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Abstract 

This paper reports on a study conducted to investigate the consistency of the results between 2 

approaches to estimating school effectiveness through value-added modeling. Estimates of 

school effects from the layered model employing item response theory (IRT) scaled data are 

compared to estimates derived from a discrete growth model based on the analysis of transitions 

along an ordinal developmental scale. The data were extracted from the longitudinal records 

maintained in the Early Childhood Longitudinal Study–Kindergarten Cohort (ECLS-K) archive 

for students remaining in the same school from the beginning of kindergarten through the end of 

Grade 3. The results of different comparisons indicated that the estimates from the 2 approaches 

are moderately consistent. 
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Introduction 

There is substantial interest in education policy circles in the possibility of using 

summary measures of student growth as the basis for making evaluations of the effectiveness of 

schools and teachers. Late in 2005, Margaret Spellings (U.S. Department of Education, 2005) 

encouraged states to submit proposals to incorporate measures of student growth (e.g., the 

average year-to-year change in students’ test scores) into their calculations of adequate yearly 

progress. There is an important distinction between such statistics and those purported to 

estimate schools’ (or classes’) contributions to student learning. Measures of student growth rely 

on direct calculation and are typically judged against a standard expressed in absolute terms 

(e.g., Did the average score increase exceed 10 scale score points?), in relative terms (e.g., Was 

the average score increase 15% larger than last year’s?) or in predictive terms (e.g., Are 70% of 

the students on track to achieve proficiency within 3 years?). Researchers using statistics 

intended to estimate schools’ contributions to student learning, on the other hand, attempt to 

extract from the variation in students’ score trajectories a component that can be attributed 

directly to enrollment in a particular school or class. These so-called school or class effects are 

typically normatively defined; that is, the units of analysis are only compared to one another 

(e.g., Is this school’s average contribution to student learning significantly larger or smaller than 

the average contribution of the typical school in the district?). 

Value-added modeling (VAM) is the generic name attached to the statistical machinery 

used to obtain estimates of such school or class effects.2 Early work in this area is due to 

Sanders, Saxton, and Horn (1997) and Webster (2005). Econometricians also have weighed in 

with their own approaches to VAM. For an overview, see Sass and Harris (2006). McCaffrey, 

Lockwood, Koretz, Louis, and Hamilton (2004) offered a technical review of VAM, whereas 

both Wainer (2004) and Lissitz (2005) provided surveys of current research in the area. For a 

nontechnical introduction, see Braun (2005a). 

Despite the widespread enthusiasm for VAM, a number of concerns have been identified 

in employing VAM results, particularly in high-stakes settings. One such concern centers on the 

problem of drawing causal inferences from observational data (Braun, 2005a; Raudenbush, 

2004).3 Another focuses on the nature of the test score scale. Most VAMs require longitudinal 

student test data. Student performance is represented by a point on a score scale derived through 

vertical linking. The score scale is usually treated as if it were an interval scale. A natural 
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question arises: How robust are the results to the choice of scale and the associated assumption 

of the interval scale property? (Note that this issue is more salient for value-added analyses than 

for straightforward reporting of growth along the scale.) 

We describe a project undertaken to investigate this question, employing data from the 

Early Childhood Longitudinal Study—Kindergarten Cohort (ECLS-K; Pollack, Atkins-Burnett, 

Rock, & Weiss, 2005). We compare two different approaches to the estimation of school effects. 

One is the VAM proposed by Sanders et al. (1997) that is often referred to as the layered model. 4 

The layered model makes use of test score data that are reported on a vertically linked scale. 5 

The second approach (Braun, 2005b) makes use of transition probabilities, defined on a 

developmental scale, that represent student growth from one year to the next.6 The transition 

approach requires neither vertically linked scales nor the interval scale assumption. This 

approach is called the developmental trajectory growth (DTG) model. Thus, the two approaches 

make rather different uses of the raw test data. The degree to which they yield similar rankings of 

schools (or classes) provides some evidence with respect to the question of robustness. 

It is important to note that the robustness at issue here is statistical robustness against a 

specific assumption regarding the nature of the score scale as well as the particular statistical 

model applied to the data represented on that score scale. As such, this study provides a more 

stringent test of robustness than typically found in the literature, where different models are 

applied to the same data (McCaffrey et al., 2004; Tekwe et al., 2004). 

However, a much deeper question is to what extent one is entitled to make causal 

inferences about schools or teachers’ relative effectiveness on the basis of a statistical analysis of 

observational data, subject to selection biases of various sorts. Certainly a finding of a lack of 

statistical robustness would undercut the possibility of making such causal inferences. However, 

a finding of reasonable statistical robustness in this context is only the first step in laying a 

credible foundation for the kinds of inferences that policymakers would like to make on the basis 

of student score trends. 

Data 

The ECLS-K is a long-term longitudinal study funded by the U. S. Department of 

Education through the National Center for Education Statistics (Tourangeau et al., 2004). A 

nationally representative sample of schools was selected for the study, and a random sample of 

students from each school was selected to participate in the study. The ECLS-K, third-grade, 
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public-use data file contains information from five waves of data collection: (a) kindergarten in 

fall (denoted as Fall-K), (b) kindergarten in spring (Spring-K), (c) first grade in fall (Fall-1), (d) 

first grade in spring (Spring-1), and (e) third grade in spring (Spring-3). See Table 1. Students 

took tests in both reading and mathematics in each wave. Since the third wave comprised only a 

30% sample, we did not include it in the analysis. Thus, we are able to study the academic 

growth for a cohort of students over three transitions. Furthermore, because the study has a 

purely methodological focus, we restricted attention to those students who attended the same 

school for all four waves and had to be enrolled in a school with at least 10 such students. This 

reduced the sample size to 8,853 students in 619 schools, about half of the full sample. The 

analysis sample is similar to the full sample with respect to the distribution by gender, race, and 

test performance at Fall-K. The main difference is that the analysis sample has about 6% more 

White students and about 5% fewer Black, non-Hispanic students (see Appendix A for details). 

Table 1 

Selected Characteristics of the Early Childhood Longitudinal Study—Kindergarten Cohort, 

Third-Grade, Public-Use Data File 

Data collection wave Date of collection Sample 
1. Fall-K Fall 1998 21,260 students in 866 schools (full sample) 
2. Spring-K Spring 1999 21,260 students in 866 schools (full sample) 
3. Fall-1 Fall 1999 5,975 students in 293 schools (30% subsample 

of the total base-year schools) 
4. Spring-1 Spring 2000 17,212 students in 866 schools (full sample) 
5. Spring-3 Spring 2002 15,305 students in 866 schools (full sample) 

Note. Waves abbreviated, e.g., Fall-K = fall kindergarten, Spring-1 = spring first grade. 

Our goal was to compare two different approaches to estimating the value-added 

associated with each school. In the ECLS-K, student performance in a subject is represented in a 

number of different ways. We chose two. The first is an ordinal developmental scale, constructed 

especially for the ECLS-K. At each wave, a student is assigned to one of nine proficiency levels, 

based on the application of an algorithm devised by the developers of the test battery.7 The 

second is a standard item response theory (IRT) scale constructed from the full battery of items 

employed from kindergarten through Grade 3. After each wave, students’ IRT scale scores are 

derived and added to the database. 
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Analyses: Method 1 

Method 1 is denoted as DTG, a preliminary version of which was suggested by Braun 

(2005b). The DTG approach is based on considering the conditional probabilities of students 

moving from one proficiency level to another over the course of a transition (e.g., from Fall-K to 

Spring-K). Again, since the focus here is on a comparison of methodologies, the confounding of 

summer growth with school contributions is not of primary concern. 

To illustrate the DTG approach, let i  = 1, 2, … , I denote the observed proficiency levels 

at Fall-kindergarten, and let j  = 1, 2, … , J denote the observed proficiency levels at Spring-

Kindergarten. The relevant matrix for the case I = J = 4 is presented in Table 2. 

Table 2 

Developmental Trajectory Growth (DTG) Matrix 

Spring-K  
1 2 3 4 

1     
2   3|2P   
3     

Fall-K  

4     

The conditional transition probability of a student moving from proficiency level i  in 

Fall-K to proficiency level j  in Spring-K is denoted as | { }
( )j iP P i j

P i
= → =

( , )P i j , where the 

numerator denotes the joint probability of a student in cell (i,j) and the denominator denotes the 

marginal probability of a student being at level i at Fall-K. In what follows, these probabilities 

are estimated by the corresponding sample proportions. 

Typically, the value-added measure of a school is defined normatively. For the DTG, we 

compare the pattern of transitions observed in a school to what would have been observed, given 

the row marginals, had the transition probabilities based on the aggregate experience of all 

schools in the sample been in operation in that school.8 For each cell in the transition matrix, we 

compute a quantity equal to the deviation between observed and expected, weighted by the 

numerical label associated with the final level.9 The weighted deviations are summed over the 

cells and standardized by dividing by the total number of students in the school. This statistic is 

denoted as the grand mean weighted deviation (GMWD). The formula for calculating the 

GMWD for school k is given by: 
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Here, 

ijkn = number of students in school who moved from proficiency level to proficiency 

level

k i

j , 

ijN = total number of students in the sample (aggregated over all schools) who moved 

from proficiency level i to proficiency level j .  

Then 
∑

j
ij

ij

N
N

 is the corresponding total sample transition probability, ∑
j

ijkn is the level i row 

total for school k, and their product yields the expected number of students in cell (i, j) for school 

k if the total sample transition probability were in force. The difference between  and the 

expected number of students in cell (i, j) is the deviation for the cell (i, j), which is then weighted 

by j. Thus, schools are given more credit for moving students to higher levels. A school with 

consistently large positive deviations at higher developmental levels will be assigned a large, 

positive GMWD. Note that with the DTG approach, a school’s estimated value-added takes 

account of the developmental status profile of its student cohort at the start of the transition.

ijkn

10

Analyses: Method 2 

Method 2 involves computing estimates of school value-added by employing the layered 

model of Sanders et al. (1997). The original layered model is a multivariate, longitudinal, mixed-

effects model. In this implementation, average performance for each combination of season, 

grade, and subject is treated as a fixed effect, whereas the corresponding school effects are 

treated as random. The computations were carried out by a program developed by the RAND 

Corporation (Lockwood, McCaffrey, Mariano, & Setodji, 2006). The program takes as input 

students’ scores on the vertically linked IRT scales for mathematics and reading and fits a 

bivariate, longitudinal model. The program relies on a Bayesian formulation and yields posterior 
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distributions for each parameter of interest. The estimated value-added for a school for a 

particular subject-grade combination is the mean of the corresponding posterior distribution for 

that school. An estimate of the standard error of each school effect estimate is also provided. See 

Appendix B for the particular model employed. 

Results 

Results From Method 1: DTG  

The population or aggregate transition matrices for both reading and math are 

fundamental to the analysis. Some students are missing scores in 1 or more years and are 

therefore not included in the corresponding transition matrix. As one would expect, the 

distribution of students across developmental levels shifts toward higher levels at higher grades. 

Typically, students move up one or more levels through a transition. Note that there is no 

correspondence in the meaning of a specific level (e.g., Level 4) across subjects. Inspection of 

the transition matrices indicates that, at least from a statistical point of view, the developmental 

scale is meaningful and appropriate, with only modest ceiling effects by the end of Grade 3. For 

illustrative purposes, we present two of these matrices. 

Table 3 displays the transition matrix for reading for Spring-K to Spring-1. In Spring-K, 

there is a strong mode at Level 4, whereas in Spring-1, there is a mode at Level 5 with a near 

mode at Level 6. Notably, very few children remain at the same level or lose ground, especially 

if they start out at Level 5 or higher. At the same time, many children grow by three or more 

levels, especially if they start out at lower levels. 

Table 4 displays the transition matrix for mathematics for Spring-K to Spring-1. In 

Spring-K there is a strong mode at Level 4, and in Spring-1 there is a strong mode at Level 5. 

Most students move up one level, although students who start out at lower levels typically move 

up two levels. Relatively few students remain at the same level or fall behind over this period. 

Next, we present descriptive statistics for the GMWD for each transition for both reading 

and math. These statistics were computed both for all the schools and for schools with at least 10 

students. (The maximum number of students in a school was 23.) The results were quite similar, 

so we only present the latter set of results. For each subject-transition combination, the set of 

GMWDs are centered near zero and approximately normally distributed. Table 5 presents a few  
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Table 3  

Population Transition Matrix: Spring-K to Spring-1, Reading  

 1 2 3 4 5 6 7 8 9 Total 

Frequency 18 61   88 117     81     12     2   0   0   379 
1 

Row pct 4.75 16.09 23.22 30.87 21.37   3.17   0.53   0.00     0.00  

Frequency   2 44 110 311   534   157   28   0   0 1,186 
2 

Row pct 0.17   3.71   9.27 26.22 45.03 13.24   2.36   0.00     0.00  

Frequency   1   6   42 236   820   449 104 10   0 1,668 
3 

Row pct 0.06   0.36   2.52 14.15 49.16 26.92   6.24   0.60     0.00  

Frequency   0   2   15 157 1,024 1,350 443 58   6 3,055 
4 

Row pct 0.00   0.07   0.49   5.14 33.52 44.19 14.50   1.90     0.20  

Frequency   0   0     0     2   53   357 237 55 18   722 
5 

Row pct 0.00   0.00   0.00   0.28   7.34 49.45 32.83   7.62     2.49  

Frequency   0   0     0     0     7     63 115 53 14   252 
6 

Row pct 0.00   0.00   0.00   0.00   2.78 25.00 45.63 21.03     5.56  

Frequency   0   0     0     0     2       6   27 23 13     71 
7 

Row pct 0.00   0.00   0.00   0.00   2.82   8.45 38.03 32.39   18.31  

Frequency   0   0     0     0     0       0     5   2   3     10 
8 

Row pct 0.00   0.00   0.00   0.00   0.00   0.00 50.00 20.00   30.00  

Frequency   0   0     0     0     0       0     0   0   2       2 
9 

Row pct 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00 100.00  

Frequency 21 113 255 823 2,521 2,394 961 201 56 7,345a

Total 
Row pct 0.29 1.54 3.47 11.20 34.32 32.59 13.08 2.74 0.76 100.00

a1,508 students are missing due to not having one or more reading scores.  

summary statistics. Within subject, the dispersions across transitions are very similar. The 

standard deviations for the reading transitions are about one third larger than those for math. 

Plots of GMWD against school sample size (for schools with 10 or more students) 

indicate that estimated school effects are weakly related to school size. Figure 1 illustrates the 

patterns for the Spring-K to Spring-1 transitions for reading and math, respectively. The 

correlations between GMWD and school size are displayed in Table 6. 
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Table 4  

Population Transition Matrix: Spring-K to Spring-1, Math 

  1 2 3 4 5 6 7 8 Total 
Frequency 6 25   34   19       5     1     0   0     90 1 
Row Pct 6.67 27.78 37.78 21.11   5.56   1.11   0.00 0.00  
Frequency 3 50 182 321   251   20     2   0   829 2 
Row Pct 0.36   6.03 21.95 38.72 30.28   2.41   0.24 0.00  
Frequency 0   4   93 780 1,177 168   10   0 2,232 3 
Row Pct 0   0.18   4.17 34.95 52.73   7.53   0.45 0  
Frequency 0   2   12 464 1,974 839   95   4 3,390 4 
Row Pct 0.00   0.06   0.35 13.69 58.23 24.75   2.80 0.12  
Frequency 0   1     2   37   506 633 130 21 1,330 5 
Row Pct 0.00   0.08   0.15   2.78 38.05 47.59   9.77 1.58  
Frequency 0   0     0     0     10 117   74   8   209 6 
Row Pct 0.00   0.00   0.00   0.00   4.78 55.98 35.41 3.83  
Frequency 0   0     0     0       1     3   11   0     15 7 
Row Pct 0.00   0.00   0.00   0.00   6.67 20.00 73.33 0.00  
Frequency 0   0     0     0       0     0     0   1       1 8 
Row Pct 0.00   0.00   0.00   0.00   0.00   0.00   0.00 100.00  
Frequency 9 82 323 1621 3924 1781 322 34 8,096a

Total 
Row Pct 0.11 1.01 3.99 20.02 48.47 22.00 3.98 0.42 100.00

a 757 students are missing due to not having one or more math scores. 

Table 5  

Summary Statistics for Grand Mean Weighted Deviation (GMWD) for Six Transitions  

Reading Math 

Statistic 
Fall-K  to 
Spring-K 

Spring-K to 
Spring-1 

Spring-1 to 
Spring-3 

Fall-K to 
Spring-K 

Spring-K to 
Spring-1 

Spring-1 to 
Spring-3 

# schools 412 461 479 497 552 569 
Mean  0.00  0.02  0.00 -0.01  0.00  0.00 
SD  0.39  0.37  0.41  0.28  0.27  0.32 
Skewness -0.10 -0.50 -0.23 -0.15 -0.32 -0.02 

Note. Schools have >= 10 students. K = kindergarten; Spring-1 = spring first grade, etc. 
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Figure 1. Grand mean weighted deviation (GMWD) against school sample size for Spring-

K to Spring-1. 

Table 6  

Correlations Between Grand Mean Weighted Deviation and School Size  

Transition Reading Math 
Fall-K to Spring-K 0.01  (n = 412) 0.15  (n = 497) 
Spring-K to Spring-1 0.10  (n = 461) 0.06  (n = 552) 
Spring-1 to Spring-3 0.26  (n = 479) 0.05  (n = 569) 

Note. Schools have >= 10 students.  

The relationships among sets of estimated school effects are also of interest. We found 

that within a subject, school effects across transitions are not correlated; for example, GMWDs 

for the Fall-K to Spring-K transition are uncorrelated with the GMWDs for the Spring-K to 

Spring-1 transition. This lack of correlation may be because students typically have different 

teachers in different grades. Table 7 displays the correlations, whereas Figure 2 presents 

illustrative scatter-plots. 

On the other hand, for a particular transition, estimated school effects for math and 

reading are moderately correlated. The correlations are 0.43, 0.39, and 0.42 for the first, second, 

and third transitions, respectively. One would expect that within-transition correlations would be 

higher than across-transition correlations, since, in the former case, students are exposed to the 

same teacher. 
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Finally, we computed for each school the average GMWD for reading over the three 

transitions and the average GMWD for math over the three transitions. Figure 3 illustrates the 

strong correlation of 0.70 between the two sets of estimated average effects. 

Table 7  

Correlations of Grand Mean Weighted Deviation Between Transitions Within Subjects 

(Reading Below Diagonal and Math Above Diagonal) 

Transition Fall-K to Spring-K Spring-K to Spring-1 Spring-1 to Spring-3 
Fall-K to Spring-K  0.05  (n = 576) 0.18  (n = 576) 
Spring-K to Spring-1 -0.07  (n = 575)  0.04  (n = 619) 
Spring-1 to Spring-3  0.03  (n = 575) 0.12  (n = 618)  

Note. K = kindergarten; Fall-1 = fall first grade. 

     

Figure 2. Grand mean weighted deviation (GMWD) Fall-K to Spring-K versus GMWD 

Spring-K to Spring-1.  

 

Figure 3. Average grand mean weighted deviation (GMWD) reading versus average 

GMWD math. 
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One of the reasons for the interest in VAMs is the expectation, generally borne out 

empirically, that school value-added estimates are only weakly correlated with the characteristics 

of students and schools. Of course, that stands in contrast to a situation with statistics based on 

students’ (current) status. Accordingly, we examined the relationship between schools’ GMWD 

for a particular subject and transition and a measure of the schools’ student proficiency 

distributions at the start of the transition. For the latter, we chose to use a weighted sum of the 

proportions of students at each developmental level, with the weights equal to the numerical 

labels attached to the levels (i.e., a type of mean). For school k, the measure is given the 

following formula and is referred to as input: 

∑
j

j *
∑∑
∑

i j
ijk

j
ijk

n

n
= # of students in each proficiency level before transition*

total # of students in  the schoolj

j ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . 

In view of the weights employed in constructing the GMWD, one would expect the 

correlations to be somewhat positive. Indeed, the correlations were small, ranging from 0.14 to 

0.23 in math and from 0.26 to 0.34 in reading. Figure 4 displays the scatter-plots for the 

transition from Spring-K to Spring-1 for reading and math, respectively. Note that for each level 

of input, the GMWD span a broad range of values. 
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Figure 4. Grand mean weighted deviation (GMWD) versus input status from Spring-K to 

Spring-1. 
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We also examined the relationship between estimated school effects and school poverty. 

Poverty was categorized by two levels: less than or equal to 50% of students eligible for free 

lunch, and more than 50% of students eligible for free lunch. We ran an analysis of covariance 

on school effects for each combination of subject and transition, with input status as the covariate 

and poverty level as the discrete predictor. With the exception of reading (Fall-K to Spring-K), 

the poverty contrast was significant, but the regression on input status was not. The range of R2, 

however, was from 0.04 to 0.14. Practically speaking, then, the relationship between this 

measure of value-added and these school characteristics is rather weak. 

Results From Method 2: The Layered Model 

We now turn to the results from fitting the layered model to the data. We first present 

descriptive statistics along with the corresponding histograms. For each subject transition, the 

ensemble of estimates is centered at zero and approximately normal. See Table 8. 

Table 8  

Summary Statistics for the Layered Model for Six Transitions  

Reading Math  
Fall-K to 
Spring-K 

Spring-K to 
Spring-1 

Spring-1 to 
Spring-3 

Fall-K to 
Spring-K 

Spring-K to 
Spring-1 

Spring-1 to 
Spring-3 

Mean -0.00 0.02 -0.01 -0.00 0.01 -0.00 
SD  2.18 3.98  3.39 1.59 2.58 2.79 
Skewness  0.36 0.09 -0.15 0.46 0.01 -0.13 

Note. N = 337; only 337 schools have at least 10 students with both reading and math scores for 

all four waves. K = kindergarten; Spring-1 = spring first grade, etc. 

The graphs in Figure 5, termed caterpillar plots, depict the estimated school effect (the 

mean of the posterior distribution) plotted against the rank of the mean. An error bar extending 

two standard deviations (also based on the posterior distribution) in each direction is 

superimposed on the graph. It is evident that only a small proportion of the estimated effects 

were statistically significantly different from zero. 
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Figure 5. Confidence intervals for layered model estimates for each school from Spring-K 

to Spring-1.  

As was the case for GMWDs, we found that within a subject, school effects across 

transitions were not correlated when estimated by the layered model. Table 9 displays the 

correlations. 

Table 9 

Correlations of Layered Model Estimates Between Transitions Within Subjects (Reading 

Below Diagonal and Math Above Diagonal)  

 Fall-K to  
Spring-K 

Spring-K to 
Spring-1 

Spring-1 to  
Spring-3 

Fall-K to Spring-K  0.05 -0.10 
Spring-K to Spring-1 -0.04   0.22 
Spring-1 to Spring-3 -0.12 0.14  

Note. N = 337. K = kindergarten; Spring-1 = spring first grade, etc. 

On the other hand, estimated school effects for math and reading based on the layered 

model were moderately correlated within transitions (correlations range from 0.48 to 0.62). 

When the subject-specific school effects were averaged over the three transitions, the between-

subject correlation was quite strong (r = 0.73), and very similar to the correlation of 0.70 that we 

found for the average GMWD estimates (Figure 6). 
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Figure 6. Layered model estimates for reading and math.  

Estimated school effects from the layered model are only weakly correlated with schools’ 

mean input distribution, based, as before, on the proportions of students at each developmental 

level. The correlations range from 0.15 to 0.30 for math and from 0.02 to 0.28 for reading. 

Scatter-plots for transition from Spring-K to Spring-1 are displayed in Figure 7. We also ran an 

analysis of covariance on school effects for each combination of subject and transition, with 

input status as the covariate and poverty level as the discrete predictor. The results were very 

similar to those for GMWD, and, as before, we conclude that the relationship between this value-

added measure and these school characteristics is rather weak. 
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Figure 7. Layered model estimates versus input status from Spring-K to Spring-1.  
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Comparison Between DTG and Layered-Model Methods 

Our chief interest lay in comparing the estimated school effects from the two methods. 

This could be accomplished most directly through a series of scatter-plots, one for each subject-

transition combination. As Figures 8 and 9 indicate, the estimates were highly correlated. In 

math, they ranged from 0.75 to 0.82, and in reading from 0.77 to 0.86 (Figure 8). When 

estimated school effects were averaged across transitions within subject, the correlations were 

0.84 for math and 0.88 for reading (Figure 9). 
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Figure 8. Layered model estimates versus developmental trajectory growth estimates from 

Spring-K to Spring-1. GMWD = grand mean weighted deviation. 
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Figure 9. Average layered model estimates versus average developmental trajectory growth 

estimates. GMWD = grand mean weighted deviation. 
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Another way to compare the two methods is to examine the consistency of the 

classifications by schools within transition, restricting attention to the 337 schools used for the 

layered model analysis. For this model, we identified a school as statistically different from the 

average if the probability that the school effect was greater than zero was at least 0.9. Those 

schools are labeled with a “+”. Similarly, schools whose estimated effect had at least a 

probability of .9 of being less than zero were labeled with a “-”. The remaining schools were 

labeled with a “0”. The categorization was done separately for reading and math. 

Since we had not derived estimated variances for the GMWD, we had to adopt a different 

strategy to designate schools with extreme estimated effects. As it happens, the layered model 

identified approximately 10% of schools as “+” and 10% as “-”. Accordingly, we simply 

classified schools by the decile of the distribution of DTG-estimated school effects for the 

particular subject transition. For each subject-transition combination, we then cross-classified 

schools into 30 categories based on their estimated effects from each method. The results are 

presented in Table 10 and are a reasonable basis for comparing the consistency of the results of 

the two methods, given that the marginal numbers of schools in both sets of end categories are 

similar. 

We were particularly interested in whether schools that were designated significantly 

different from the average by the layered model also fell in the corresponding tails of the 

distribution of estimated effects from the DTG model. In fact, this was the case about 75% of the 

time, if the tail is defined to be the extreme two deciles. In general, the correspondence was 

slightly better in math than in reading. Finally, for the Fall-K to Spring-K and Spring-K to 

Spring-1 transitions, about 15% of schools labeled “0” under the layered model fell in each tail 

of the DTG distribution. For the Spring-1 to Spring-3 transition, the statistic was closer to 20%. 

Conclusions 

A critical issue in considering the use of value-added estimates is the sensitivity of these 

estimates to various model assumptions. One set of assumptions is related to the construction of 

the score scale from the raw data as well as the metric properties of that scale. The DTG 

approach was introduced as a simple alternative to the more complex layered model—one that 

makes different assumptions about the characteristics of students’ test scores. From a practical 

point of view, the DTG is not “ready for prime time”: It is inefficient because it does not 

“borrow strength” across grades or subjects, and at this point there are not estimated standard 
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Table 10  

Classification of Schools by Developmental Trajectory Growth (DTG) Model and Layered 

Model Within Each Transition for Each Subject 

DTG 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

Reading: Fall-K to Spring-K 

- 21   8   8   3   1   0   0   0   0   0   41 

0 12 26 26 31 32 34 29 29 20 14 253 

Layered 

model 

+   0   0   0   0   0   0   5   5 14 19   43 

Reading: Spring-K to Spring-1 

- 20 11   4   2   1   0   0   0   0   0   38 

0 12 23 32 30 31 30 33 25 24 13 256 

Layered 

Model 

+   0   0   0   0   1   2   2   7 11 20   43 

Reading: Spring-1 to Spring-3 

- 19   4   2   5   4   0   0   0   0   0   34 

0 15 30 30 31 27 33 32 31 30 23 282 

Layered 

Model 

+   0   0   0   0   0   1   3   2   5 10   21 

Math: Fall-K to Spring-K 

- 11   8   2   0   0   1   0   0   0   0   22 

0 22 26 32 34 33 33 32 28 29 13 282 

Layered 

Model 

+   0   0   0   0   0   1   2   4   6 20   33 

Math: Spring-K to Spring-1 

- 20 13   2   1   0   0   0   0   0   0   36 

0 13 22 30 33 30 40 34 27 23 13 265 

Layered 

Model 

+   0   0   0   0   0   0   0   4 11 21   36 

Math: Spring-1 to Spring-3 

- 18   4   3   2   0   0   0   0   1   0   28 

0 15 29 32 31 33 32 32 29 28 17 278 

Layered 

Model 

+   0   0   0   0   0   3   3   4   4 17   31 

Note. Abbreviations as follows, e.g.: Spring-K = spring kindergarten; Fall-1 = fall first grade. 
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errors to attach to the value-added estimates. Nonetheless, our analyses show that the DTG 

approach has reasonable properties and serves a methodological purpose of generating a 

plausible comparison set of estimates. 

The results of this study indicate a reasonable degree of robustness in the estimates of 

value-added. That is, the correlations between the two sets of estimates are quite respectable. 

This is the case although both sets of estimates are based on the analysis of a single cohort. 

Ideally, results should be averaged over (say) three cohorts to enhance the stability of the 

estimates. 11 In fact, when the school value-added estimates are averaged over transitions, the 

correlations are quite high. 

In practical applications, interest often centers on schools with value-added estimates at 

the extremes of the distribution (e.g., the lowest and highest deciles). The stability of decile 

location across methods is another aspect of robustness that merits consideration. In our version 

of this analysis, we find a moderate level of stability. In sum, these results give some support to 

the judicious use of value-added estimates in school improvement efforts. 
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Notes 
1 Much of the work reported here was done while Henry Braun was a distinguished presidential 

appointee at Educational Testing Service, which supported this research. 

2 Typically, results of value-added analyses at the classroom level are denoted as teacher effects. 

However, strictly speaking, the statistical analysis yields estimated effects due to classroom 

assignment. Inferences that these are due to the teacher in the classroom involve yet other 

technical issues. Accordingly, we will use the term class effect. 

3 Phrases such as school effect or class effect are not intended to invoke a causal interpretation of 

the estimates obtained through statistical analysis. Use of the term effect is traditional in 

statistics and harkens back to the analysis of agricultural experiments, for which a direct 

causal interpretation was indeed plausible. In nonrandomized studies, interpreting school 

effects as measures of school effectiveness is more problematic. 

4 The commercial product based on the layered model is known as the educational value-added 

assessment system (EVAAS) and is marketed by SAS Incorporation. 

5 It is not strictly necessary for the data to be on a single scale, but most applications of the 

layered model do involve such data. 

6 Betebenner (2007) also has investigated the use of transition matrices to model student growth. 

7 The defined developmental levels are numbered 2–8. Level 1 is reserved for those students who 

have not reached the first developmental level, Level 2. See Pollack et al. (2005). 

8 This is usually known as indirect standardization. 

9 This weighting gives more influence or weight to transitions into higher developmental levels. 

This is reasonable if each higher level corresponds to a qualitatively more complex skill 

standard. Other choices of weights are certainly possible. For example, the transition from i to 

j could be weighted by a factor (j - i). Such a weighting scheme treats changes in level as 

basic. There is an implicit value judgment in the choice of a weighting scheme. 

10 However, two schools with the same set of transition probabilities would not necessarily be 

assigned the same GMWD irrespective of the input distribution. 
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Appendix A 

Sample Characteristics 

Table A1 

Distribution of Gender in the Gull Sample and the Analysis Sample 

Frequency Percentage 

Gender Full samplea  Analysis sample Full samplea  Analysis sample 

Male 10,866 4,448 51.14 50.24 

Female 10,381 4,405 48.86 49.76 

aMissing = 13. 

Table A2 

Distribution of Race in the Full Sample and the Analysis Sample 

Frequency Percentage 

Race 

Full 

samplea

Analysis 

sampleb

Full 

samplea

Analysis 

sampleb

White, non-Hispanic 11,741 5,454 55.41 61.7 

Black or African American, non-

Hispanic 

  3,210   887 15.15 10.03 

Hispanic, Race specified   1,757   699   8.29   7.91 

Hispanic, Race not specified   2,005   706   9.46 7.99 

Asian   1,364   593   6.44   6.71 

Native Hawaiian, other Pacific 

Islander 

    220   123   1.04   1.39 

American Indian or Alaska Native     379   160   1.79   1.81 

More than one race, non-Hispanic     514   218   2.43   2.47 

aMissing = 70. bMissing = 13. 

22 



Appendix B 

Description of the Layered Model 

Let i index students, j index transitions, and index the school attended by student i. 

Then, the bivariate model is of the form 

in

( ) ( ) ( ) ( ), , ,
i iij ij j j n k n k ij ij

k j

y z
≤

= + + ,∑μ γ θ ϕ ε δ ;    (j = 1, 2, 3) 

where  represents the student’s reading score;  represents the student’s math score; ijy ijz jμ  

represents the average reading score over the whole population; jγ  represents the average math 

score over the whole population; 
in kθ  represents a school effect in reading; 

in kϕ  represents a 

school effect in math; and ijε  and ijδ  are the random error terms in reading and math, 

respectively. 

The parameters { }μ  and { }γ are assumed fixed, whereas the parameters { }θ  and { }ϕ  

are assumed random and jointly independent. Let iε = ( )1 2 3, ,i i i
ε ε ε  and iδ = 

( )1 2 3, ,i i i
δ δ δ , then ( ),i iε δ  are assumed to follow a multivariate normal distribution with 

mean vector zero and an unstructured positive definite covariance matrix. Conditional on the 

other parameters in the model, ( ),i iε δ  are assumed to be independent across students. 

For the three transitions, the model can be represented as 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1, , , ,
i ii i n n i iy z μ γ θ ϕ ε δ= + + ; 

( ) ( ) ( ) ( ) ( )2 2 2 2 1 1 2 2 2 2, , , , ,
i i i ii i n n n n i iy z μ γ θ ϕ θ ϕ ε δ= + + + ; 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 1 1 2 2 3 3 3 3, , , , , ,
i i i i i ii i n n n n n n i iy z μ γ θ ϕ θ ϕ θ ϕ ε δ= + + + + . 

The layered model is sometimes referred to as a persistence model because the school 

effects at one transition are carried over to succeeding transitions. Lockwood et al. (2006) dealt 
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with a general model, termed a variable persistence model, in which the school effect is 

dampened in succeeding transitions. They employed a fully specified set of Bayesian priors for 

all model parameters and explained how to carry out the requisite computations to obtain 

Bayesian estimates of the parameters. Lockwood et al. also made provision for including a vector 

of student covariates. However, in the opinion of the developers of the layered model (Ballou, 

Sanders, & Wright, 2004), it is unnecessary to adjust for differences in student characteristics, 

because the model exploits the covariances within transitions across subjects and between 

transitions within subjects, so that students are effectively treated as their own controls. 
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