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Abstract 

This study investigated the relationship between students’ actual performance (accuracy) and 

their subjective judgments of accuracy (confidence) on selected English language proficiency 

tests. The unidimensional and multidimensional IRT Rasch approaches were used to model the 

discrepancy between confidence and accuracy at the item and test level and to assess 

disattenuated strength of association between accuracy and confidence. The analysis results 

indicate a pattern of overconfidence bias (i.e., overestimation of success rate), which was related 

to item difficulty. In addition, the strength of association between accuracy and confidence 

dimension was relatively high: The confidence dimension explained 45% and 52% of the 

variability in the accuracy dimension for the two tests employed in this study. 

Key words: Confidence, Rasch model, accuracy, multidimensional Rasch model 
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Introduction 

Statistical modeling based on item response theory (IRT) has become one of the most 

widely used psychometric methods in educational testing. The Rasch (Rasch, 1980), two-

parameter, and three-parameter logistic models (Birnbaum, 1968) have become increasingly 

popular over the past 20 years, in particular for scaling, equating, item banking, computerized 

adaptive testing, standard setting, and test assembly purposes (see Embretson & Reise, 2000; 

Hambleton & Swaminathan, 1985; Hambleton, Swaminathan, & Rogers, 1991; Wright & Stone, 

1979; Yen & Fitzpatrick, 2006). 

In the field of decision making, measures of confidence and accuracy have been studied 

for economic and weather forecasting. Forecasters’ confidence and their actual performance are 

typically compared. In psychological and educational assessments, a concept of bias scores1 (i.e., 

differences between accuracy and confidence scores) was introduced (see Stankov & Crawford, 

1996; Stankov & Lee, 2007) and the relationship between confidence and accuracy has been 

examined, for the most part, by employing the calibration curves approach (see Hakstian & 

Kansup, 1975; Keren, 1991; Lichtenstein, Fischoff, & Phillips, 1982). 

The IRT approach has not been used in the studies of confidence and accuracy, but its 

methodological components can be very useful in helping to understand these constructs. IRT 

modeling utilizes a latent construct at the ability level, either at a local point or within a certain 

range, and can provide the means to estimate the discrepancy between confidence and accuracy 

at the item or test levels. The IRT item parameters (e.g., item difficulty) model stimulus 

characteristics, allowing us to further examine the stimulus properties and latent constructs of 

confidence and accuracy. 

For this current investigation, we employed one of the popular IRT models, the Rasch 

model, which exhibits additive conjoint measurement (Perline, Wright, & Wainer, 1979). 

Instruments fitting the Rasch model have sufficiency properties of simple observed statistics for 

model parameters, separablility of person and item parameters, and specific objectivity (Fischer, 

1995; Hoijtink & Boomsma, 1995; Molenaar, 1995; Rasch, 1966; Wright & Master, 1982). We 

explored in this study four substantive questions, as follows: 

1.   Are people’s confidence levels comparable to their accuracy levels? 

2.   Do people’s confidence levels change as their accuracy levels change? 

3.   Are people’s confidence levels related to the difficulty level of a specific task? 
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4.   What is the strength of association between people’s accuracy and confidence levels? 

A unidimensional Rasch model calibration was used to answer the first three questions, 

and a multidimensional Rasch model calibration was used for the last question. We also 

developed indices to express people’s confidence levels relative to their accuracy levels. Those 

indices were based on the unidimensional Rasch calibration results. Although these four 

questions could be investigated in a much more substantive manner, the focus of this paper is on 

illustrating the application of Rasch modeling and on proposing potentially useful tools in the 

context of researching the nature of the relationship between confidence and accuracy. 

Data 

The data for accuracy were based on the item responses from the Reading and Listening 

sections of an English language proficiency test (N = 820). We used 24 multiple-choice (MC) 

Reading items and 17 MC Listening items for this study. Each MC item had four options. All the 

MC items were dichotomously scored as either 0 (incorrect) or 1 (correct). 

The data for confidence were obtained from the participants’ self-rating on their level of 

confidence about getting each item correct. They were asked to give their subjective rating 

(expressed in percentage terms) immediately after responding to a test item. The question below 

along with the subjective rating range was given to the participants to rate their confidence: 

How Confident Are You That Your Answer Is Correct? 

This approach of collecting confidence levels has been employed by Crawford and 

Stankov (1996), Juslin (1994), Keren (1991), and Stankov and Crawford (1996). In Crawford 

and Stankov’s (1996) and Stankov & Crawford’s (1996) studies, the participants were allowed to 

use any integer number as a percentage to express their confidence levels (for instance, 53%). 

However, they used only numbers rounded to the nearest 10. With a convention of assigning 

20% as the lowest probability value to incorporate a guessing factor in MC questions with five 

options, a subjective probability range of 20% to 100% was used in this study. 

Method 

In this study, we have defined accuracy as the dimension underlying the performance on 

the English language proficiency test, and confidence as the dimension producing the subjective 

probability (i.e., a person’s subjective judgment on the correctness of each item, expressed as a 
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percentage). The Rasch model was fitted to the dichotomously scored item responses. The 

general form of the Rasch model for binary item responses is: 

)exp(1
)](exp[

)(
i

ii
ii

x
xXP

δθ
δθ

θ
−+
−

== , (1) 

where Xi is an indicator variable for the ith item (1 ≤ i ≤ I), xi is its realization (1 for correct and 0 

for incorrect), θ  is a person’s latent score (latent ability), and δi is the ith item difficulty. P(Xi = 

xi | θ ) is a probability of getting the ith item response xi for a person’s latent score θ. From this 

Rasch calibration, we obtained the objective probability for answering each item correctly for 

each person and his or her latent accuracy score. 

For research questions 1 and 2 (Are people’s confidence levels comparable to their 

accuracy levels? and Do people’s confidence levels change as their accuracy levels change?), the 

objective probability was compared with the subjective probability for each item and at the total 

test level. The probability comparisons and their interpretations are: 
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Overconfidence = 0* >− ii PP , and (4) 

Underconfidence = 0* <− ii PP , (5) 

where Pi is defined through Equation 1, acθ  is a latent accuracy score, πni is the nth person’s 

subjective probability on the ith item (1 ≤ n ≤ N), [ ]I ⋅  is an indicator function (1 if ( )âc n acθ θ= ; 0 

otherwise), and ( )âc nθ  is nth person’s estimate on the latent accuracy dimension. Equation 3 is a 

regression of the subjective rating onto accuracy and is estimated by averaging the subjective 

rating for all participants with the same ability on the accuracy dimension. Objective probability 

and person latent scores are obtained through the unidimensional Rasch model calibration for the 

accuracy data. Subjective probability is estimated by Equation 3. A summary statistic for the 

discrepancy between confidence and accuracy at the item level can be expressed as: 
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Item-level discrepancy index (IDIi) = ∑ −
ac

acii wPP
θ

θ )()( * , (6) 

where w(θac) is a relative frequency of a person’s latent score distribution at θac , that is, 

N
N

w ac
ac

θθ =)(  , (7) 

with N = total sample size and 
ac

Nθ = number of persons at θac ,  

Overconfidence: IDIi > 0 for the ith item, and (8) 

Underconfidence: IDIi < 0 for the ith item. (9) 

In this study, we classify the size of IDI by the differential item functioning (DIF) effect size on 

the probability scale suggested by Dorans and Holland (1993). In their classification, sizes |0.05| 

and |0.10| are used as thresholds for negligible, medium, and large DIF. With this rule applied to 

the discrepancy between accuracy and confidence, the following criteria for overconfidence can 

be established: 

Large discrepancy = IDIi > 0.10, (10) 

Medium discrepancy = 0.05 < IDIi ≤ 0.10, and (11) 

Small or negligible discrepancy = 0< IDIi ≤ 0.05. (12) 

For underconfidence, the thresholds −0.05 and −0.10 are used for classification. These IDI cutoff 

points can be seen as arbitrary choices, but no such theoretical cutoff points had been established 

at the time that this paper was written. We introduce these rules as a start, and their usefulness 

can be verified in future studies. 

An index for the discrepancy between confidence and accuracy at the test level in a given 

θac is defined as follows: 

Objective expected score = ∑
i

iP , (13) 

Subjective expected score = ∑
i

iP* , (14) 
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Overconfidence at the total test score level = ∑∑ −
i

i
i

i PP*  > 0, and (15) 

Underconfidence at the total test score level = ∑∑ −
i

i
i

i PP*  < 0. (16) 

A summary statistic for the test-level discrepancy index (TDI) for a given θac is defined as: 

TDI = )(][ *
ac

i i
ii wPP

ac

θ
θ
∑ ∑ ∑− , (17) 

Overconfidence on average: TDI > 0, and (18) 

Underconfidence on average: TDI < 0. (19) 

A more flexible version of the TDI may be expressed as: 

Discrepancy percentage (DP) = 
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where the test length is the number of items used in the calculation. The DP is a signed measure 

of underconfidence or overconfidence standardized by the test length, which is an adjustment for 

comparisons between tests with different test lengths. 

For the person latent score estimation, the expected a posteriori (EAP; Bock & Mislevy, 

1982) estimator was used. The EAP is an expectation of a person’s posterior probability on the 

ability distribution given the person’s item response string ),,,( 21 ′= IxxxX  and the item 

parameters { }iδ . Its mathematical expression is:  

( ,{ }) ( )
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The prior distribution for θ, g(θ), was assumed to follow a univariate normal distribution for the 

unidimensional Rasch calibrations and a bivariate normal distribution for the multidimensional 

Rasch calibrations. 

To answer our third research question (Are people’s confidence levels related to the 

difficulty level of a specific task?), the item difficulties obtained from the unidimensional Rasch 

calibrations were compared to the item-level discrepancy index. In order to answer the fourth 
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research question (What is the strength of association between people’s accuracy and confidence 

levels?), the variance-covariance matrix for the accuracy and confidence dimensions was 

estimated by a multidimensional Rasch modeling. Because the participants provided their 

confidence ratings in a probabilistic response metric, we simulated the dichotomous item 

responses for the confidence dimension. Assuming that the confidence rating is the subjective 

probability defined by the item response function, IRF(θac, θco), where θco is a latent confidence 

dimension, (θac, θco) that follows a bivariate distribution with mean vector γ and variance-

covariance ∑, and assuming strict monotonicity of IRF with regard to the latent dimension for 

confidence θco,
2 the subjective probability rating can be expressed as: 

coSubjective probability rating IRF ( , ) IRF ( ) ( 1 )ni ac co ni co niP Yθ θ θ θ≡ = = = , (22) 

co co for  = 1 if ( 1 ) ~ (0,1),  or
                       0 otherwise,

ni niY P Y u uniformθ θ= >
 (23) 

where Yni is nth person’s ith item response from the confidence dimension coθ , and u is a random 

draw from the standard uniform distribution. The equality between IRF ( , )ni ac coθ θ  and 

IRF ( )ni coθ in Equation 22 is due to the simple structure (i.e., an item loads onto a single 

dimension) in the model data fitting. 

The multidimensional Rasch model used in this study has the following form: 

exp[ ( )]( )
1 exp( )

id d id
id id d

d id

xP X x θ δ
θ

θ δ
−

= =
+ −

, (24) 

where d is an indicator (for either accuracy or confidence) on which dimension the ith item 

loads, and δid is the ith item difficulty on dimension d. The variance-covariance matrix was 

modeled through (θac, θco ) ~ MVN(μ, Σ), where MVN stands for multivariate normal 

distribution, μ, is 2 × 1 mean vector, and Σ is 2 × 2 variance-covariance matrix. The variances 

and correlations (or covariances) are model parameters and are estimated directly from the item 

response matrix. The program ConQuest (Wu, Adams, & Wilson, 1998) was used for both 

unidimensional and multidimensional Rasch model calibrations. ConQuest is capable of 

estimating all possible model variants based on the multidimensional random coefficient 

multinomial logit model (MRCMLM; Adams, Wilson, & Wang, 1997). Thus, this program can 

perform the fitting of a variety of Rasch family models, such as the rating scale model (Andrich, 
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1978), the partial-credit model (Masters, 1982), the facet model (Linacre, 1989), and the linear 

logistic test model (LLTM; Fisher, 1989). ConQuest uses marginal maximum likelihood (MML) 

estimation with the expectation-maximization (EM) algorithm (Bock & Aitkin, 1981; Dempster, 

Laird, & Rubin, 1977). 

The investigation of item misfit for the Rasch model was performed through the weighted 

mean squared (WMNSQ) fit statistic, using ConQuest. The WMNSQ fit statistic is based on the 

difference between the observed and predicted responses. It approaches 1 when the model fits 

the data well (Wright & Masters, 1982; Wu, 1997). Adams and Khoo (1996) and Wilson (2005) 

suggested the interval of [0.75, 1.33] of the WMNSQ for the item fit criterion. All items used for 

this study were within this interval. The WMNSQ fit statistics are provided in Appendix A, 

along with the item difficulties and their standard errors. 

Results 

We organized the results of this study by the four research questions presented in the 

introduction to this paper. 

1. Are People’s Confidence Levels Comparable to Their Accuracy Levels? 

The results of the calculations for IDI, TDI, DP, and the classifications of the IDI values 

are shown in Table 1. The Listening section had nine small IDIs, three medium IDIs, and five 

large IDIs. The IDI values for items with medium or large IDIs were all positive and ranged from 

0.065 to 0.207; these positive IDIs indicated overconfidence expressed on those items. Within 

the Listening section, 47% [100*(8/17)] of the items showed evidence of overconfidence. At the 

test level, the TDI was 0.82, indicating that the participants overpredicted their Listening section 

score by 0.82 score points on average. 

The Reading section had 10 small IDIs, 4 medium IDIs, and 10 large IDIs. The IDI 

values for items with medium or large IDIs were all positive and ranged from 0.061 to 0.633; 

these positive IDIs indicated overconfidence expressed on those items. Within the Reading 

section, 58% [100*(14/24)] of the items showed evidence of overconfidence. At the test level, 

the TDI was 2.89, indicating that the participants overpredicted their Reading section score by 

2.89 score points on average. 
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Table 1 

Item Discrepancy Index (IDI) and T est-Level Discrepancy Index (TDI) for Listening and 

Reading 

  Listening   Reading 
  IDI IDI class   IDI IDI class 
Item 1 0.119 L Item 1 0.048  
Item 2 −0.002  Item 2 0.001  
Item 3 0.004  Item 3 0.149 L 
Item 4 0.064 M Item 4 0.004  
Item 5 0.023  Item 5 0.042  
Item 6 −0.012  Item 6 0.179 L 
Item 7 −0.003  Item 7 0.016  
Item 8 0.065 M Item 8 0.299 L 
Item 9 0.141 L Item 9 0.046  
Item 10 0.111 L Item 10 0.078 M 
Item 11 −0.045  Item 11 0.099 M 
Item 12 −0.027  Item 12 0.010  
Item 13 0.066 M Item 13 0.109 L 
Item 14 0.207 L Item 14 0.162 L 
Item 15 0.112 L Item 15 0.141 L 
Item 16 −0.004  Item 16 0.010  
Item 17 0.001  Item 17 0.089 M 
   Item 18 0.290 L 
   Item 19 0.061 M 
   Item 20 0.257 L 
   Item 21 0.004  
   Item 22 0.047  
   Item 23 0.118 L 
   Item 24 0.633 L 
TDI 0.820   TDI 2.894   
DP 4.8   DP 12.1   

Note. DP = discrepancy percentage, M = medium size IDI, L = large size IDI. 

DPs were 4.8 for the Listening section and 12.1 for the Reading section, which reveals 

that the participants showed more pronounced overconfidence in the Reading section than in the 

Listening section. 
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2. Do People’s Confidence Levels Change as Their Accuracy Levels Change? 

Figures 1 and 2 show a few example items from the Listening and Reading sections, 

respectively. In these plots, the values of iP  (objective probabilities for accuracy shown in 

Equation 2) and *
iP  (subjective probabilities for confidence shown in Equation 3) were plotted to 

see how people’s confidence may change according to their accuracy at the item level. Vertical 

dotted lines in Figures 1 and 2 represent the IRT Rasch item difficulties. A higher difficulty 

value represents a more difficult item. Figure 1 (Listening) shows three example items, each of 

which represents an item with a different size of IDI: Item 7 with a small IDI (IDI = −0.003), 

Item 13 with a medium IDI (IDI = 0.066), and Item 14 with a large IDI (IDI = 0.207). The rest of 

the items with medium or large IDIs showed the same pattern as Items 13 and 14. In general, the 

tendency to show overconfidence decreased as ability on the accuracy dimension increased; that 

is, the participants with higher accuracy scores tended to predict their actual performance more 

accurately than those with lower accuracy scores did. 

 
 

 
Figure 1. Item plots for listening. 

Note. Circles represent subjective probabilities (confidence); solid lines represent objective 

probabilities (accuracy); and the vertical dotted lines represents item difficulties.  
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Figure 2. Item plots for reading. 

Note. Circles represent subjective probabilities (confidence); solid lines represent objective 

probabilities (accuracy); and the vertical dotted lines represents item difficulties. 

Figure 2 shows the three example items from the Reading section. Item 4 shows a small 

IDI (IDI = 0.004), Item 19 has a medium IDI (IDI = 0.061), and Item 20 has a large IDI (IDI = 

0.257). The rest of the Reading section items with medium or large IDIs showed overconfidence 

patterns that were very similar to those seen in Items 19 and 20. In general, as people’s ability on 

the accuracy dimension increased, the confidence ratings (expressed in subjective probability) 

came closer to their objective performance (shown by objective probability). 

Figure 3 illustrates the change in overconfidence as a function of ability on the accuracy 

dimension at the test level. The plots were constructed using the objective expected score ∑
i

iP  

(Equation 13) and the subjective expected score ∑
i

iP*  for a given θac. Overall, both the 

Listening and Reading sections showed pronounced patterns of overconfidence across all ability 

levels on the accuracy dimension. However, the participants’ subjective predictions (i.e., 
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confidence) became closer to their actual performance level as their ability level increased. One 

may claim that better prediction of participants’ performance is associated with improved 

precision of their predictions (i.e., reduction of variability in their confidence rating). Others may 

argue that the better predication of higher-ability people could be due to the ceiling effect in the 

confidence rating scale that is bounded between 0 and 1 in probability. 

Listening
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Figure 3. Confidence and accuracy at the test score level. 

Figure 4 shows the average standard deviation (SD) for the subjective probability 

conditional on θac. The average SD for the subjective probability decreased as the ability on the 

accuracy dimension increased. 
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Figure 4. Average standard deviation plot for subjective probability. 

The plots in Figures 1 through 4 were constructed using *
iP  (subjective probabilities on 

the ith item) and ∑
i

iP* (subjective expected test scores). Because of their nonparametric nature, 

different sample sizes at each level of θac could affect the stability of *
iP  and ∑

i
iP* . To examine 

the degree of heterogeneity in the stability for *
iP  and ∑

i
iP* , the frequencies at each θac were 

calculated, which are shown in Table 2. Both the Listening and Reading sections were easy for 

this group of participants, and average item difficulties were −2.09 and −1.70. Thus, higher 

frequencies are observed at the higher end of the accuracy scale, resulting in more stability for 

SD, *
iP , and ∑

i
iP*  at the higher-ability range on the accuracy dimension. However, the ceiling 
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effect in the confidence rating scale used in the present study, as addressed before, could be 

again contributing to this reduced variability at the higher end of ability. 

Table 2 

Frequency Distributions for Ability Estimate on Accuracy 

Listening Reading 

Number 
correct score 

Ability 
estimate on 

accuracy 
Frequency Number 

correct score 

Ability 
estimate on 

accuracy 
Frequency 

2 −3.47 1 4 −3.22 2 
3 −3.15 7 5 −2.97 4 
4 −2.85 4 7 −2.53 7 
5 −2.58 9 8 −2.31 11 
6 −2.32 5 9 −2.10 16 
7 −2.06 2 10 −1.91 13 
8 −1.81 16 11 −1.72 22 
9 −1.57 18 12 −1.53 24 

10 −1.32 25 13 −1.33 35 
11 −1.07 38 14 −1.13 34 
12 −0.80 50 15 −0.93 41 
13 −0.51 71 16 −0.73 36 
14 −0.19 127 17 −0.51 42 
15 0.21 143 18 −0.27 59 
16 0.68 186 19 −0.01 69 
17 1.26 118 20 0.29 86 

   21 0.64 91 
   22 1.04 103 
   23 1.51 99 

   24 2.05 26 
  Total  N 820   Total  N 820 

3. Are People’s Confidence Levels Related to the Difficulty Level of a Specific Task? 

The Rasch item difficulty estimated from the unidimensional Rasch calibration for the 

accuracy dimension was compared with the item-level confidence measure (IDI). The correlation 

between the IDI and the item difficulties was 0.92 for the Listening section and 0.93 for the 

Reading section, showing a strong relationship between the item difficulty and item-level 

overconfidence. However, these relationships were rather curvilinear: As the item difficulty 

increased, the overconfidence increased in a nonlinear fashion. To find a trend in the nonlinear 

relationship, simple linear and polynomial regression models were fitted, and the model 
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comparisons were conducted using a general F-test in a forward selection manner with α level of 

0.05 (see, for example, Sen & Srivastava, 1990, for F-test details). A lower-degree regression with 

respect to the predictor (difficulty) was compared to a one-degree higher polynomial regression. 

The model comparison continued consecutively from the simple linear model until the statistical 

test showed nonsignificance. We found that the second-degree polynomial model provided the best 

trend-line function describing the relationship between the item difficulty and the IDI for both the 

Listening and Reading sections. Figure 5 shows the plots where the second-degree polynomial line 

was overlaid with the coefficient of determination (R2) and the regression equations estimated. The 

increment in R2 was increased by 10% and 11% when the linear relationship was replaced by the 

second-degree polynomial. These R2 changes were statistically significant. The third-degree 

polynomial relationship did not allow rejection of the second-degree polynomial. 

Listening

E(y) = 0.0393x2 + 0.2418x + 0.3542
R2 = 0.9467
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Reading

E(y) = 0.0192x2 + 0.1531x + 0.2974
R2 = 0.9579
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Figure 5. Relationship between item difficulty and item discrepancy index (IDI). 
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4. What Is the Strength of Association Between People’s Accuracy and Confidence Levels?  

Table 3 shows the variance, covariance, and correlation between accuracy and confidence 

scores estimated from the multidimensional Rasch analysis. The correlations between accuracy 

and confidence were 0.67 and 0.72 for the Listening and Reading sections, respectively. 

Confidence alone explained 45% of the variation in the accuracy dimension for the Listening 

section and 52% for the Reading section. 

Table 3 

Latent Correlation Between Confidence and Accuracy Dimensions 

Listening Reading 

  Accuracy Confidence Accuracy Confidence 

Accuracy 1.286 0.805 1.628 1.019 

Confidence 0.670 1.124 0.720 1.231 

Note. Values below the diagonal are correlations, and values above are covariances. 

Discussion 

The IRT Rasch model-based approach allowed us to examine under/overconfidence at 

any desired level of ability at the item or test levels. Investigations could be conducted at certain 

ability points or intervals, which can be defined as a local level of confidence, or across all 

ability ranges. Furthermore, confidence can be examined at an individual item level, over a 

subset of items, or across the overall test. The local under/overconfidence indices at the item and 

test levels (Equations 6, 17, and 20) can also be calculated with a modification for an interval of 

interest in the latent dimension θ. Their mathematical expressions are shown in Appendix B. The 

graphical representations, such as Figures 2 and 3, illustrate the gaps between accuracy and 

confidence, making it easy to diagnose magnitudes of confidence at points on the accuracy 

dimension and to examine the pattern of the relationship between confidence and accuracy. 

The proposed IDI, TDI, DP, LIDI, LTDI, and LDP are robust against outliers in that they 

are weighted summary indices. These indices are calculated not only by the gap between 

confidence and accuracy, but also by their relative frequency distributions. For example, a 

contribution to the calculation of these indices for a large gap with a fairly small relative 

frequency would be minimized by the weighting factor, relative frequency. Summary indices 
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more sensitive to outliers can be obtained by omitting the term ( )acw θ in Equations 6, 17, 20, B1, 

B2, and B3 ,which would produce unweighted summary measures. The comparison between the 

unweighted and weighted indices would indicate the extent to which a relatively small number of 

people appear to have large gaps. 

The weight ( )acw θ  in Equations 6, 17, 20, B1, B2, and B3 makes use of the individual θac 

distribution. Instead, another choice of weight is to use the population weight. In the MML 

estimation of the Rasch models, θac was assumed to follow a normal distribution in this study. 

Thus, the population weight ( )acw θ  is 

*
* 1Population weight  ( ) ac
acw θ μ
θ φ

σ σ
⎛ ⎞− ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠

, (25) 

where ( )φ ⋅  is the standard normal density function, µ is the mean of the normal distribution, σ is 

the standard deviation of the normal distribution, and *
acθ  is the quadrature point used in the 

MML estimation.3 The use of a population weight may be more attractive when the population 

weights are estimated as model parameters in a semi-parametric IRT MML approach (see, for 

example, Mislevy, 1984 for nonparametric modeling of the population distribution). 

Although the IDI, TDI, and DP are useful summary measures, they have limitations. In 

particular, when confidence and accuracy are crossing in such a way that positive and negative 

gaps are essentially offsetting in the calculation of the difference between the two, the graphical 

representation should be used together with the IDI, TDI and DP. We can also quantify such a 

crossing trend by modifying Equations 6, 17, B1, and B2. Instead of using the difference between 

accuracy and confidence, the absolute difference (or the square difference) can be used. For 

example, *( )i iP P−  can be replaced with *
i iP P−  (or ( )2*

iP P− ) and *
i i

i i
P P−∑ ∑ with 

*
i i

i i
P P−∑ ∑  (or 

2
*

i i
i i

P P⎛ ⎞−⎜ ⎟
⎝ ⎠
∑ ∑ ) prior to the summation over θac, when the absolute difference 

is employed. A crossing pattern between confidence and accuracy is likely to be observed when 

there is a small IDI or TDI with large values of this modified version of IDI or TDI. Note that this 

modified version of IDI or TDI cannot provide directional information (i.e., overconfidence or 
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underconfidence) as our initially proposed IDI, TDI, and DP. Again, graphical displays with these 

summary indices can show local under/overconfidence at the item or test levels. 

Summary 

This study employed the IRT analyses for the Reading and Listening sections of an 

English language proficiency test. One of the main purposes in this paper was to show the 

usefulness of IRT modeling in studying the relationship between confidence and accuracy. In our 

analyses, we treated confidence and accuracy as two different constructs. Based on the 

unidimensional Rasch model calibration, we proposed effect-size indices at the item and test 

levels that are potentially useful in measuring underconfidence or overconfidence. In addition, 

the use of the multidimensional Rasch modeling allowed us to investigate the strength of 

association between these two latent dimensions. It should be noted that the procedures and 

proposed over/underconfidence indices (e.g., IDI, TDI, and DP) in this study are applicable in 

general to whatever IRT models are adopted for analysis. 

The IRT approach was also useful in providing answers for the substantive research 

questions that we had. We showed that the participants were overconfident in general: They 

tended to overestimate their performance on both the Listening and Reading sections of the 

English language proficiency test. Their overconfidence was negatively related to their ability 

levels and was positively related to the item difficulty. The strength of association between the 

accuracy and confidence latent dimensions was moderate: The confidence dimension alone 

explained 45% (Listening) and 52% (Reading) of the variability in the accuracy dimension. 

There are a couple of cautionary statements that we want to make. One is that the 

overconfidence pattern observed in this study may not be salient in other cognitive subject tests 

(Juslin & Olsson, 1997). Especially, the pattern of the overconfidence could be different under a 

different testing environment, such as computerized adaptive testing where the item difficulty level 

is optimized for the examinee ability to calculate his or her ability level efficiently.4 Another 

caution that should be made is that the decrease of the gap between accuracy and confidence at the 

high end of ability may be due to the subjective rating that was given on a probability unit with the 

maximum boundary of unity. If we were to gather the subjective rating on confidence into a scale 

set with no maximum boundary, we may be able to examine whether the better prediction of 

higher-ability participants has to do with the form of the subjective rating scale. 
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Although this study proposed potentially useful measures for under/overconfidence, these 

measures lack statistical significance testing procedures, which is one of the limitations of the 

current study. In addition, the thresholds for under/overconfidence classification at the test level 

were not developed in the present study. A simple classification for TDI can be made by the 

following rule: 

Small or negligible: test length* TDI ,

Medium: test length*  < TDI   testlength* , and

Large: TDI  test length* ,

M

M L

L

v

v v

v

≤

≤

>

 

where Mν and Lν  are the desired minimum expected threshold values of an item to be qualified 

as a medium or large TDI. If we use a rather conservative approach of Mν  = 0.05 (for medium) 

and Lν  = 0.10 (for large), the thresholds are 0.85 (17*0.05) and 1.7 (17*0.1) for the Listening 

section and 1.2 (24*0.05) and 2.4 (24*0.1) for the Reading section. We see that the TDI 

classification is small for the Listening section and large for the Reading section. The use of 0.05 

and 0.10 is considered conservative because we can expect the IDIs to be at least medium or 

large to be flagged as medium or large TDI. This means that it may not capture the amplification 

effect arising from, say, many small positive IDIs whose effects could be accumulated to be 

relatively large TDI values. Both the classification of TDI and the development of the statistical 

significance testing described in this section warrant more research. 

We also want to mention that this study did not account for a potential serial correlation 

impact from the use of the same stimulus. Item responses for the accuracy and confidence ratings 

were gathered under the same item stem, which may cause additional dependency between the 

accuracy and confidence dimensions in the data. Also, Reading and Listening items that share 

common stimuli (e.g., the same reading passage) may have extra data dependency as well, which 

is commonly known as a testlet effect. Modeling these potential clustering effects caused by the 

use of the same stimulus in a set of items can be explored in future studies. 
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Notes 
1 The term bias is typically associated with statistical differential item function (DIF) techniques 

and used as a term for test fairness in educational testing context. Readers should not be 

confused by this. 

2 For the multidimenssional Rasch model calibration, the strict monotonicity in both acθ  and coθ  

with normality are assumed, but the minimal assumptions to generate item responses for 

confidence do not need to specify normality, the shape of IRF, and strict monotonicity in acθ . 

3 Gauss-Hermite quadratures are used in the evaluation of an integral in the marginal likelihood 

during the MML estimation. ConQuest provides empirical Bayes solutions in the Rasch 

calibration for the normal distribution mean and variance. In the actual estimation, only the 

variance of the normal distribution is estimated, while the mean is fixed as 0 because of the 

identifiability issue. The number of quadrature points can be user-specified values (or default 

values can be used) in ConQuest. 

4 In addition, the results could be very different with samples from different populations. 
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Appendix A 

Item Difficulty Estimate and Item Fit Statistic 

Table A1 

Listening 

Item no. Difficulty SE WMNSQ 

1 −1.129 0.086 1.05 

2 2.175 0.108 1.04 

3 −2.412 0.116 0.92 

4 −1.656 0.095 0.96 

5 −1.986 0.103 0.96 

6 −2.736 0.128 1.01 

7 −2.803 0.131 1.02 

8 −1.457 0.091 1.09 

9 −0.942 0.084 1.02 

10 −1.391 0.090 1.11 

11 −3.084 0.144 0.97 

12 −3.332 0.157 0.94 

13 −1.638 0.095 1.00 

14 −0.758 0.082 1.12 

15 −1.490 0.092 0.98 

16 −3.126 0.146 0.98 

17 −3.383 0.160 0.84 

Note. WMNSQ = weighted mean squared. 
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Table A2 

Reading 

Item no. Difficulty SE WMNSQ 

1 −2.484 0.116 1.01 

2 −3.718 0.176 0.98 

3 −1.222 0.088 0.98 

4 −2.258 0.109 0.88 

5 −2.653 0.121 0.94 

6 −0.704 0.083 0.97 

7 −3.191 0.144 1.04 

8 −0.467 0.082 1.04 

9 −1.803 0.098 0.89 

10 −1.891 0.100 0.84 

11 −1.316 0.089 1.07 

12 −2.907 0.131 0.94 

13 −1.993 0.102 0.87 

14 −0.718 0.083 0.98 

15 −1.025 0.086 1.02 

16 −2.697 0.123 0.99 

17 −1.584 0.094 0.91 

18 −0.269 0.081 1.05 

19 −2.056 0.103 1.03 

20 −0.663 0.083 0.90 

21 −3.299 0.150 0.90 

22 −2.580 0.119 0.94 

23 −1.160 0.087 1.00 

24   1.864 0.098 1.31 

Note. WMNSQ = weighted mean squared. 
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Appendix B 

Local Item-Level Discrepancy Index, Local Test-Level Discrepancy Index,  

and Local Discrepancy Percentage 

Local IDI (LIDI) = *

[ , ]
( ) ( )

ac S L

i i acP P w
θ θ θ

θ
∈

−∑ , (B1) 

Local TDI (LTDI) = *

[ , ]
[ ] ( )

ac S L

i i ac
i i

P P w
θ θ θ

θ
∈

−∑ ∑ ∑ , and (B2) 

Local DP (LDP) = 

*

[ , ]
[ ] ( )

100
Test Length

ac S L

i i ac
i i

P P w
θ θ θ

θ
∈

−

×
∑ ∑ ∑

, (B3) 

where θS and θL are the smallest and the largest boundary of interest in θ. 




