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Abstract 

In many practical settings, essentially the same differential item functioning (DIF) procedures 

have been in use since the late 1980s. Since then, examinee populations have become more 

heterogeneous, and tests have included more polytomously scored items. This paper summarizes 

and classifies new DIF methods and procedures that have appeared since the early 1990s and 

assesses their appropriateness for practical use. Widely used DIF methods are evaluated 

alongside these new methods for completeness, clarity, and comparability. 

Key words: Differential item functioning, statistical criteria for differential item functioning, 

practical criteria for differential item functioning 
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1. Introduction 

Essentially the same differential item functioning (DIF) procedures have been used in 

practice since the late 1980s. The use of new item formats, new item types, and new test 

administration procedures, as well as the increasing number of test takers with limited English 

language proficiency requires a re-examination of existing DIF procedures and a consideration of 

more recent developments. This paper summarizes and classifies new DIF methods and 

procedures while judging their appropriateness for practical use. The term new refers to methods 

that have appeared in the research literature since the 1990s, when several articles reviewing DIF 

methodology were authored (e.g., Millsap & Everson, 1993; Potenza & Dorans, 1995). While we 

have attempted to include all new methods, we may have missed some. 

DIF analysis is an important step in evaluating tests for fairness and equity. DIF occurs 

when different groups of examinees with the same level of proficiency in a domain have 

different expected performance on an item. In DIF analysis, the sample is usually divided into 

two subgroups. The reference group typically provides a baseline for performance (e.g., White or 

male) and the focal group is typically the focus of fairness concerns (e.g., Black, Hispanic, or 

female). 

The practice of analyzing DIF developed as a response to practices that confounded 

differences in item functioning with differences in score distributions (Zieky, 1993). Analysis of 

DIF is not a statistical or psychometric operation that is performed in a policy vacuum. Rather, 

DIF analysis is attuned to policy issues, and several focal groups are protected against unfair 

practices by legislation (e.g., female, Black, and Hispanic examinees and examinees with 

disabilities). Examples of legislation related to the need for DIF analyses are the Individuals with 

Disabilities Education Act (IDEA;, 1991, 1997), which relates to the testing of examinees with 

disabilities, and the Civil Rights Act of 1964, which covers the concept of fairness based on race, 

color, religion, sex, or national origin (Camilli, 2006). The next section reviews the challenges 

posed by the aforementioned testing contexts and populations. 

2. Motivation for Review 

Several enhancements to DIF analysis would be useful. First, it would be helpful to 

develop or identify methods that can efficiently detect DIF in tests containing constructed 

response (CR) items. Specifically, matching criteria for DIF analyses of CR items tend to be 

questionable and ineffectual. That is, the use of multiple choice scores as a matching criterion is 
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often inadequate, since the criterion sometimes has a low correlation with the CR score. 

Additionally, DIF analysis on CR items using a CR criterion score is problematic when the test 

includes only a few CR items, because of low reliability of measurement. Furthermore, there are 

no well-established procedures for correcting or improving CR questions that exhibit DIF. 

Because tests typically include only a few CR items, discarding these items could mean throwing 

away a significant portion of a test in situations where these items exhibit DIF. 

Studies have also shown that contextual factors (e.g., language and cultural 

characteristics) can have an impact on DIF analyses, particularly for English language learners 

(ELL). For example, it was shown that when Hispanic examinees took the SAT® Reasoning Test 

(formerly the SAT Verbal test), items containing specific linguistic features (e.g., true cognates, 

false cognates, homographs) and items that are of special cultural interest exhibited DIF 

(Schmitt, Curley, Bleistein, & Dorans, 1988; Schmitt, Holland, & Dorans, 1993). DIF often 

occurs when some examinees use the language being tested as an academic language while 

others use the language as a home language. When native language speakers are tested in their 

native language, DIF occurs on some items between them and non-native speakers due to 

language familiarity learned outside the classroom. 

Methods that are effective with small sample sizes would represent a substantial 

advancement in DIF analyses, because several situations exist where sample size is small. 

Specifically, for DIF analyses of some racial and ethnic subgroups, especially Native Americans, 

samples are typically too small (e.g., less than 200 per group as described in Clauser & Mazor, 

1998). Another occurrence of small sample sizes used for DIF analyses occurs among examinees 

with disabilities (Stone, Cook, Cline, & Cahalan-Laitusis, 2007). If sample sizes are too small,

 the analysis may not have enough power to detect DIF (see Puhan, Moses, Yu, & Dorans, 2007 

for a recent example). 

Another concern pertaining to the inadequacy of DIF analyses has occurred in recent 

years because of rapidly changing U.S. demographics. Specifically, the increasing number of 

examinees who are not adequately proficient in English may mean that current approaches to 

DIF analysis are no longer robust. Because DIF samples are often selected based on those who 

indicate that English is their first language, it is important to evaluate how well these results 

generalize to the full test-taking population (Sinharay, Dorans, & Liang, 2008). Moreover, given 

other demographic changes as well, currently used matching criteria may not be adequate, and 
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technical improvements might be needed. In addition, another technical issue involving the 

matching criterion concerns defining circumstances in which matching variables should include 

the studied item. 

The aforementioned challenges and areas of concern provided the motivation for our 

work on classifying recent DIF methods. Understanding of these challenges and concerns will 

help in identifying promising methods that can potentially address these issues. The remainder of 

the paper summarizes the most commonly used DIF methods and introduces technical, practical, 

and statistical classification criteria that will be used in their evaluation. Using the 

aforementioned criteria, the new methods are then classified. Lastly, the extents to which the 

new methods address the concerns that motivated this review are evaluated, and some 

suggestions and implications for future research are discussed. 

3. Older Methods 

A sizeable number of methods, analyses, and applications of DIF exist in the research 

literature. Currently, some of the most commonly used or studied older DIF procedures include 

the standardization (STAND)1 procedure (Dorans & Kulick, 1986), SIBTEST (Shealy & Stout, 

1993), the Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988), and logistic regression 

(Swaminathan & Rogers, 1990). Because of their popularity, these are the only old methods that 

will be compared to the new ones described in this paper. 

In prior, or older, research, different analysis procedures were proposed for reducing bias 

and estimation error in DIF analysis. These included iterative purification procedures under 

various conditions: (a) different matching criteria, (b) different analytic units (i.e., item-, bundle-, 

or testlet-level), and (c) different assumptions about tests’ dimensional structures (e.g., Gierl, 

Bisanz, Bisanz, Boughton, & Khaliq, 2001; Mazor, Kanjee, & Clauser, 1995; Oshima, Raju & 

Flowers, 1997; Wainer, 1995). Furthermore, variations of the aforementioned procedures were 

developed to study non-uniform DIF (Li & Stout, 1996). 

Additionally, the literature includes numerous comparison studies that used older DIF 

procedures, such as STAND, SIBTEST, MH, item response theory (IRT) based, and logistic 

regression, (Chang, Mazzeo, & Roussos, 1996; de Ayala, Kim, Stapleton, & Dayton, 2002; 

Zwick, Thayer, & Mazzeo, 1997). Moreover, some review papers have summarized different 

aspects and characteristics of several older DIF methods. For example, Clauser and Mazor 

(1998) summarized and evaluated technical aspects, while Haladyna and Downing (2004) 

http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Raju%2CNambury+S.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Flowers%2CClaudia+P.)
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focused on the conceptual aspects of several DIF procedures. Another example is the Millsap 

and Everson (1993) paper, which reviewed bias detection methods used in educational and 

psychological measurement. 

This paper builds on the Potenza and Dorans (1995) taxonomy, which summarized the 

most commonly used binary and polytomous DIF procedures and classified them according to 

two basic criteria: (a) associated matching variable (either an observed score or an unobserved 

latent trait), and (b) the assumed relationship between item scores and matching variables (i.e., 

parametric or nonparametric). Among binary DIF procedures, logistic regression was classified 

as both observed score and parametric; IRT-based procedures as both latent trait and parametric; 

MH and STAND methods as both observed score and nonparametric; and SIBTEST2 as both 

latent trait and nonparametric. Among the polytomous methods, logistic regression was 

classified as both observed score and parametric; IRT-based methods as both latent trait and 

parametric; poly-SIBTEST (Chang et al., 1996) and generalized partial credit model DIF 

(Muraki, 1993) as both nonparametric [sic] and latent trait, and the STAND, generalized MH 

(Mantel & Haenszel, 1959; Zwick , Donoghue, & Grima, 1993), HW1 (Welch & Hoover, 1993), 

HW3 (Welch & Hoover, 1993), and Mantel (Dorans & Schmitt, 1993; Mantel, 1963; Zwick et 

al., 1993) procedures were classified as both observed score and nonparametric. 

4. Classification Using DIF Criteria  

In what follows, our DIF classification will include the following criteria: (a) null DIF, 

(b) studied item score, (c) matching variable, and (d) grouping variable. Each of these criteria 

will be explained below.  

Null DIF is the absence of DIF. One definition of null DIF, observed-score null DIF, is 

that all individuals with the same score on a test should have the same proportions answering the 

item correctly regardless of whether they are from the reference or focal group. The latent-

variable definition of null DIF compares the performance of focal and reference subgroups that 

are matched with respect to a latent variable. 

The studied item score refers to the scoring rule used for the items being studied for DIF. 

Studied items can either be scored as correct/incorrect (i.e., binary) or scored using more than 

two response categories (i.e., polytomous). 

The matching variable is a variable used in the process of comparing the reference and 

focal groups (e.g., total test score or subscore) so that comparable groups are formed. In other 
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words, matching is a way of establishing score equivalence between groups that are of interest in 

DIF analyses. The matching variable can either be an observed score or an unobserved latent 

variable and either a univariate or a multivariate variable. 

In most DIF analyses, a single focal group is compared to a single reference group where 

the subgroup classification variable (i.e., gender, race, geographic location, etc.) is referred to as 

the grouping variable. This approach ignores potential interactions between types of subgroups, 

(e.g., male/female and ethnic/racial). Although it might be better to analyze all grouping 

variables for DIF simultaneously, (for statistical and computational efficiency) most DIF 

methods compare only two groups at a time (Zhang, Dorans, & Matthews-Lopez, 2005). 

What follows is a classification and summary of DIF methods according to the following 

general groupings: (a) expected item score methods, (b) nonparametric odds ratio methods, (c) 

generalized linear model methods, and (d) IRT-based methods. 

4.1 Expected Item Score Methods 

The null-DIF definition of expected item score methods states that, at each level of the 

matching variable, there is no difference in proportions correct between the reference and focal 

groups. In other words, this definition implies that there is a zero difference in the expected item 

score given the matching variable (Potenza & Dorans, 1995). STAND was tabbed as the 

progenitor to SIBTEST by Shealy and Stout (1993), since both methods use the concept of 

expected item score. For this reason, the two methods will be evaluated alongside each other. 

STAND has undergone extensions that include polySTAND (Dorans & Schmitt, 1993) and Cdif 

(Dorans, Schmitt, & Bleistein, 1992) which were discussed by Potenza and Dorans (1995). This 

paper will revisit STAND and will also discuss two newer developments: smoothed STAND 

(Lyu, Dorans, & Ramsay, 1995) and DIF dissection (Zhang et al., 2005). 

Over the years, several enhancements and new applications of SIBTEST have been 

documented. For example, SIBTEST was extended for use with item bundles (Douglas, Roussos, 

& Stout, 1996; Gierl et al., 2001; Gierl & Bolt, 2001) and for detection of DIF in polytomous 

items (Chang, Mazzeo, & Roussos, 1993, 1996). STAND and SIBTEST methods (i.e., 

SIBTEST, kernel smoothed SIBTEST and MULTISIB) are evaluated in Appendix A, and 

explanations of this evaluation are provided below. 

STAND and smoothed STAND have the same DIF classifications because both these 

observed-score methods use binary scored items and a univariate matching variable. Both 
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methods also use a single grouping variable. DIF dissection essentially has the same 

classifications as STAND and smoothed STAND, with the only difference being that it allows 

the use of either single or multiple grouping variables. Instead of a series of traditional one-way 

DIF analyses contrasting each focal group with a reference group, DIF dissection allows for the 

study of interactions among the DIF analysis variables. For example, instead of simply analyzing 

gender DIF or ethnicity/race DIF separately, they are analyzed simultaneously. 

The SIBTEST, kernel smoothed SIBTEST (Douglas, Stout, & DiBello, 1996), and 

MULTISIB (Stout, Li, Nandakumar, & Bolt, 1997) methods use similar classifications. All three 

methods use a latent-score definition of null DIF with binary scored items. SIBTEST and kernel 

smoothed SIBTEST both employ a single grouping variable, while MULTISIB uses a 

multivariate matching variable. In practice, however, SIBTEST uses an observed score for 

matching purposes. 

4.2 Nonparametric Odds Ratio Methods 

Several extensions that have been made to the MH procedure will be discussed in this 

section. Besides the MH method, the Cochran-Mantel-Haenszel method (CMH; Meyer, Huynh, 

& Seaman, 2004), the Liu-Agresti estimator (Penfield & Algina, 2003) and Cox’s β (Camilli & 

Congdon, 1999) will be discussed. All the methods in this section share the characteristic of 

estimating odds ratios using nonparametric techniques. Additionally, all these methods fit the 

same DIF classification criteria, except for MH, which is only used with binary items. CMH, the 

Liu-Agresti estimator, and Cox’s β can study either binary or polytomous items. These 

classifications are presented in their entirety in Appendix B. 

MH is one of the most commonly used DIF methods, and a description of extensions to 

MH-related methods will add an important component to our review of recent developments in 

DIF. The first MH extension used exact, instead of asymptotic, statistics (Parshall & Miller, 

1995) to analyze DIF for small samples. Another extension aimed at reducing Type I error and 

increasing power used MH methods for multiple subgroup comparisons (Penfield, 2001). 

Additionally, Zwick et al. (1997, 1999, 2000) along with Sinharay, Dorans, Grant, and Blew (in 

press) provided an enhancement to MH DIF analysis using Bayesian approaches. 

An index to measure the variance of differential test functioning (DTF) was proposed by 

Camilli and Penfield (1997) and then extended to mixed-format tests by Penfield and Algina 
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(2006). Based on DTF, Penfield and Algina (2006) formulated generalized DIF effect variance 

estimators to provide indices for evaluating DIF effects across items in a test and translated these 

into the popular ( )log MHα  classification scheme (Holland & Thayer, 1988). With this approach, 

the magnitude of DIF can be evaluated for both the test and its items, with the items being 

binary, polytomous, or a combination of the two. The DTF approach of Penfield and Algina 

(2006) is closely related to the Liu-Agresti estimator and Cox’s β methods. Another MH-related 

advancement is the use of the Mantel test of linear association for analyzing polytomous items 

(Zwick et al., 1993). 

In prior research, the CMH procedure was used for analyzing DIF among both binary and 

polytomous items (Dorans et al., 1992; Holland & Thayer, 1988; Zwick & Thayer, 1996; Zwick, 

Thayer, & Mazzeo, 1997). However, further research showed that evaluations of DIF by 

comparing CMH to exact nonparametric approaches (e.g., Wilcoxon Rank Sum Test and van der 

Waerden Normal Scores test) on both statistical and practical significance, provided evidence 

that CMH is useful for evaluating polytomous item DIF for small samples (Meyer et al., 2004). 

The Liu-Agresti estimator estimates common odds ratios and is an interesting generalization of 

MH in that it employs an effect size estimator and is flexible enough to allow for tests of 

significance, Bayesian analyses of DIF, and variance-based estimators of DTF. Cox’s β was 

shown to be particularly useful with the partial credit model, but as noted above, it is also useful 

with binary scored items. 

4.3 Generalized Linear Model Methods 

The next group of methods is labeled generalized linear model (GLM) methods, since 

these methods model data that is linearly based on assumed probability distributions (see 

McCullagh & Nelder, 1989). The GLM methods are of three types: mixture, hierarchical, and 

logistic. There are five methods altogether, including the following: (a) logistic regression (LR) 

models, (b) logistic mixed models, (c) mixture models, (d) hierarchical generalized linear models 

(HGLM), and (e) hierarchical logistic regression (HLR) models. All of the aforementioned 

methods except for LR have appeared in the literature since 2002. 

Each of these methods has interesting characteristics and is worthy of further study. LR 

was extended to polytomous items (French & Miller, 1996; Rogers & Swaminathan, 1993) and 

ordered response items (Kristjansson, Aylesworth, McDowell, & Zumbo, 2005) after it was first 
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proposed by Swaminathan and Rogers (1990) for use with binary scored items. Logistic mixed 

models (Van den Noortgate & De Boeck, 2005) are based on the assumption that item-level DIF 

can be modeled using a random effects model. Mixture IRT models provide a basis for 

understanding the causes of DIF through exploratory mixture model analysis, which is used to 

define the primary dimension(s) that contribute to DIF as well as the basis for follow-up studies 

to evaluate examinee characteristics associated with the defined dimensions (Cohen & Bolt, 

2005). A further look at mixture models was provided in the mixture distribution 

conceptualization of de Ayala et al., (2002). Both HGLM (Cheong, 2006; Williams & Beretvas, 

2006) and HLR (Swanson, Clauser, Case, Nungster, & Featherman, 2002) take advantage of  

hierarchical structure in the data and allow simultaneous modeling of additional relevant factors 

and variables. 

The only characteristic that GLM methods have in common is the use of a univariate 

matching variable—except for LR and HLR, which can use either univariate or multivariate 

matching. Mixture models and logistic mixed models have a latent-based null-DIF definition and 

are used with binary scored items. The former can employ both single and multiple grouping 

variables, while the latter can use only a single grouping variable. HLR is used with binary 

scored items and either single or multiple grouping variables, and it has a latent score-based 

definition of null DIF. LR uses only a single grouping variable and a binary or polytomous 

studied item score. There are two opinions on the definition of null DIF for LR. Shealy and Stout 

(1993) classify it as a latent-score method, while Potenza and Dorans (1995) classify it as an 

observed-score method. 

HGLM is somewhat different from the other GLM methods. It can be used with both 

binary or polytomous items, and it is able to employ either single or multiple grouping variables. 

The classifications for these methods are presented in Appendix C. 

4.4 IRT-Based Methods 

The last set of methodological developments in DIF has a strong IRT basis. The first 

method is DFIT, which is an IRT-based framework for assessing differential item functioning of 

items and tests (Oshima et al., 1997; Oshima, Raju, Flowers, & Slinde, 1998; Raju, van der 

Linden, & Fleer, 1995). It estimates the expected between-group squared difference in true 

scores after conditioning on ability and can be used with binary or polytomous data (Bolt, 2002; 

Flowers, Oshima, & Raju, 1999). 

http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(De+Ayala%2CR.+J.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Raju%2CNambury+S.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Flowers%2CClaudia+P.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Slinde%2CJeffrey+A.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Flowers%2CClaudia+P.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Raju%2CNambury+S.)
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The next method classified is TestGraf. This is a graphical DIF method with kernel 

smoothing for estimating the conditional probability of correct answers related to proficiency 

estimates (Bolt & Gierl, 2006; Ramsay, 2000). One part of TestGraf is called TESTCOMP, and 

it graphically compares the item response functions of reference and focal groups in a DIF 

analysis. Scrams and McLeod (2000) also formulated a graphical DIF analysis method, which 

has the big advantage of being able to detect DIF at specific points along the ability scale where 

subgroup performance differs. The multiple indicator, multiple causes (MIMIC) confirmatory 

factor analysis model provided another new approach to DIF analysis (Muthén, 2002). It is 

linked to both the normal ogive IRT model and structural equation modeling. 

The last three approaches are the Lagrangian multiplier tests (Glas, 1999), random 

coefficient multinomial logits (RCML; Moore, 1996) and McDonald’s DIF approach (1999). 

Lagrangian multiplier tests most closely resemble the likelihood ratio test and the Wald test. 

Their biggest advantage is the flexibility to conduct DIF analyses with both binary and 

polytomous IRT models. RCML is versatile and useful for detecting DIF based on many 

different types of Rasch models. Lastly, McDonald’s approach is flexible and analyzes DIF 

using a factor analytic model that mimics IRT models. 

All the IRT-based methods use a latent score in their definition of null DIF. Additionally, 

all the methods are capable of being used with either binary or polytomous items, with the only 

exception being the MIMIC model, which is used to study only binary items. TestGraf, the 

Scrams-McLeod method, and the MIMIC model can use either single or multiple grouping 

variables, while the remaining methods can use only single grouping, with the exception of 

McDonald’s method, for which it was unclear whether it is also capable of using multiple 

grouping variables. The TestGraf and Scrams-McLeod methods use only a univariate matching 

variable. The Lagrangian multiplier and RCML methods can use a univariate matching variable, 

but it is unclear whether these two methods can also use multivariate matching. However, DFIT, 

the MIMIC model, and McDonald’s method can use either univariate or multivariate matching. 

A summary of DIF classifications for IRT-based methods is provided in Appendix D. 

5. Classification Using Statistical Criteria 

Statistical criteria that are used for evaluating DIF results or the quality and accuracy of 

DIF findings are presented in this section. The statistical criteria that will be used for classifying 

DIF methods are (a) the link to test theory, (b) the existence of an interpretable measure of the 
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amount of DIF, (c) the existence of a standard error estimate, (d) the existence of a test of 

significance, and (e) the manner in which the item or matching variable is estimated. These 

criteria are helpful because they allow practitioners to gauge the usefulness of each method from 

a theoretical perspective. Appendixes E to H present the statistical criteria used for evaluating 

these DIF methods. 

5.1 Link to Test Theory 

Link to test theory describes whether the DIF method is formulated based on one of the 

two measurement paradigms (i.e., classical test theory or IRT) or uses neither of the two. All the 

IRT-based methods along with logistic mixed models, mixture models, Cox’s β, HLR, and 

HGLM have an IRT basis, while all the SIBTEST-based methods have both an IRT and classical 

test theory (CTT) basis. MH, CMH, and the STAND-based methods have a CTT basis, while the 

Liu-Agresti estimator is not linked to test theory. Although the LR procedure was not derived 

from test theory, some might consider it to be related to test theory, since the logistic regression 

function and the linear model in LR both have similar forms in IRT and CTT. 

5.2 Interpretable Measure of Amount of DIF 

In DIF analyses it is helpful to report the amount of DIF exhibited by an item and not 

merely whether or not DIF is exhibited. This is akin to reporting effect sizes and is used in 

ascertaining the practical significance of DIF when it is detected. Expected item score methods 

all use some form of item score difference. In the case of STAND, it is a standardized difference 

in the proportion correct between reference and focal group on the studied item, while for 

SIBTEST the difference between reference and focal groups at each score point is weighted by 

the proportion of individuals in the focal group who have that score. All the nonparametric odds 

ratio methods use some form of odds ratio to measure the practical significance of DIF when it is 

detected. For ease of interpretation, these methods often compute the logarithm of these odds 

ratios with special formulations such as the MH delta and Liu-Agresti common odds ratio being 

used for MH and the Liu-Agresti estimators, respectively. Several effect size measures exist for 

binary LR: (a) R2-like indices (see Jodoin & Gierl, 2001 and Zumbo, 1999), (b) log odds ratio, 

and (c) standardized proportion difference correct indices (see Monahan, McHorney, Stump, & 

Perkins, 2007). Similar measures could be derived for polytomous LR. R2-like and log odds 

estimates are used for HLR, while log odds ratios are used for the logistic mixed model. 
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Mixture models and HGLM use likelihood and log odds ratios, respectively. For RCML, 

it was unclear whether an interpretable measure of DIF exists, but it appears as though logits 

could be used for this purpose. Interpretable measures of the amount of DIF were not explicitly 

described for the Lagrangian multiplier tests and McDonald’s method, while DFIT uses 

compensatory (CDIF) and noncompensatory (NCDIF) DIF statistics for quantifying the amount 

of DIF. TestGraf measures the amount of DIF using a root mean square average difference 

between each focal group and the reference group for individual items (Gierl & Bolt, 2001). 

Lastly, the Scrams-McLeod method uses the MH statistic to measure the amount of DIF. 

5.3 Standard Error Estimate 

Reporting standard errors helps in assessing the amount of random variability associated 

with DIF estimates. Generally, expected item score methods, nonparametric odds ratio methods, 

and GLM methods (with the exception of mixture models) have standard error estimates. All the 

IRT-based methods have standard error estimates except for the CDIF component of DFIT. 

5.4 Test of Significance 

SIBTEST methods use a test of significance based on the ratio of β̂  (a parameter 

estimate specifying the amount of DIF) to its standard error. MH, CMH, LR, mixture models, 

and DFIT use a chi-square test of significance. DFIT can also use a t test of significance, but 

these significance tests do not apply to CDIF. HLR, HGLM, and the MIMIC model detect DIF 

by testing the significance of model coefficients, and RCML uses Hotelling’s T. The Liu-Agresti 

estimator uses a cumulative common odds ratio index, Cox’s β uses a β statistic, logistic mixed 

models use the Wald test, while Lagrangian multiplier tests have a test of significance related to 

the difference between the observed and expected number of persons in the focal group scoring 

in a particular category (i.e., correct/incorrect or polytomous category) for each item. 

5.5 Estimation of Item/Matching Variable Relationship 

Some DIF methods use a functional form for modeling the relationship between item 

score and matching variable; these are referred to as parametric. Nonparametric estimation may 

be preferable because it does not make any model-based assumptions about the form of the 

item/ability regression. All the nonparametric odds ratio and expected item score methods 
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employ nonparametric estimation. All the IRT-based methods employ parametric estimation 

except for TestGraf. Similarly, all the GLM methods employ parametric models. 

6. Classification Using Practical Criteria 

To be used in practice, a DIF method must be efficient as well as easy to use. Sequential, 

iterative evaluation at each step is a luxury that cannot be afforded in practice. The practical 

criteria used for classifying the DIF methods discussed in this paper are (a) procedural 

requirements, (b) computational intensity, and (c) cost. A summary of classifications based on 

practical criteria is also presented in Appendixes E to H. 

6.1 Procedural Requirements 

More complex models often require more time to manipulate and process variables. 

Therefore, preferred methods have simple underlying models with simple procedural 

requirements. All the nonparametric odds ratio methods, STAND methods, LR, logistic mixed 

models, the Scrams-McLeod method, TestGraf, RCML, SIBTEST methods, and McDonald’s 

method are simple, since they do not require difficult manipulation of data or variables, repeated 

analyses, or iterations to ensure accuracy or model fit. The computer software is also easy to use. 

The procedural requirements of the HLR, Lagrangian multiplier tests, and HGLM are moderately 

demanding, since an appreciable amount of data or software manipulation is required. 

The DFIT, mixture model, and MIMIC models are viewed as labor intensive. Most 

notably, mixture models use Markov chain Monte Carlo (MCMC) methods, which can 

sometimes take a considerable amount of time for solutions to be found (due to computational 

demands). Moreover, the MIMIC and DFIT methods sometimes require multiple evaluations and 

the use of various combinations of variables before analyses can be considered complete. 

6.2 Computational Intensity 

The amount of time it takes to manipulate data and complete DIF analysis computations is 

of critical importance in practice. Specifically, speed and efficiency are valued under stringent 

analysis and reporting schedules. Additionally, the computational efficiency of DIF methods adds 

to cost savings. Nonparametric methods tend to have lower computational intensity. The GLM 

methods are generally more computationally intensive, with mixture models being the most 

intensive because they use MCMC methods. However, with increased computing power, 
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computational intensity is not as big an issue as it has been in the past; however, convergence may 

be an issue with MCMC methods. The computational requirements of MULTISIB are not clear. 

6.3 Cost 

The degree to which a DIF method can be used with ease in practice is largely a function 

of the human resources needed to evaluate results and the extent to which these results are easy 

to interpret, along with the aforementioned practical criteria. Hence, the expected item scores 

methods, TestGraf, RCML, McDonald’s method, and LR are likely to be inexpensive. The cost 

of the nonparametric odds ratio and Scrams-McLeod approach methods is variable depending on 

the number of sets of odds ratios being studied. MULTISIB’s cost is also variable, since 

dimensionality analyses are not always easy or straightforward. Methodological complexities 

(e.g., data manipulation, iterative variable, and fit evaluations) led to the classification of HGLM, 

HLR, the MIMIC model, and Lagrangian multiplier tests as likely to be expensive. Logistic 

mixed models, mixture models, and DFIT are also likely to be expensive due to the complexity 

of parameter estimation, high labor intensity, and the need for iterative evaluations of model fit. 

7. Discussion and Conclusions 

The purpose of this paper was to evaluate DIF methods that have appeared over the past 

15 years in the research literature. Specifically, the focus was on methods that appeared after the 

publication of the Potenza and Dorans (1995) DIF taxonomy. This paper was motivated by the 

need to address recent challenges (e.g., small sample sizes) and emerging testing contexts (e.g., 

the increased numbers of non-native English-speaking examinees and examinees with learning 

disabilities). Many of the innovations in the literature have failed to address these issues, 

suggesting a disconnect between the interests of the theoreticians and the needs of the 

practitioner .Some of the evaluated methods appear promising. There are also other noteworthy 

extensions to DIF analyses that will be discussed briefly below. 

As noted previously, one of the motivations for this review was to find DIF methods that 

work well with small samples. CMH (Meyer et al., 2004; Parshall & Miller, 1995) has been 

studied as a potential solution and may be worthy of further investigation, because comparisons 

of its statistical and practical significance findings to those of exact nonparametric approaches 

produced comparable results. Other approaches to small sample DIF analysis, for example, 

Bayesian methods (Sinharay et al., in press) or smoothing techniques (Puhan et al., 2007), have 
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not succeeded in lowering the minimum sample size threshold. Therefore, continued research in 

this area is still needed. 

Increased recognition of the complexity of tests implies the future importance of 

multidimensional DIF. This approach has already been illustrated in several studies (Camilli, 

1992; Gierl, Bisanz, Bisanz, & Boughton, 2003; Walker & Beretvas, 2001). Even so, there are 

only a few promising approaches (Roussos & Stout, 1996; Stout et al., 1997), and they are 

unlikely to be used operationally. Therefore, more research should be conducted to find methods 

that can be used in practice. 

Another promising DIF approach is differential distractor functioning (DDF). This 

approach entails the analysis of distractor choices among those who answer an item incorrectly, 

but it cannot be considered a new method since it is based on STAND (Dorans et al., 1992) and 

log-linear approaches (Green, Crone, & Folk, 1989). DDF could help test developers understand 

group differences in testing through the analysis of differences in response option choices and 

provide a means for supporting substantive and qualitative interpretation of DIF analyses. DDF 

is predicated on the premise that incorrect answer options are differentially attractive to 

examinees of different backgrounds. It has the potential of providing supporting data and 

analysis to corroborate or refute proposed reasons why subgroup response differences may or 

may not be construct relevant, or to determine whether DIF might be attributable to specific 

features of an item (such as a specific distractor). 

Using the DTF approach, the overall impact of DIF effects when combined across the 

items in a test can be studied for binary, polytomous, and multidimensional tests (see McDonald, 

1999; Raju et al., 1995). Out of all the observed score matching methods we evaluated, the Liu-

Agresti estimator was the only one that illustrated the use of the DTF framework. Several latent 

score matching methods that were evaluated are capable of performing DTF analyses (e.g., 

SIBTEST, DFIT, and McDonald’s method). Aside from score equity assessment (Dorans, 2004), 

the only other approach to detecting the differential prediction of a test is through DTF analysis. 

Given the wide variety of new DIF methods, it is likely that their efficiency at detecting 

problematic items will vary. Comparisons of these new methods would be an important next step 

in ascertaining their suitability for practical use. This type of evaluation could be completed with 

the participation of test developers and content experts so that the efficiency of each method is 

thoroughly evaluated. Additionally, extensive and rigorous study of these DIF methods would be 
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needed in order to determine minimum and maximum sample sizes required for drawing 

accurate inferences. 

Lastly, during our review we found an interesting paradigmatic debate that is related to 

the practical applicability of these new DIF methods. This debate relates to the Holland (1994) 

and Wainer (1993) discussion of the impact and merits of viewing tests according to the themes 

of measurement versus contest. When a test is viewed as a measurement, the focus is on its 

measurement properties such as reliability and validity. This view is consistent with modeling 

examinee ability in terms of underlying latent traits. In the contest view, however, the emphasis 

is on fair play and is consistent with the simple “number correct” score approach, which is easily 

understood by the examinee and easy to compute. Hence, from a contest perspective, and given 

the fact that DIF was designed to address the contest aspects of testing, procedures that employ a 

null DIF definition that conditions on the observed score of interest, namely the reported test 

score, would be preferred over those that do not condition or match on the reported score. 

Therefore, if the contest view were to be adopted, half the methods in Appendixes A and C and 

all the methods in Appendix D would be eliminated from consideration. 

In this paper, several DIF, statistical and practical criteria were proposed for evaluating 

the efficiency and appropriateness of DIF methods for practical use. These criteria will be 

helpful to practitioners as they appraise the applicability of new DIF methods in their testing 

programs. Moreover, this paper fosters a continual updating of knowledge about DIF that in turn 

will encourage and ensure the enhancement of test quality and equity in practice. 
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Notes 
1 This paper uses STAND as the same acronym for what has been called STD or STND in the 

past. 

2 SIBTEST is a latent trait approach in theory. In practice it uses estimated true scores, which are 

group-specific transformed observed scores, as a matching variable. Hence it is difficult to 

classify. 
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Appendix A 

Classification of Expected Item Score Methods 

  Method 

Category Description STAND Smoothed 
STAND DIF dissection SIBTEST 

Kernel 
smoothed 
SIBTEST 

MULTISIB 

Source  
Dorans & 

Kulick 
(1986) 

Lyu, 
Dorans, & 
Ramsay 
(1995) 

Zhang, Dorans, & 
Matthews-Lopez 

(2005) 
Shealy & 

Stout (1993) 

Douglas, Stout, 
& DiBello 

(1996) 

Stout, Li, 
Nandakumar, & 

Bolt (1997) 

Null DIFa 
P(Y|O,G) = P(Y|O) [O] 
vs.  
P(Y|L,G) = P(Y|L) [L] 

O O O L L L 

Studied  
item score 

Binary (B) vs. 
polytomous (P) B B B B B B 

Matching 
variable 

Univariate (U) vs. 
multivariate (M) U U U U U M 

Grouping 
variable 

Single (S) vs.  
multiple (M) S S S/M S S S 

Notes. DIF = differential item functioning. STAND = standardization. 
a Where Y = observed score (univariate/multivariate) provided by a measuring instrument as a random variable, L = latent/unobserved 

variable for which Y is the intended observed indicator (can be univariate/multivariate), O = observed total test score 

(univariate/multivariate), which can serve as a stratifying variable when examining DIF, G = grouping variable 

(univariate/multivariate), typically of demographic information (e.g., race, gender). 
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Appendix B 

Classification of Nonparametric Odds Ratio Methods 

  Method 

Category Description Mantel-Haenszel Cochran-Mantel-
Haenszel Liu-Agresti estimator Cox’s β  

Source  Holland & Thayer 
(1988) 

Meyer, Huynh, & 
Seaman (2004); 

Parshall & Miller 
(1995) 

Penfield & Algina 
(2003) 

Camilli & Congdon 
(1999) 

Null DIFa 
P(Y|O,G) = P(Y|O) [O]  
vs.  
P(Y|L,G) = P(Y|L) [L] 

O O O O 

Studied 
item score 

Binary (B) vs.  
polytomous (P) B B/P B/P B/P 

Matching  
variable 

Univariate (U) vs. 
multivariate (M) U U U U 

Grouping  
variable 

Single (S) vs.  
multiple (M) S S S S 

Notes. DIF = differential item functioning. 
a Where Y = observed score (univariate/multivariate) provided by a measuring instrument as a random variable, L = latent/unobserved 

variable for which Y is the intended observed indicator (can be univariate/multivariate), O = observed total test score 

(univariate/multivariate), which can serve as a stratifying variable when examining DIF, G = grouping variable 

(univariate/multivariate), typically of demographic information (e.g., race, gender). 
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Appendix C 

Classification of Generalized Linear Model Methods 

    Method   

Category Description Logistic regression Hierarchical logistic 
regression 

Logistic  
mixed model Mixture model HGLM 

Source  

Swaminathan & 
Rogers (1990); 

French & Miller 
(1996); Rogers & 

Swaminathan 
(1993) 

Swanson, Clauser, 
Case, Nungster, & 
Featherman (2002) 

Van den 
Noortgate & De 
Boeck (2005) 

Cohen & Bolt 
(2005) 

Cheong 
(2006); 

Williams & 
Beretvas 
(2006) 

Null DIFa 
P(Y|O,G) = P(Y|O) [O] 
vs.  
P(Y|L,G) = P(Y|L) [L] 

O/L L L L L 

Studied  
item score 

Binary (B) vs.  
polytomous (P) B/P B B B B/P 

Matching  
variable 

Univariate (U) vs. 
multivariate (M) U/M U/M U U U 

Grouping  
variable 

Single (S) vs.  
multiple (M) S S/M S S/M S/M 

Note. DIF = differential item functioning; HGLM = hierarchical generalized linear model. 
a Where Y = observed score (univariate/multivariate) provided by a measuring instrument as a random variable, L = latent/unobserved 

variable for which Y is the intended observed indicator (can be univariate/multivariate), O = observed total test score 

(univariate/multivariate), which can serve as a stratifying variable when examining DIF, G = grouping variable 

(univariate/multivariate), typically of demographic information (e.g., race, gender). 
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Appendix D 

Classification of IRT-Based Methods 

  Method 

Category Description DFIT TestGraf Scrams-
McLeod  

MIMIC 
model  

Lagrangian 
multiplier tests RCML McDonald’s 

Source  

Raju, van der 
Linden, & Fleer 
(1995); Oshima, 
Raju & Flowers 
(1997); Flowers, 
Oshima, & Raju 

(1999) 

Ramsay 
(2000); Gierl 

& Bolt 
(2001) 

Scrams 
& 

McLeod, 
(2000) 

Muthén 
(2002) Glas (1999) Moore 

(1996) 
McDonald 

(1999) 

Null DIFa 
P(Y|O,G) = P(Y|O) [O] 
vs.  
P(Y|L,G) = P(Y|L) [L] 

L L L L L L L 

Studied  
item score 

Binary (B) vs. 
polytomous (P) B/P B/P B/P B B/P B/P B/P 

Matching 
variable 

Univariate (U) vs. 
multivariate (M) U/M U U U/M U/? U/? U/M 

Grouping 
variable 

Single (S) vs.  
multiple (M) S S/M S/M S/M S S S/? 

Note. DFIT = differential functioning of items and test; DIF = differential item functioning; MIMIC = multiple indicator, multiple 

causes; RCML = random coefficient multinomial logits. 
a Where Y = observed score (univariate/multivariate) provided by a measuring instrument as a random variable, L = latent/unobserved 

variable for which Y is the intended observed indicator (can be univariate/multivariate), O = observed total test score 

(univariate/multivariate), which can serve as a stratifying variable when examining DIF, G = grouping variable 

(univariate/multivariate), typically of demographic information (e.g., race, gender). 

http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Raju%2CNambury+S.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Flowers%2CClaudia+P.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Flowers%2CClaudia+P.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Oshima%2CT.C.)
http://www.leaonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Raju%2CNambury+S.)
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Appendix E 

Evaluation of Expected Item Score Methods Based on Statistical and Practical Criteria 

 Method 

Criteria STAND Smoothed 
STAND DIF dissection SIBTEST Kernel smoothed 

SIBTEST MULTISIB 

Statistical       
Link to test theory CTT CTT CTT IRT & CTT  IRT & CTT  MIRT & CTT  

Interpretable measure of 
amount of DIF  

Standardized 
expected item score 

measure in focal 
group metric 

Standardized 
expected item 
score measure 
in focal group 

metric 

Standardized 
expected item score 

measure in focal 
group metric 

Weighted 
mean 

difference 

Weighted mean 
difference 

Weighted mean 
difference 

Standard error estimate Yes Yes Yes Yes Yes Yes 

Test of significance  None None None SIB test 
statistic SIB test statistic SIB test 

statistic 
Estimation of 
item/matching variable 
relationship  

Nonparametric Nonparametric Nonparametric Nonparametric Nonparametric Nonparametric 

Practical       

Procedural requirements Simple Simple Simple Simple Simple Simple 

Computational intensity Low Low Low Low Low ? 

Cost Inexpensive Inexpensive Inexpensive Inexpensive 
Variable – based 

on smoothing 
efficiency 

Variable – 
depending on 
simplicity of 

dimensionality 
analyses 

Note. CTT = classical test theory, DIF = differential item functioning, IRT = item response theory, MIRT = multidimensional item 

response theory, STAND = standardization. 
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Appendix F 

Evaluation of Nonparametric Odds Ratio Methods Based on Statistical and Practical Criteria 

 Method 

Criteria Mantel-Haenszel Cochran-Mantel-Haenszel Liu-Agresti estimator Cox’s β 

Statistical     

Link to test theory CTT CTT  None IRT 

Interpretable measure of 
amount of DIF  MH log odds ratio estimate A set of odds ratios Liu-Agresti cumulative 

common odds ratio Log odds ratios 

Standard error estimate Yes Yes Yes Yes 

Index or test of significance 
based 

MH chi-square test of 
significance Chi-square test of significance Liu-Agresti cumulative 

common odds ratio Cox’s β test statistic 

Estimation of item/matching 
variable relationship Nonparametric Nonparametric Nonparametric Nonparametric 

Practical     

Procedural requirements Simple Simple Simple Simple 

Computational intensity Low Low Low Low 

Cost 
Variable – depends on how 

many sets of odds ratios 
are studied 

Variable – depends on how 
many sets of odds ratios are 

studied 

Variable – depends on how 
many sets of odds ratios are 

studied 

Variable – depends on 
how many sets of odds 

ratios are studied 

Note. CTT = classical test theory, DIF = differential item functioning, IRT = item response theory, MH = Mantel-Haenszel. 
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Appendix G 

Evaluation of Generalized Linear Model Methods Based on Statistical and Practical Criteria 

 Method 

Criteria Logistic regression Hierarchical logistic 
regression Logistic mixed model Mixture model HGLM 

Statistical      
Link to test theory None IRT IRT  IRT  IRT  

Interpretable 
measure of  
amount of DIF  

P-DIF, R2-like indices 
and log odds ratios can 

be used 

Effect size estimate 
based on log odds ratio 
or R2-like index based 
on change in variance 

components 

Log odds ratio 
estimate conditional 

on latent ability 
Likelihood ratio Log odds ratio 

Standard error 
estimate Yes Yes Yes Yes Yes 

Index or test of 
significance based  

Chi-square test of 
significance 

Significance test of 
model coefficients 

Wald test of 
significance 

Chi-square test of 
significance 

Chi-square significance 
test of model coefficients 

Estimation of 
item/matching 
variable 
relationship 

Parametric – requires 
fitting a logistic 

regression model for 
probability of answering 
an item correctly given 
fixed observed score 

Parametric – requires 
fitting a hierarchical 
linear model given 
examinees nested 

within items 

Parametric – fits 
logistic mixed model 

Parametric – assumes 
latent ability and 

latent class 
membership 

Parametric – assumes 
data fit a model in which 

subgroups are nested 
within items 

Practical      
Procedural 
requirements Simple Moderately demanding Simple Labor intensive Moderately demanding 

Computational 
intensity Low Low High High Low 

Cost Inexpensive 
Probably expensive –
due to methodological 

complexities 

Probably expensive – 
due to complexity of 
parameter estimation 

Expensive –due to 
computational 

requirements of 
MCMC methods 

Probably expensive –
because of 

methodological 
complexities 

Note. DIF = differential item functioning, HGLM = hierarchical generalized linear model, IRT = item response theory, MCMC = 

Markov chain Monte Carlo. 
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Appendix H 

Evaluation of IRT-Based Methods Based on Statistical and Practical Criteria 

 Method 

Criteria DFIT TestGraf Scrams-
McLeod  MIMIC model Lagrangian 

multiplier tests RCML McDonald’s 

Statistical        
Link to test theory IRT IRT IRT IRT IRT IRT IRT 

Interpretable measure of  
amount of DIF  

Compensatory 
(CDIF) & 

noncompensatory 
(NCDIF) DIF 

statistics 

Root mean 
square average 

difference 
MH statistic No No In theory No 

Standard error estimate Yes Yes Yes Yes Yes Yes Yes 

Index or test of 
significance based,  

Chi-square & t-
tests of 

significance 
None None 

Significance 
test of model 
coefficients 

Lagrangian 
multiplier test of 

significance 

Hotelling’s 
T None 

Estimation of 
item/matching variable 
relationship 

Parametric – data 
fits an IRT model Nonparametric 

Parametric – 
data fits an 
IRT model 

Parametric – 
data fits a CFA 

model 

Parametric – data 
fits an IRT model 

Parametric 
– data fits 

an IRT 
model 

Parametric – 
factor 

analytic 
approach 

Practical        

Procedural requirements Labor intensive Simple Simple Labor 
intensive 

Moderately 
demanding Simple Simple 

Computational intensity Low Low Low Low Low Low Low 

Cost Expensive – labor 
intensive 

Inexpensive – 
since it is 
simple to 

understand 
and interpret 

Variable – 
depends 

number of 
sets of odds 

ratios studied 

Probably 
expensive – 
because of 

methodological 
complexities 

Probably 
expensive – 
because of  

methodological 
complexities 

Inexpensive 
–simple to 
understand 

and 
interpret 

Inexpensive 
–simple to 
understand 

and interpret 

Note. DIF = differential item functioning, IRT = item response theory, MIMIC = multiple indicator, multiple causes, RCML = random 

coefficient multinomial logits. 




