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Abstract 

The purpose of this paper is to explore methods to approximate population invariance without 

conducting multiple linkings for subpopulations. Under the single group or equivalent groups 

design, no linking needs to be performed for the parallel-linear system linking functions. The 

unequated raw score information can be used as an approximation. For other linking functions 

that are nonparallel-linear, linking only needs to be conducted for the total population. The 

difference of the standardized mean differences between each subpopulation and the total 

population across the old form and the new form can be used as an approximation of population 

invariance. Under the nonequivalent groups with anchor test design, conducting separate 

subpopulation linking and comparing them to the total population linking may still be the best 

way to estimate population invariance. 

Key words: Population invariance indices, single group linking, equivalent groups linking, 

NEAT linking, subpopulation linking 
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The goal of test score equating is to ensure that scores from one test form can be used 

interchangeably with scores from another form. Equating is the strongest form of test score 

linking. It requires strong assumptions: the same construct requirement, the equity requirement, 

the symmetry requirement, the equal (and high) reliability requirement, and the population 

invariance requirement (for more details, see Dorans & Holland, 2000; Holland & Dorans, 2006; 

Liu & Walker, 2007). In this paper, we focus on the last requirement; the population invariance 

requirement. 

The assumption of population invariance requires that the score equating function should 

be invariant across subpopulations from the total population from which the subpopulations are 

drawn. In other words, the equating function ought to be subpopulation independent. Kolen 

(2004) reviewed the research on population invariance, and concluded that population invariance 

holds approximately when alternate test forms are built to the same, or very similar, content and 

difficulty specifications. Equating should be population invariant, while other types of linking 

are not expected to be invariant (Holland & Dorans, 2006). 

The ETS research report titled Population Invariance of Score Linking: Theory and 

Application to Advanced Placement Program Examination (Dorans, 2003); the spring 2004 

special issue of Journal of Educational Measurement, titled Assessing the Population Sensitivity 

of Equating Functions (Dorans, 2004a); the 2004 special issue of Applied Psychological 

Measurement, titled Concordance (Pommerich & Dorans, 2004); and the 2008 special issue of 

Applied Psychological Measurement titled Population Invariance (von Davier & Liu, 2008 ); all 

contain collections of articles that study population sensitivity issues from different perspectives, 

across a variety of testing programs. For example, Yang (2004) examined whether the multiple-

choice to composite linking functions in the Advanced Placement Program®, or AP®, exam 

remain invariant over subgroups defined by region. Yin, Brennan, and Kolen (2004) examined 

group invariance under concordance conditions between ACT and the Iowa Test of Educational 

Development (ITED) scores. Liu, Cahn, and Dorans (2006) examined population invariance of 

linking the revised SAT® to the old SAT, to assess the equatability of the revised SAT scores. 

The most commonly used population sensitivity indices were developed by Dorans and 

Holland (2000), where the total population is assumed to be partitioned into mutually exclusive 

and exhaustive subpopulations, and linking functions are conducted in the total population and in 

each subpopulation of interest. However, it can be very time consuming and computer-intensive 
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to conduct a separate linking function for each subpopulation (e.g., number of linkings = 

subpopulations x linking methods x measures.). For example, Dorans, Liu, Jiang, and Cahn 

(2006) conducted a score equity assessment (SEA; Dorans, 2004b), which produced estimates of 

means on the new SAT critical reading and math for gender groups and ethnic groups (White, 

Black, Asian American, Hispanic, and Other), assuming that the old SAT verbal and math had 

continued to be used. The number of subgroup linkings and scalings was 196 for critical reading 

and 210 for math, for a total number of 406. Dorans et al. (2006) assumed that the linking 

method chosen for the total population was appropriate for each of the subpopulations, which 

may not necessarily be true. If the researchers also tried multiple linking methods for each 

subpopulation, the total number of linkings would have been multiplied by 5 or 6. 

The goal of this study is to explore ways to approximate meaningful yet easily computed 

population invariance indices that do not require the creation of multiple subpopulation linking 

functions. This paper is organized in the following way. Section 1 reviews the Dorans-Holland 

measures of population sensitivity of score-linking functions. Section 2 discusses the parallel-

linear system of linking functions in a single population, where there is no need to perform any 

actual linkings. Section 3 explores ways to approximate population invariance indices based on 

the total population linking function for the single group (SG) design or equivalent-groups (EG) 

design, when the linking functions are nonparallel-linear. Section 4 looks at the difference of the 

standardized mean differences between the total test and the anchor as an approximation for 

population invariance in the nonequivalent-groups anchor test (NEAT) design. Finally, section 5 

synthesizes these findings. 

1. Dorans-Holland Measures of the Population Sensitivity of Score-Linking Functions 

Dorans and Holland (2000) developed general population invariance indices of linking 

functions used for one population, either for a single group or for two groups that are equivalent. 

von Davier, Holland, and Thayer (2004) extended that work to the nonequivalent groups. 

Holland and Dorans (2006) synthesized the score-linking sensitivity indices across different 

linking designs. These methodological developments are pertinent to the present paper. 

Linking is usually conducted in the total group to produce a total group linking function 

and a total group scaling function that place raw scores onto the score reporting scale. To 

examine population invariance of linking functions, linkings and scalings are produced for each 

subpopulation of interest as well. The Dorans-Holland indices assume that the total population T 
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is partitioned into several subpopulations, Tj (j = 1, 2, …). X and Y are the two test forms to be 

linked. The linking on total population T is denoted by the linking function ( )Te x , and ( )
jTe x  

denotes the linking function for subpopulation Tj. Each subpopulation is weighted by its relative 

frequency, wj , so that 1jw =∑ . The difference between ( ) ( )
jT Te x e x−  is then computed for 

each subpopulation. 

The first index is the root mean square difference measure, RMSD(x), defined as 

2
( ) ( )

( )
jj T T

j

YT

w e x e x
RMSD x

σ

⎡ ⎤−⎣ ⎦
=
∑

.  (1) 

RMSD(x) provides an average across groups at each score level. Another index, root expected 

mean square difference (REMSD), provides a single number summarizing the values of 

RMSD(x). REMSD is obtained by averaging RMSD(x): 

2
( ) ( )

jT j T T
j

YT

E w e x e x
REMSD

σ

⎧ ⎫⎡ ⎤−⎨ ⎬⎣ ⎦⎩ ⎭=
∑

, (2) 

where TE  denotes expectation or average over the score distribution of X in T.  

In addition, we can also compute the root expected square difference for each 

subpopulation, RESD(j) to evaluate how close each subpopulation linking function is to the total 

population linking function: 

2
( ) ( )

( ) j jT T T

YT

E e x e x
RESD j

σ

⎡ ⎤−⎣ ⎦= . (3) 

RESD(j) weights by the relative frequency of new form X in the subpopulation Tj. There is a 

RESD(j) for each subpopulation. 

Note that the Dorans-Holland indices are based on the raw-to-raw linking and the divisor 

YTσ is used to quantity the differences in standard deviation units. However, we need to keep in 

mind that a raw-to-raw linking or an equating function is a transformation of raw scores on test 
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X, to the scale of raw scores on test Y. It is usually the first step of a two-step process by which 

raw scores on test X are put onto the reported scale on test Y. The second step is to convert the 

equated raw score of X to the reporting scale of Y, through a scaling function that maps the raw 

scores of Y to the scale. The first step of raw-to-raw equating function and the second step of 

scaling function are composed to convert the raw scores of X onto the reporting scale of Y 

(Holland & Dorans, 2006). The reported or the scaled scores are the final scores that test users 

get, and most readers are familiar with and can easily interpret scaled score values (e.g., the 

College Board 200-to-800 scale). 

Researchers have modified the standardized Dorans-Holland indices on the raw score 

scale and expressed the difference in the scaled score unit (Liu et al., 2006). The population 

invariance indices in the scaled score unit are then defined as: 

2
( ) ( ) ( )

jj T T
j

RMSD x w s x s x⎡ ⎤= −⎣ ⎦∑ , (4) 

2
( ) ( )

jT j T T
j

REMSD E w s x s x
⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭
∑ , (5) 

and 

2
( ) ( ) ( )

j jT T TRESD j E s x s x⎡ ⎤= −⎣ ⎦ , (6) 

where ( )
jTs x is the equating and scaling function or the raw-to-scale conversion based on 

subpopulation jT , and ( )Ts x is the raw-to-scale conversion based on total population T. 

In order to evaluate the relative magnitude of the differences between subpopulation 

linking functions and the total population linking function, Dorans and Feigenbaum (1994) 

proposed the notion of the score difference that matters (DTM), in the context of SAT linking. 

On the SAT scale, scores are reported in10-point units. For a given raw score, if the unrounded 

scaled scores resulting from two separate linkings differ by fewer than 5 points, then the scores 

should ideally be rounded to the same reported score. Dorans, Holland, Thayer, and Tateneni 

(2003) adapted the above indices used in SAT practice to other tests and considered the DTM to 

be half of a score unit for unrounded scores. 
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As can be seen from the formulae above, all of the calculations are based on total 

population linking and subpopulation linking functions. However, as we mentioned previously, 

performing multiple linkings can be very time and computer intensive. So the question remains: 

Is there a short cut that allows us to assess population invariance? 

2. Parallel-Linear System of Linking Functions in the SG or EG Design— 

No Need to Conduct Any Linkings 

Dorans and Holland (2000) examined RMSD(x) and REMSD for a special case, which 

they call the parallel-linear system of linking functions in the SG or EG design. The system of 

parallel-linear linking functions has the same slope between the subpopulation linking functions 

and the total population linking function. It only allows intercept differences between 

subgroup/total group linking functions. RMSD(x) and REMSD are equal for the parallel-linear 

system of linking functions: 

( )
2

j jYT YT XT XT
j

j YT XT

RMSD x REMSD w
μ μ μ μ

σ σ

⎡ − − ⎤⎛ ⎞ ⎛ ⎞
= = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ , (7) 

where 
jYTμ , YTμ , 

jXTμ , and XTμ  denote the unequated raw score means of Y and X for 

subpopulation jT  and total population T, and YTσ and XTσ  denote the standard deviations of the 

unequated raw scores of Y and X for the total population. Therefore, as can be seen from the 

equation, we can estimate population sensitivity without conducting any linkings. 

Dorans and Holland (2000) illustrated the computation of RMSD(x) values for the 

parallel-linear case with several examples. They had two forms, X and Y, two sets of scores, SAT 

verbal (SAT-V) and SAT math (SAT-M), on each form (the linkings were based on SAT-V to 

SAT-V and SAT-M to SAT-M), and three ways of forming subpopulations: gender, language 

spoken at home, and ethnicity. The results showed very little evidence of population dependence 

by the parallel linking functions. 

Liu and Holland (2008) also used this simplified version of RMSD(x) to explore the 

sensitivity of linking functions on the LSAT subpopulations defined by test-takers’ gender, 

ethnicity, geographic regions, whether they applied to law school, and their law school admission 

status. Population sensitivity was examined in three different linking situations: linking between 
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completely parallel tests, linking between tests that are not strictly parallel but are of comparable 

reliability, and linking between completely nonparallel tests. Results showed that linking parallel 

measures of equal reliability exhibits very little group dependence of linking functions across all 

the subpopulations studied, whereas the linkage of completely nonparallel tests shows substantial 

population dependence. Besides the main results of the study, it was shown that this simple 

version of RMSD(x) is a useful tool to assess population sensitivity, without carrying out the 

actual linkings. 

The beauty of this simplified formula for RMSD is that it is very easy to calculate. In 

reality, however, we often need to deal with situations that are more complicated than this. In the 

following section, we try to extend this simple version to a nonparallel-linear linking case: 

equipercentile linking. 

3. Equipercentile Linking in SG or EG Design— 

Conducting Linking Based on Total Population Only 

The equipercentile linking function is set so that the cumulative distribution function 

(CDF) of scores on form X converted to form Y scale is equal to the CDF of scores on form Y 

(Braun & Holland, 1982; Kolen & Brennan, 2004). This nonlinear transformation for total 

population T can be expressed as: 

( )1( )YT T Ty Equi x G F x−= = ⎡ ⎤⎣ ⎦ ,  (8) 

where F represents the CDF of X, G is the CDF of Y, and G-1 is the inverse of the CDF of Y. The 

intent is that x and y have the same percentile in total population T. Similarly, for subpopulation 

Tj, the transformation equation is: 

( )1( )
j j jYT T Ty Equi x G F x− ⎡ ⎤= = ⎣ ⎦ . (9) 

When we assume that the two CDFs, ( )TF x  and ( )TG y , have the same shape and only 

differ in their means and standard deviations, the equipercentile linking function becomes linear 

linking function, ( )YTLin x  (Holland & Dorans, 2006), defined as: 
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( ) ( )YT
YT YT XT

XT

Lin x x
σ

μ μ
σ

= + − . (10) 

Within the equivalent groups design, if the two forms can be equated, it is reasonable to 

assume that the means in the reported score scale should order various subpopulations in the 

same or a similar way across the new form and the old form (Holland & Dorans, 2006). In other 

words, the standardized mean difference for each subgroup should be identical or similar across 

the new and the old forms, 

( ) ( ) ( ) ( )

( ) ( )
j jYT YT XT XT

YT XT

ss ss ss ss

ss ss

μ μ μ μ

σ σ

− −
= , (11) 

where ( )ssμ  and ( )ssσ  are the mean and standard deviation of the scaled scores, respectively. 

As shown in Equation 11, the standardized mean difference is a type of effect size that quantifies 

the mean differences between two groups in standard deviation units. We just need to perform 

the linking based on the total population only, and then apply this total-population conversion to 

each subpopulation to get the summary statistics for each subpopulation. If the above equation 

does not hold for a particular group or groups, then this can serve as an indicator that the linking 

might be population dependent. 

In order to evaluate whether the above standardized mean difference can be used as an 

approximation of population invariance, and to explore the relationship between the standardized 

mean difference and the traditional RMSD(x) and REMSD indices, we examined empirical data 

from the spring 2003 new SAT field trial for illustration purpose. We first summarized the 

results based on subpopulation linking, which we call full equatability analysis. Then, we 

presented the results based on the total population linking, by examining the standardized mean 

differences between each gender subpopulation and the total population across the old version of 

the test (verbal section) and the new version of the test (critical reading section). 

3.1 Results Based on Total Population Linking and Subpopulation Linkings— 

Full Equatability Analysis  

In the 2003 new. SAT field trial, the booklets containing the new critical reading and the 

booklets containing the old verbal were spiraled, in an effort to yield equivalent groups. The 

resulting groups who took the new critical reading and the old verbal were deemed to be 
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equivalent (Liu et al., 2006). The critical reading section was then linked to verbal through the 

EG design for total population using equipercentile linking, and produced a total-group 

conversion. Equipercentile linking was performed for males and females as well, to yield a male-

only conversion and a female-only conversion. We call this kind of analysis a full equatability 

analysis, since it involves both total population linking and subpopulation linkings. 

Table 1 presents the results of the full equatability analysis. For the 3,801 males who took 

the critical reading section, the results showed that they would have received a lower mean 

(474.9) if the male-only conversion (SGL in the table) had been used in place of the total group 

conversion (TGL in the table), which yielded a mean of 477.9. The mean difference was -3.4, 

with a standardized mean difference of -.03. For the 5,374 females, the full equatability analysis 

indicated that they would have obtained a higher mean (482.8) with a female-only conversion 

than with the total group conversion (480.4), with a mean difference of 2.3 and the standardized 

mean difference of .02. The RESD statistics are 3.7 and 2.7 for males and females, respectively. 

The REMSD value was around 3. These values are all below the DTM of 5, which suggests that 

the linkage of critical reading to verbal was essentially invariant across males and females. 

Table 1 

Summary Statistics of Full Equatability in an Equivalent Groups (EG) Design 

Group N Linking Mean SD Mean 
diff 

Std mean 
diff 

RESD 

Total 9,194 TGL 479.4 107.8    
Male 3,801 TGL 477.9 111.0    
  SGL 474.9 110.0 -3.4 -.03 3.7 
Female 5,374 TGL 480.4 105.3    
  SGL 482.8 105.8 2.3 .02 2.7 

Note. RESD = root expected square difference, SGL = subgroup linking, TGL = total group 

linking. 

3.2 Results Based on Total Population Linking Only— 

Difference in Standardized Mean Differences Across Verbal and Critical Reading 

The results in this section were based on total population linking only: We conducted 

total population linking, and then applied the conversion to males and females, to get the means 

and standard deviations for each group. We computed the difference in the standardized mean 
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differences across verbal and critical reading for each of the following comparisons: male versus 

total, female versus total, and male versus female. We then compared the results to those based 

on the full equatability analysis. 

Table 2 provides the means and standard deviations on the old verbal and on the new 

critical reading. The differences in standardized mean differences are presented as well. The data 

shows that on the old verbal the means were 474.8 and 479.3, for the male group and the total 

group, respectively. The standardized mean difference between the male group and the total 

group was -.04. This difference was based on 2,283 males out of 5,344 test-takers who took the 

verbal in the field trial. On the critical reading section, the standardized mean difference was -.01 

for the male minus the total group. This difference involved 3,801 males out of 9,194 test-takers 

who took the critical reading in the field trial. The difference in these two standardized mean 

differences was -.03 across the two tests. When compared to the equatability results described 

above, the two methods yielded identical values, -.03. 

Table 2 

Difference of the Standardized Mean Differences Across Verbal and Critical Reading for 

Gender Groups 

Verbal Critical reading  
N Mean SD N Mean SD 

 

Total 5,344 479.3 107.9 9,194 479.4 107.8  
Male 2,283 474.8 110.4 3,801 477.9 111.0  
Female 3,055 482.8 105.8 5,374 480.4 105.3  
  Raw 

diff 
Std 
diff  Raw 

diff 
Std 
diff 

Diff in std diff 
(Verbal - CR) 

M – T  -4.5 -0.04  -1.4 -0.01 -0.03 
F – T   3.4   0.03    1.1   0.01   0.02 
M – F  -8.0 -0.07  -2.5 -0.02 -0.05 

Note. M – T = Male group – total group, F – T -= female group – total group, M – F = male 

group – female group. 

For the female group, the standardized mean difference of female minus total was .03 on 

verbal and .01 on critical reading. The difference in the two standardized mean differences across 

the two tests was .02. This difference involved 3,055 females who took verbal and 5,374 females 

who took critical reading. Once again, this difference was identical to the results produced by the 

full equatability analysis. 
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The difference of the standardized mean differences between old verbal and new critical 

reading for the male minus female comparison was around .05 in absolute value. Compared to 

the REMSD value, which was around 3 in scaled score units and .027 in standard deviation units, 

the difference of the two standardized mean differences was about twice that of the REMSD 

value, considering rounding errors. It is reasonable in that when there are two subpopulations 

involved, the expected difference from the total population (-.03 for males and .02 for females) 

should be one-half the difference between the two subpopulations (-.05). 

The same pattern was also observed for the math results (Liu & Dorans, 2004). Hence, 

we may consider using means and standard deviations to estimate population invariance in the 

EG or SG design, without actually doing any subpopulation linkings. 

4 Sensitivity Indices in the NEAT Design 

In the NEAT design, population P takes form X and anchor A, and a different population 

Q takes form Y and the same anchor A. When examinees with different abilities take different 

forms across different administrations in the NEAT design, it is more complicated to find a 

shortcut for assessing population sensitivity. However, the common items that are used to control 

examinee ability differences might be a place to start. In this paper, we only focus on chained 

linking with the NEAT design. 

Chained linking transforms scores through the following chained stages: First link X to A 

on population P; then link A to Y on population Q. These two linking functions are then 

composed to map X to Y through A. The first two stages are more like two SG linkings. Within 

each SG linking, it is reasonable to assume that the means should order various subpopulations in 

a same or similar way across the anchor and the total test. If population invariance holds across X 

and Y, it is also reasonable to assume that the means should order various subpopulations in a 

same or similar way across X and Y, and the anchor should order subpopulations in a same or 

similar way across the two populations. Hence, the mean differences between the total test and 

the anchor across the old and the new tests should be close. Any deviation could be a sign of 

subpopulation dependence. 

We can use the difference between the standardized mean differences of the total test and 

the anchor as an approximation. As shown in Equation 12, each component is actually an effect 

size, describing the differences in standard deviation units: 
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 j j j jXP XP AP AP YQ YQ AQ AQ

XP AP YQ AQ

μ μ μ μ μ μ μ μ

σ σ σ σ

− − − −
− = − ,  (12) 

where
jXPμ , XPμ , 

jAPμ , and APμ denote the raw score means of X and A on subpopulation Pj and 

population P, and XPσ  and APσ  denote the standard deviations of X and A on P. Similarly, 
jYQμ , 

YQμ , 
jAQμ  and AQμ  denote the raw score means of test Y and anchor A on subpopulation Qj and 

population Q; and YQσ , and AQσ denote the standard deviations of Y and A on Q. 

Again, we examine our hypothesis by comparing the full equatability analyses results, 

which were based on total population and subpopulation linkings, to the results based on the 

approximation using standardized mean differences.  

4.1 Results Based on Full Equatability Analysis in a NEAT Design 

Form X was a new SAT critical reading section, and Form Y was an old SAT-V section. 

Forms X and Y were administered operationally in different SAT administrations. Form X was 

linked to Form Y, through an external anchor for the total population and each of the ethnic 

subpopulations. Table 3 contains sample sizes for the total group and ethnic subgroups. Note that 

these were the linking samples used when the test was equated, while the samples contained in 

Table 4 were obtained after equating, and were used to project summary statistics. The White 

group had relative large sample sizes, whereas other ethnic groups had much smaller sample 

sizes. The chosen equating function was the chained equipercentile equating using log-linear 

presmoothed data, for the total group and for each subgroup. 

Table 3 

Sample Sizes for Equating New Form X to Old Form Y in a Nonequivalent Groups Anchor 

Test (NEAT) Design 

 New form Old form 
Total 6,351 15,746 
White 3,928   9,096 
Black   444   1,686 
Hispanic   520   1,215 
Asian American   696   1,405 
Other   763   2,344 
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Table 4 summarizes the results based on the total group linking (TGL) and the subgroup 

linking (SGL), including the difference of the means based on the total group linking and the 

subgroup linking (the mean diff), and the RESD statistics. 

Table 4 

Summary Statistics of Full Equatability in a Nonequivalent Groups Anchor Test (NEAT) 

Design 

Group N Linking Mean SD Mean 
diff 

Std 
mean 
diff 

RESD 

Total 271,751 TGL 526.3 110.0    
Asian American   32,385  TGL 542.9 113.9    
  SGL 537.1 116.5 -5.8 -.05 8.7 
White  166,043  TGL 539.4 101.1    
  SGL 539.8   99.9 0.4 .00 2.1 
Other   31,202  TGL 536.1 120.7    
  SGL 537.9 121.2 1.8 .02 3.6 
Hispanic   21,617  TGL 473.7 104.3    
  SGL 478.6 106.2 5.0 .05 6.4 
Black   20,504  TGL 434.1 100.4    
  SGL 433.7   96.7 -0.4 -.00 4.8 

Note. RESD = root expected square difference, SGL = subgroup linking, TGL = total group 

linking. 

The results indicate that the Asian American group would have received a lower mean 

(537.1) if the Asian American-only conversion had been used in place of the total group 

conversion, which produced a mean of 542.9, with a difference of 5.8 points. Similarly, the 

Black group would also have had a lower mean (433.7), if the Black-only conversion had been 

used. For the White, Other, and Hispanic groups, the subgroup-only conversions would have 

produced higher means than the total group conversion, with the mean differences being 

positive. The White and Black groups had the smallest mean differences, 0.4 in absolute value. 

For other subgroups, the mean differences range from 1.8 to 5.8 in absolute value. The biggest 

mean difference was found in the Asian American group (-5.8), followed by the Hispanic group 

(5.0). The RESD statistics concur with the mean differences as expected, in that the Asian 

American and Hispanic groups had the biggest RESD values: 8.7 for Asian American and 6.4 for 
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Hispanic. The differences for the Asian American and Hispanic groups were considered large 

enough (exceeding the DTM) to exhibit group dependence. 

In summary, the White group did not exhibit population sensitivity, whereas the Asian 

American and Hispanic groups exhibited large differences between the subgroup linking and the 

total group linking, to a degree that merits investigation. 

4.2 Results Based on Approximation: The Difference of the Standardized Mean Differences 

Between the Total Test and the Anchor Across the Old Form and the New Form 

This section examines the difference of the standardized mean differences between the 

total test and the anchor across the old form and the new form, as an approximation. Table 5 

contains the raw score summary statistics of population P taking form X and anchor A, and 

population Q taking form Y and anchor A, broken down by group membership. 

Table 5 

Raw Score Summary Statistics of Group Performance in a Nonequivalent Groups Anchor 

Test (NEAT) Design 

Old form  New form  Group 

Total test Anchor Total test Anchor 
Test length 78 19 67 19 
Total group - mean 37.41 9.21 34.36 9.73 

                    - SD 18.17 4.98 15.56 4.92 

Asian American 37.54 9.62 36.47 10.56 

 19.56 5.36 16.13 5.21 

Black 22.05 5.36 21.17 5.91 

 14.88 4.27 15.08 4.67 

Hispanic 29.89 6.91 27.09 7.42 

 16.52 4.64 14.97 4.83 

White 40.67 10.06 36.08 10.23 

  16.42 4.52 14.40 4.57 

Other 39.60 9.66 36.20 10.24 

 19.94 5.41 16.30 5.15 
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First, we calculated the standardized mean difference for each pair of subgroup minus 

total group on the total test and on the anchor on the old form Y. Table 6 lists the results. For 

example, the standardized mean difference between the Asian American group and the total 

group was .01 on the total test, and .08 on the anchor. The difference was -.07. Relatively 

speaking, the Asian American group did a little worse on the total test than on the anchor. So did 

the Black group, also with a difference of -.07. The White group did about the same on the total 

test and on the anchor. The Other group and the Hispanic group did a little better on the total test 

than on the anchor. 

Table 6 

Difference of the Standardized Mean Differences Across the Total Test and the Anchor  

on the Old Form 

Old form Group 
Total Anchor 

Total - anchor 

Asian American   0.01   0.08 -0.07 
White   0.18   0.17   0.01 
Other   0.12   0.09   0.03 
Hispanic -0.41 -0.46   0.05 
Black -0.84 -0.77 -0.07 

Second, we got the standardized mean difference on the total test and on the anchor for 

each subpopulation on the new form X. The results are summarized in Table 7. Again, the Asian 

American group and the Black group did a little worse on the total test than on the anchor. But 

the Hispanic group did just about the same on the total test as on the anchor. 

Table 7 

Difference of the Standardized Mean Differences across the Total Test and the Anchor  

on the New Form 

New form Group 
Total Anchor 

Total - anchor 

Asian American   0.14   0.17 -0.03 
White   0.11   0.10   0.01 
Other   0.12   0.10   0.02 
Hispanic -0.47 -0.47   0.00 
Black -0.85 -0.78 -0.07 
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Third, we compared the (total minus anchor) difference across the old and the new forms. 

As can be seen from Table 8, the difference was -.04 for the Asian American group, and .05 for 

the Hispanic group. We also put the full equatability analysis results in Table 8, for the purpose 

of comparison. As we can see, the results based on the two methodologies are quite similar. 

Table 8 

Comparison of the Difference of the Standardized Mean Differences Between the Total Test 

and the Anchor Across the Old and the New Forms 

Diff of  
(total – anchor) 

Group 

Old form New form

Std. mean diff of (total –
anchor) across the old 

and the new forms 

Std. mean diff of (SGL –
TGL) based on full 

equatability analysis 
Asian American -0.07 -0.03 -0.04 -0.05 
White   0.01   0.01   0.00   0.00 
Other   0.03   0.02   0.02   0.02 
Hispanic   0.05   0.00   0.05   0.05 
Black -0.07 -0.07   0.00 -0.00 

Note. SGL = subgroup linking, TGL = total group linking. 

However, at present, there is some disagreement about using this method. It is argued that 

P and Q are two different populations; hence they are not directly comparable (N. Dorans, 

personal communication, April 23, 2007). It is argued that this method neglects the possible 

interactions between the group membership and the test difficulty. Even if the difference of total 

minus anchor standardized mean differences across the old and the new forms is zero for a 

particular subgroup, it just means that this particular group finds the anchor test being similar to 

the total test at the difficulty level, in both the old form and the new form, but it does not reveal 

the relationship between the group membership and the form difficulty across the new form and 

the old form. 

5. Discussion 

The purpose of this paper was to explore methods in identifying population invariance, 

without conducting multiple linkings for subpopulations. Under the SG or EG design, no linking 

needs to be performed for the parallel-linear system linking functions. The RMSD(x) is equal to 

the REMSD value that can be calculated using unequated raw score information. For other 

linking functions that are nonparallel-linear, linkings only need to be conducted for the total 

population. The total population conversion can then be applied to different subpopulations, and 
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the difference of the standardized mean differences between each pairing of subpopulation and 

the total population across the old form and the new form can be used as an approximation of the 

full equatability population invariance indices. However, we would like to point out that the 

RMSD(x) statistics quantify weighted differences between subgroup versus total group linking 

functions at each score level, whereas the approach of standardized differences only take into 

account the means and standardized deviations of equated scores, ignoring the relative 

frequencies across score levels. Hence, small standardized mean differences cannot warrant 

population invariance at score levels. 

It is more complicated with the NEAT design when it involves two different populations. 

The difference of standardized mean differences between the total and the anchor test across the 

old and the new forms might be useful, but there is debate about using it. The results here were 

only based on one data set. More evidence needs to be collected. In addition, we basically used 

chained linear linking function, which may not be appropriate to expand to other linking 

situations where the relationship is not linear. 

This paper does not explore alternative ways to calculate population invariance indices 

with chained curvilinear linking and post stratification linking. These might be topics for future 

research. For example, it may be possible that we can break down the chained linking into 2 SG 

linkings, conduct chained curvilinear linking within each SG, and evaluate population invariance 

in each SG linking, using the standardized mean difference based on total group linking. 

In the case of post stratification equating (PSE), such as Tucker linear equating, we can 

first perform regression of X on A in total population P and in different subpopulations, to get a 

regression slope and a regression intercept for each subpopulation. We also need to calculate the 

conditional variance of X given A, in population P and for each subpopulation. If the slopes, 

intercepts, and conditional variances are invariant across subgroups, then it is likely that the 

conditional distribution of X given A is population invariant within population P. A similar set of 

analyses would need to be done within population Q, to determine whether the conditional 

distribution of Y given A is population invariant. If population invariance is satisfied in both 

populations, then population invariance is going to hold in the synthetic population, given the 

assumptions of PSE. However, in this case, the amount of actual work is not reduced. Instead, it 

gets increased. If we perform a regression analysis for each subgroup in populations P and Q, it 

is reasonable that we might want to go ahead and conduct the equating for each subgroup. 
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Essentially, the approximation methods of using standardized mean differences proposed 

in this study are pretty much based on the assumptions of linear equating or linear linking. It 

seems paradoxical, though, to evaluate population invariance of nonlinear linking functions 

using such linearity-based statistics. Therefore, we suggest using the standardized mean 

difference only as an approximation of population invariance in the SG or EG design. Under the 

NEAT design, conducting individual subpopulation linkings and comparing them to the total 

population linking is probably still the best way to determine population invariance. 
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