars when the minimum and maximum values of the estimates 

are reached and there are no outliers. When outliers are present, the whiskers are extended to a 

value of 1.5 times the interquartile range. Outliers are represented separately by the small boxes 

beyond the whiskers. The position of the box in its whiskers and the position of the line in the 

box also provide information on whether the sample is symmetric or skewed. In a boxplot, the 

whiskers have approximately the same length as the box or can be slightly longer for a sample 

from a normally distributed population. 

The results of MH estimates for each item across all the eight sample size combinations 

ordered from the largest to the smallest are presented in Figures 2-10. Each figure consists of 

eight plots, and each plot contains three boxplots of estimates: one for the original unsmoothed 

or raw data (MH), one for loglinear-smoothed data (MHLS), and one for the kernel-smoothed 

data (MHKS). The Y-axis represents MH D-DIF estimates. The horizontal dotted line represents 

the criterion value, which is the DIF result from the population and is used to evaluate sample 

estimates. The graphs show that, in general, with the decreases in sample size combinations, the 

boxplots become bigger, indicating that the ranges of the middle of the 50% of the sample 

estimates become wider. This was expected and true for all items for smoothed and unsmoothed 

estimates. Boxplots of MH and MHLS were similar in shape. In fact, MHLS estimates are less 

variable and therefore demonstrate an advantage over MH estimates, especially at the smallest 

sample size combinations of 50/300 and 75/300. The MHKS results show a different pattern. The 

center of the boxplots tends to deviate from the criterion and from both MH and MHLS results, 

especially for sample size combinations where focal samples were above 200. 

RMSDs between the average sample estimates over 80 replications using different types 

of data for the various sample size combinations are summarized in Table 3. Sample size 

combinations are arranged from large to small for each item. Smaller RMSD indicates that 
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Figure 2.  Boxplots for Item 4. 
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Figure 3.  Boxplots for Item 6. 
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Figure 4.  Boxplots for Item 7. 
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Figure 5.  Boxplots for Item 10. 
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Figure 6.  Boxplots for Item 12. 
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Figure 7.  Boxplots for Item 13. 
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Figure 8.  Boxplots for Item 49. 
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Figure 9.  Boxplots for Item 75. 
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Figure 10.  Boxplots for Item 59. 
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Table 3 

Root-Mean Square Difference and Bias Estimates for All Items 

Size RMSD Bias 
Item Criterion Focal Reference MH MHLS MHKS MH MHLS MHKS 
  4 1.66 700 2,100 0.29 0.28 0.42 -0.05 -0.06 -0.32

    300 700 0.41 0.41 0.54 -0.07 -0.07 -0.39
    300 400 0.46 0.43 0.52 0.02 0.03 -0.34
    200 300 0.57 0.54 0.58 0.07 0.09 -0.33
    150 300 0.59 0.58 0.60 0.12 0.13 -0.28
    100 300 0.66 0.67 0.65 0.13 0.09 -0.28
    75 300 0.78 0.71 0.72 0.17 0.10 -0.27
    50 300 1.12 0.92 0.91 0.18 0.08 -0.30

  6 -1.51 700 2,100 0.36 0.34 0.45 0.02 -0.03 -0.31
    300 700 0.64 0.59 0.71 -0.08 -0.11 -0.43
    300 400 0.68 0.64 0.77 -0.09 -0.13 -0.46
    200 300 0.79 0.74 0.79 0.04 0.03 -0.35
    150 300 0.96 0.83 0.94 -0.18 -0.06 -0.46
    100 300 1.07 0.92 0.89 0.20 0.16 -0.25
    75 300 1.21 1.08 1.05 0.12 0.17 -0.26
    50 300 1.44 1.30 1.26 0.15 0.24 -0.20

  7 -2.63 700 2,100 0.25 0.25 0.35 0.00 -0.03 -0.26
    300 700 0.51 0.51 0.55 -0.02 -0.03 -0.28
    300 400 0.64 0.63 0.68 -0.07 -0.06 -0.32
    200 300 0.75 0.70 0.76 -0.18 -0.13 -0.40
    150 300 0.69 0.59 0.61 -0.02 0.02 -0.28
    100 300 0.94 0.79 0.78 0.00 0.00 -0.29
    75 300 1.03 0.87 0.87 -0.15 -0.07 -0.34
    50 300 1.30 1.02 0.97 -0.15 0.02 -0.32

10 -2.96 700 2,100 0.26 0.25 0.28 0.02 -0.01 -0.14
    300 700 0.47 0.47 0.51 -0.06 -0.10 -0.26
    300 400 0.48 0.46 0.51 -0.03 -0.08 -0.25
    200 300 0.75 0.65 0.66 -0.02 -0.07 -0.26
    150 300 0.80 0.75 0.76 -0.13 -0.09 -0.28
    100 300 0.85 0.76 0.75 0.01 -0.01 -0.21
    75 300 0.89 0.78 0.77 -0.12 -0.14 -0.30
    50 300 1.19 1.02 0.91 -0.05 -0.04 -0.21

12 -1.64 700 2,100 0.24 0.24 0.27 -0.04 -0.03 -0.16
    300 700 0.43 0.42 0.40 0.02 0.04 -0.10
    300 400 0.48 0.44 0.43 -0.05 0.01 -0.13
    200 300 0.52 0.53 0.52 -0.02 -0.02 -0.19
    150 300 0.56 0.55 0.51 0.03 0.06 -0.12
    100 300 0.68 0.67 0.63 -0.02 0.03 -0.15

Table continues 
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Table 3 (continued) 

Size RMSD Bias 
Item Criterion Focal Reference MH MHLS MHKS MH MHLS MHKS 

  75 300 0.68 0.67 0.59 0.04 0.07 -0.12
  50 300 0.91 0.80 0.71 0.02 0.07 -0.16

13 2.81 700 2,100 0.22 0.22 0.38 -0.04 -0.04 -0.32
  300 700 0.45 0.44 0.52 0.00 0.00 -0.33
  300 400 0.49 0.44 0.50 0.08 0.07 -0.30
  200 300 0.55 0.54 0.59 0.03 0.05 -0.34
  150 300 0.60 0.60 0.62 0.05 0.03 -0.37
  100 300 0.66 0.57 0.58 0.13 0.14 -0.26
  75 300 0.87 0.78 0.75 0.13 0.10 -0.32
  50 300 1.02 0.93 0.93 -0.06 -0.04 -0.49

49 0.06 700 2,100 0.22 0.21 0.29 -0.02 0.04 -0.19
  300 700 0.40 0.40 0.42 0.02 0.07 -0.17
  300 400 0.39 0.38 0.42 -0.02 0.03 -0.22
  200 300 0.56 0.51 0.56 -0.02 0.05 -0.26
  150 300 0.59 0.53 0.57 -0.02 0.06 -0.24
  100 300 0.69 0.62 0.65 0.04 0.09 -0.21
  75 300 0.76 0.68 0.70 -0.03 0.05 -0.25
  50 300 0.94 0.89 0.91 -0.02 0.02 -0.30

57 1.63 700 2,100 0.23 0.23 0.32 -0.01 -0.01 -0.23
  300 700 0.46 0.40 0.50 -0.03 -0.05 -0.29
  300 400 0.49 0.42 0.51 0.06 0.03 -0.24
  200 300 0.60 0.53 0.59 0.01 0.03 -0.26
  150 300 0.61 0.52 0.62 -0.03 -0.03 -0.35
  100 300 0.78 0.57 0.69 0.00 0.01 -0.31
  75 300 0.95 0.79 0.85 0.03 -0.08 -0.32
  50 300 1.16 1.00 1.08 -0.19 -0.08 -0.47

59 1.81 700 2,100 0.26 0.23 0.34 -0.01 0.02 -0.23
  300 700 0.50 0.45 0.51 0.09 0.07 -0.22
  300 400 0.56 0.49 0.53 0.07 0.06 -0.25
  200 300 0.51 0.49 0.54 0.02 0.10 -0.24
  150 300 0.68 0.53 0.61 0.07 0.11 -0.23
  100 300 0.68 0.58 0.65    0 0.08 -0.30
  75 300 0.93 0.78 0.85 0.05 0.03 -0.27
  50 300 1.06 0.88 0.89 0.02 0.17 -0.25

Note. MH = Mantel-Haenszel, MHKS = Mantel-Haenszel kernel-smoothed, MHLS = Mantel-

Haenszel loglinear-smoothed, RMSD = root-mean square difference. 

sample estimates were closer to the criterion. In general, RMSD was smaller for large sample size 

combinations than for small ones, regardless of smoothing. This was expected, as estimates from 

larger samples should be closer to the criterion than those from the small samples. Compared to the 
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unsmoothed data, loglinear smoothing produced comparable or improved estimates. RMSD was 

.09 to .28 lower for MHLS than for MH for all the DIF items at the smallest sample size 

combination of 50/300. This degree of improvement in estimates can be seen at larger sample size 

combinations, up to 150/300 for Items 6, 7, and 59 and to 100/300 for Items 10 and 57. Item 49 is 

not a DIF item using ETS classification rules. It was included for the purpose of comparison. The 

difference in RMSDs between MH and MHLS for this item is not prominent. 

Presented in Figures 11, 12, and 13 are plots of RMSDs for the three types of data across 

all sample size combinations for each item. In addition to demonstrating an increase in RMSDs 

with decreasing sample size combinations, the plots show that RMSDs for the unsmoothed data 

were larger than those for the smoothed ones at smaller sample size combinations. Noticeable 

differences can be observed at the sample size condition of 100/300 and below for most items 

(e.g., Items 6, 7, 10, 13, and 57). Another pattern to note is that RMSDs are the smallest at the 

largest sample size combination (700/2100) and are very similar at 300/700 and 300/400. They 

started to increase visibly from 200/300 for all the items except for Item 7, for which an increase 

commenced at 100/300. 

Bias analyses were also conducted, and the results are summarized in Table 3. In general, 

bias is similar for MH and MHLS across the sample size conditions. At the sample size 

combination of 50/300, the bias estimate is lower for MHLS than for MH by at least 1.0 for Item 

4, but is higher for MHLS than for MH by at least 1.0 for items 7, 57, and 59. No method 

demonstrates a clear advantage. Bias estimates for MHKS, however, are much bigger compared 

to those for MH and MHLS and are negative for all items across all sample size combinations. 

This indicates that the samples consistently underestimate population DIF. 

Type II Error Rate  

Type II errors occur when DIF that exists in the population is not detected in a particular 

method and sample size combination. The Type II error rate for each of the eight DIF items and 

each type of data was computed using the number of times that the item was not detected as a C 

DIF item divided by the 80 replications. The results for the eight DIF items are summarized in 

Table 4 and plotted in Figure 14. The smaller the numbers, the lower the Type II error rates. 

Lower error rates indicate more power. 
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Comparison of DIF Estimates 
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Figure 11. Plots of root-mean square difference for Items 4, 6, 7, and 10. 
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Comparison of DIF Estimates 
Item 12 MH = -1.64
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Comparison of DIF Estimates 
Item 13  MH = 2.81
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Comparison of DIF Estimates 
Item 49  MH = 0.06
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Comparison of DIF Estimates 
Item 57 MH = 1.63
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Figure 12. Plots of root-mean square difference for Items 12, 13, 49, and 57. 
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Comparison of DIF Estimates 
Item 59 MH = 1.81
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Figure 13. Plot of root-mean square difference for Item 59. 
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Figure 14. Bar graph for error rates for all items 

Mostly, Type II error rates increase when sample sizes become smaller, no matter 

whether smoothing is applied or not. For instance, the Type II error rate for Item 59 was .15 at 

700/2100, .29 at 300/400, .36 at 150/300, and .56 at 75/300 for MH. This means that the item 

was not identified as containing C DIF 15% of the time at 700/2100, but 56% of the time at  
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Table 4 

Type II Error Rates for DIF Items 

700/2100 MH MHLS MHKS 300/700 MH MHLS MHKS 
4 0.29 0.35 0.76 4 0.41 0.40 0.71 
6 0.46 0.46 0.19 6 0.39 0.42 0.29 
7 0.00 0.00 0.03 7 0.00 0.00 0.05 

10 0.00 0.00 0.03 10 0.00 0.00 0.04 
12 0.23 0.24 0.10 12 0.34 0.36 0.28 
13 0.00 0.00 0.08 13 0.00 0.00 0.06 
57 0.28 0.29 0.69 57 0.41 0.41 0.66 
59 0.15 0.10 0.39 59 0.24 0.20 0.41 

300/400 MH MHLS MHKS 200/300 MH MHLS MHKS 
4 0.40 0.36 0.75 4 0.36 0.28 0.70 
6 0.40 0.41 0.34 6 0.66 0.64 0.44 
7 0.03 0.04 0.13 7 0.05 0.07 0.11 

10 0.00 0.00 0.09 10 0.01 0.03 0.08 
12 0.33 0.39 0.29 12 0.41 0.38 0.36 
13 0.00 0.01 0.06 13 0.00 0.00 0.08 
57 0.36 0.35 0.61 57 0.40 0.38 0.60 
59 0.29 0.23 0.53 59 0.26 0.23 0.56 

150/300 MH MHLS MHKS 100/300 MH MHLS MHKS 
4 0.29 0.33 0.65 4 0.31 0.43 0.63 
6 0.61 0.61 0.44 6 0.81 0.85 0.61 
7 0.04 0.07 0.06 7 0.20 0.22 0.11 

10 0.04 0.04 0.08 10 0.05 0.06 0.09 
12 0.45 0.41 0.40 12 0.39 0.44 0.33 
13 0.00 0.00 0.09 13 0.00 0.00 0.05 
57 0.40 0.38 0.65 57 0.51 0.48 0.70 
59 0.36 0.21 0.48 59 0.36 0.25 0.64 

75/300 MH MHLS MHKS 50/300 MH MHLS MHKS 
4 0.43 0.48 0.70 4 0.64 0.65 0.79 
6 0.78 0.81 0.73 6 0.84 0.86 0.75 
7 0.20 0.24 0.16 7 0.29 0.39 0.23 

10 0.09 0.10 0.03 10 0.26 0.22 0.16 
12 0.50 0.50 0.39 12 0.63 0.59 0.54 
13 0.04 0.05 0.15 13 0.21 0.17 0.33 
57 0.55 0.50 0.78 57 0.73 0.63 0.85 
59 0.56 0.44 0.69 59 0.70 0.50 0.81 

Note. MH = Mantel-Haenszel, MHKS = Mantel-Haenszel kernel-smoothed, MHLS = Mantel-

Haenszel loglinear-smoothed. 
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75/300. The error rate almost quadrupled when the sample size was cut down by nearly nine 

times. 

Type II error rates are directly related to the amount of true DIF an item contains. The 

less the amount of true DIF, i.e., the closer the true DIF to the absolute value of 1.5, the higher 

the error rate across all sample size combinations. The error rates for all the eight DIF items are 

plotted in Figure 14. Higher error rates, symbolized by higher bars, can be clearly noted for 

Items 4, 6, 12, and 57, all of which have absolute criterion DIF values between 1.51 and 1.66, 

and for Item 59, which has a criterion DIF value of 1.81. On the other hand, much lower error 

rates can be easily observed for items 7, 10, and 13, which have absolute criterion DIF values 

between 2.63 and 2.81. 

In general, error rates were similar for MH and MHLS, although they varied slightly for 

some items under some conditions. Results for MHKS demonstrate a different pattern compared 

to those for MH and MHLS. The error rates for MHKS are inconsistent with their counterparts 

for MH and MHLS, being much larger (as for Items 4, 13, 57, and 59) across most sample size 

combinations, or much smaller (as for Item 6). 

Summary and Discussion 

This study investigated DIF estimation with realistic small samples by applying the MH 

procedure to the unsmoothed or raw data, loglinear-smoothed data, and kernel- smoothed data. 

The results show that sample estimates of population DIF are more variable at smaller sample 

sizes than at larger ones, as expected. The MH estimates as summarized in boxplots were very 

similar for the unsmoothed and loglinear-smoothed data, with loglinear smoothed estimates less 

variable, especially at smaller sample size combinations of 75/300 and 50/300 for most items. 

Estimates produced from kernel smoothed data showed a pattern different from those for the 

other two. The center of the boxplot deviated from the criterion for all items across all sample 

size conditions. 

RMSDs between the average sample estimate over 80 replications and the criterion 

values increased when sample sizes became smaller, regardless of smoothing. Loglinear 

smoothing produced comparable or slightly improved estimates when compared to those without 

smoothing. RMSDs were smaller for the smallest sample size combinations for all DIF items 

when smoothing was applied. 



28 

Bias estimates from the unsmoothed and loglinear-smoothed data are very similar. At the 

smallest sample size combinations, bias was smaller for unsmoothed estimates than for loglinear-

smoothed estimates for some items but bigger for other items. With kernel smoothing, however, 

bias tended to be considerably larger than that for both unsmoothed and loglinear-smoothed 

estimates and consistently underestimated population DIF no matter what sample size 

combination was used. 

Type II error rates also increase when sample sizes decrease. And they are related to the 

amount of true DIF an item contains. When true DIF is larger, it is more readily identified in the 

samples, thereby producing lower error rates. The error rates for unsmoothed and loglinear-

smoothed estimates are very similar, while those for kernel-smoothed estimates have their own 

pattern and are not related to those for the other two. 

The unsmoothed and loglinear-smoothed results are similar in terms of bias and Type II 

error rates. Loglinear smoothing demonstrated moderate improvements in DIF estimation with 

small samples in that, at the smallest sample size conditions, it produced sample estimates that 

were less variable and RMSDs that were smaller. Smaller RMSD indicates that sample estimates 

are closer to the true DIF. The reduction in RMSD for loglinear-smoothed estimates could 

produce comparably more accurate DIF estimation at sample size combinations less than 

200/300. These results are encouraging, although more research is needed to replicate these 

findings before applying the MH procedure to the loglinear smoothed data in operational 

settings. 

On the other hand, kernel smoothing produced results different from those from 

unsmoothing and loglinear smoothing. In general, sample estimates from kernel smoothing 

deviated from the criteria obtained from the population, thereby producing large biased estimates 

for all items across all sample size conditions. And all the biased estimates were negative, 

indicating the under-estimation of population DIF. The error rates from kernel smoothing were 

also somewhat irregular and inconsistent when compared to those from unsmoothing and 

loglinear smoothing. These results suggest that applying MH to kernel smoothed data, as 

implemented in this study, is not an appropriate option for DIF estimation in small samples. In an 

exploratory analysis (Yu, Moses, Puhan, & Dorans, 2005), when MH was applied to kernel-

smoothed odds ratios, the results were similar to those from MH using unsmoothed or raw data. 

In summary, kernel smoothing, as implemented here, does not seem to improve DIF estimations. 
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The source of the kernel smoothed biases seems to be the result of smoothing that was too strong 

or the result of the bandwidths that were too large. A different selection of the kernel bandwidths 

than the selection rule of 1.1N-.2 may have produced less biased but more varying kernel results. 

This bandwidth rule is the default ETS rule for smoothing item probability plots (Ramsay, 1991) 

and likely was not appropriate for frequency distributions. In comparison to the loglinear 

smoothing, which used one model across the sample size combinations, the selection rule in 

kernel smoothing that applied more smoothing to small samples automatically biased results for 

the smallest samples. 

Sample MH statistics based on loglinear smoothing were similar to the population MH 

values, and the sample MH statistics based on kernel smoothing were not similar when compared 

to the population MH values, because both the MH and loglinear smoothing are based on similar 

methodologies—the loglinear models. The MH uses loglinear models based on a noniterative 

fitting process, while the loglinear smoothing uses similar, but not identical, loglinear models 

based on an iterative fitting process. These two methods, therefore, produce results that are 

expected to be similar. On the other hand, kernel smoothing is based on a very different 

methodology—computing moving averages as defined by the kernel bandwidth. The criterion 

used to evaluate the results is obtained in the population using the MH. Consequently, results 

from kernel smoothing tend to be worse, if they differ from those of the MH and loglinear 

smoothing at all. The selection of the bandwidth in kernel smoothing and the moment-matching 

in loglinear smoothing are fundamentally different, which makes it less likely for kernel 

smoothing to work as well as or as closely as loglinear smoothing. 

The results of the current study demonstrate greater power in MH DIF detection than was 

found by Mazor et al. (1992). In their study using simulated data that contained DIF items, the 

MH procedure failed to detect 30% of the DIF items at sample size of 2,000 and 50% of them at 

sample size of 500 or fewer. This study shows that the rate at which DIF was not detected for 7 

of the 8 items was equal to or less than 29% at the focal group sample size of 700 and 45% at the 

focal group sample size of 150. When loglinear smoothing was applied, the error rate was less 

than or equal to 44% for these seven items at the focal group sample size of 100. The error rates 

for Item 6 were large across all sample size combinations, because the population DIF value of -

.1.51 was too close to the criterion used to flag significant DIF. 
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Loglinear smoothing provides improvements in MH DIF estimation with small samples. 

In general, loglinear smoothing worked well in the procedure. Nonconvergence, however, does 

exist. Nonconvergence is a numerical problem encountered when a solution cannot be reached 

within a given level of tolerance after a given number of iterations. It is usually caused by the 

number of available cases in a cell. When samples are small, the number of cases in each of the 

distributions that smoothing applies to get even smaller. In case of nonconvergence in the current 

study, results were analyzed only for the converging samples. There were usually 5 or 6 or fewer 

cases that failed to converge. Alternative ways of implementing the loglinear smoothing could 

improve the convergence rates. These include using simpler smoothing models, using orthogonal 

polynomials rather than power functions of the test scores, or using less stringent convergence 

criteria. 

Future research may focus on replicating the results of this study. This research shows 

that DIF estimation in small samples improves slightly when data are smoothed using loglinear 

models. If kernel smoothing is used, a different band width should be attempted for unbiased 

estimates. Alternative strategies should be considered for selecting kernel bandwidths that are 

smaller and less likely to produce biased results in the smoothing of frequencies. It is also 

important to know if such a finding can be replicated on data sets other than admission tests. 

Future research may consider using other types of data, such as licensure exams and K-12 

assessments. In licensure exams, small samples occur frequently. On many occasions, DIF 

cannot be performed because of lack of sufficient data. In recent years, large-scale state 

assessments are growing rapidly. Although the population of test-takers may be huge, some 

minority groups (such as Native Americans or Pacific Islanders) may still have small numbers 

for performing DIF analysis. Conducting DIF on small samples is important so that the items in a 

test measure what they are supposed to measure regardless of the gender, the ethnic group, or the 

special education status of the examinees. 

The data used in this study were formula scored, and the score distributions contained 

teeth at regular intervals. Future research may use rights-scored data and examine the effects of 

smoothing on such data in DIF estimation with small samples. 

The test used in this study consisted of 60 items, with eight DIF items. Test length and 

the number of DIF items can also be varied in future studies to see if loglinear smoothing 

improves estimation. Of note, the study was also completed by applying the standardization 
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approach (Dorans & Kulick, 1986) to the data, using the same smoothing techniques and using 

the same items and same sample size conditions. The results were similar to those for the MH 

method. 
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