
Listening.  Learning.  Leading.®

Evaluation of Methods to Compute 
Complex Sample Standard Errors 

in Latent Regression Models

Andreas Oranje

Deping Li

Mathew Kandathil

 

December 2009

ETS RR-09-49

Research Report



 

December 2009 

Evaluation of Methods to Compute Complex Sample Standard 

Errors in Latent Regression Models 

Andreas Oranje, Deping Li, and Mathew Kandathil 

ETS, Princeton, New Jersey 

 

 



 

 

Copyright © 2009 by Educational Testing Service. All rights reserved. 

ETS, the ETS logo, and LISTENING. LEARNING. 
LEADING. are registered trademarks of Educational Testing 

Service (ETS). 

 

As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance 

quality and equity in education and assessment for the benefit of ETS’s constituents and the field. 

To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 



Abstract

Several complex sample standard error estimators based on linearization and resampling for

the latent regression model of the National Assessment of Educational Progress (NAEP)

are studied with respect to design choices such as number of items, number of regressors,

and the efficiency of the sample. This paper provides an evaluation of the extent these

estimators are appropriate for the models and test lengths often encountered in NAEP

and what the effect is on the NAEP imputation model. It is shown that in general the

resampling method used in this study provides the most accurate standard errors. However,

the differences with the linearization method chosen in this study are relatively small if only

small models are used with respect to the independent variables of the latent regression.

Illustration is provided through several small simulation studies and NAEP data analysis.

Key words: Linearization, resampling, estimators, NAEP

i



Ackowledgments

The authors would like to thank John Mazzeo, Jiahe Qian, John Donoghue, Xueli Xu,

Matthias von Davier, and Shelby Haberman for many discussions, insights, and suggestions.

We also thank the editor and two reviewers for their excellent comments.

ii



1 Introduction

The National Assessment of Educational Progress (NAEP) has two key design

characteristics: (a) NAEP assesses probability samples of students within schools and

schools within geographic regions, resulting in complex samples and (b) each student

answers only a systematic portion of the cognitive item pool so that all students combined

provide an approximately equal number of responses to each item in the item pool. The

result of this design is that students cannot be compared to each other directly and that

individual proficiency estimates cannot be obtained reliably. However, point estimates

can be obtained for groups of students based on posterior distributions of proficiency.

To estimate these distributions, a latent regression model (Mislevy, 1984, 1985) is used.

Subsequently, post-hoc procedures are applied to obtain appropriate standard errors for

NAEP’s statistics of interest, taking into account the complexity of the sample (Mislevy,

1991; Rust& Johnson, 1992).

Cohen and Jiang (2002) adapted a method developed by Binder (1983) to compute

complex sample standard errors through linearization. They implemented this method in

AM software (American Institute of Research [AIR], 2003), which can be used to analyze

a restricted version of the current NAEP model. This method was also implemented in

the current NAEP operational latent regression estimation software (DGROUP), and it

was found that the estimator is similar to simple random sample approximations for larger

models (Li & Oranje, 2007). In addition, Li and Oranje found that a substantial increase

in regression effect standard errors from Cohen and Jiang’s method did not affect the

distribution of NAEP’s imputations (i.e., plausible values), regardless of the size of the

population model. The size of the population model is the number of student groups used

as predictors in the latent regression. Li and Oranje noted in their analyses that relatively

many items per student (approximately 80) were available. In this paper, these findings are

further investigated by addressing the following two questions.

1. How do various methods for estimating standard errors of latent regression model

parameters, including simple random sample approaches, Binder’s method, and re-

sampling approaches, compare in terms of accuracy and efficiency?
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2. How do two design variables, the number of items per student and the population

model size, affect these standard errors and the distribution of plausible values?

Plausible values are the result of an imputation step (see section 4.3) to represent

measurement variablity due to the fact that proficiency is a latent construct. The

connection between the complex sample standard errors and the plausible values is made

in this paper because the imputation model is partly based on the standard errors of

the model parameters. Hence, if plausible values are not appreciably affected by the

populaton model, then a crude approximation of the population parameter standard errors

is defensible. However, if plausible values are substantially affected by those standard

errors, then approximations have to be carefully evaluated.

1.1 Model

The latent regression model used in NAEP is:

θi =
→
γ
′→
xi +εi, (1)

where θi is the latent proficiency for student i = 1, 2, . . . , N ,
→
γ is a vector of latent regression

coefficients,
→
xi is a vector of observed student group indicators, and εi is a residual term,

assumed to be normally distributed. The latent proficiency distribution is characterized by

a collection of item response theory (IRT) models (Lord, 1968), and the predictors typically

contain information about demographics of a student, his or her school, and his or her

teacher(s). Under current NAEP practice, the parameters of this collection of IRT models

are estimated in a prior step and considered known when the latent regression is conducted.

Assuming that item responses
→
yi are independently distributed from student group

indicators
→
xi conditional on proficiency θi, the posterior distribution for a student can be

written as

P (θi;
→
yi, µi,

→
β, σ2) ∝ L(

→
yi; θi,

→
β)φ(θi; µi, σ

2), (2)

where µi =
→
γ
′→
xi,

→
β is a vector of known parameters to further specify the item response

model, σ2 is the residual variance, and φ represents the normal distribution function. The

right side of (2)(2) contains two parts: The first term is the likelihood L of observing a
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particular cognitive response pattern for a given θ, and the second term represents the

distribution of θ in the population of interest. The first term is a product of probabilities

for each of j = 1, 2, . . . , n items assuming local independence

L(
→
yi; θi,

→
β) =

n∏
j=1

P (yij; θi, βj), (3)

where each P (yij; θi, βj) is the probability that examinee i with proficiency θi answers

item j correctly. By marginalizing with respect to θ and computing maximum likelihood

estimates, parameters are estimated in NAEP. A multivariate version of this model follows

by assuming that the likelihood can be factorized for each dimension. For T dimensions,

the posterior distribution of
→
θi is

P (
→
θi;

→
yi,

→
µi,

→
β,Σ) ∝

(
T∏

t=1

L(
→
yit; θit,

→
β)

)
φT (

→
θi;

→
µi,Σ), (4)

where φT is a T -variate normal distribution.

1.2 Estimation

The model parameters in (2) are estimated using an EM algorithm, where the

maximization step in the univariate case involves the following two quantities

→
γ̂= ΞX ′Dw

→
θ̃ (5)

and

σ̂2 =
1

w+

N∑
i=1

(
wiV (θ̃i) + wi

(
θ̃i−

→
γ̂
′→
xi

)2
)

, (6)

where X is an N by g data matrix of N students by g student group indicators, Ξ is

(X ′DwX)−1, Dw is a diagonal matrix of student sampling weights wi, and
→
θ̃ is a vector

of posterior means, where each element is computed by (7). Furthermore, V (θ̃i) is the

posterior variance for a student, computed by (8). Also, w+ is the sum of student sampling

weights.

The expectation step involves computation of posterior moments, which are calculated

as

θ̃i =

∫
θ
θL(yi; θ,

→
β)φ(θ; µi, σ

2)dθ∫
θ
L(yi; θ,

→
β)φ(θ; µi, σ2)dθ

(7)

3



and

V (θ̃i) =

∫
θ
(θ − θ̃i)

2L(yi; θ,
→
β)φ(θ; µi, σ

2)dθ∫
θ
L(yi; θ,

→
β)φ(θ; µi, σ2)dθ

, (8)

where µi =
→
γ̂
′→
xi.

The variance of
→
γ̂ is estimated by the following equation

V(
→
γ̂ ) = E(V(

→
γ̂ )) + V(E(

→
γ̂ )) = σ2Ξ + ΞX ′DwDV (θ̃)DwXΞ, (9)

where DV(θ̃) is a diagonal matrix of dimension N with elements equal to the posterior

variance of student i. For assumptions about the two terms in (9) see Mardia, Kent, and

Bibby (1979, Equations 6.6.5 and 6.6.6, p. 172).

1.3 Student Groups

Students belong to many different groups as defined by variables such as:

• Demographics (e.g., gender, race/ethnicity, parental education)

• Home environment (e.g., number of books in the home)

• School factors (e.g., public or private, location)

• Teacher factors (e.g., professional training)

There are several hundred variables collected and in combination a contingency table

can be constructed with a large number of cells. Hence, nearly every student represents a

single group and many cells are empty. In current NAEP procedures, predominantly main

effects in this contingency table are used. Specifically, most variables appear independently

in the model and a small set of two- and three-way tables is used for key reporting variables.

This still yields a large number of cells.

Under current NAEP procedure, this large contingency table is reduced by

dummy-coding the student group indicators and extracting principal components. The

dummy-coding is used to facilitate regression type analysis with categorical variables. The

extraction of principal components is to reduce the number of variables. Specifically, a set
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of components that explain 90% of the variance is retained. Subsequently, factor scores are

computed and used in (1). For the purpose of this paper, it is assumed that the principal

component factor scores are an equivalent representation of the dummy codes. Hence,

these factor scores are not separately studied. Incidentally, it should be noted that the

dummy-coding scheme and subsequent analyses assume that these codes are continuous

variables, which might not be entirely appropriate, yet is common practice.

One of the key issues addressed in this study is the effect of a large population model

(i.e., many predictors) on the appropriateness of estimates. Although never verified in the

context of NAEP, this is of course a well-known issue. Several consistency and asymptotic

normality results are available (Haberman, 1977a, 1977b) for exponential response models

commonly utilized in NAEP. For the general linear model, results from Portnoy (1984,

1988) indicate that q2/N → 0 is required for asymptotic normality of γ̂ where q is the

number of parameters. Under that requirement, a usual NAEP state assessment with

approximately 2,750 sampled students would be able to support 37 parameters if converging

to zero is set equal to .5 and without consideration for design effects. It is of course possible

that asymptotic normality can be reached with larger numbers of parameters and fewer

students or that this can be obtained for individual coordinates. Verification of those cases

is necessary.

NAEP recognizes two primary statistics of interest: student-group means and

percentages of students at specific proficiency levels. Both statistics are averaged across

plausible values and standard errors are computed as the sum of the between imputation

variance and a resampling based variance estimate. The first term of the standard error

reflects the variation due to the latency of the construct and the second term represents the

variation due to sampling.

1.4 NAEP’s Sampling Design

NAEP samples are complex in the sense that students are sampled within schools.

Students within a school most likely have similar learning experiences and environments

and therefore their responses carry some form of dependency. At the first stage, schools
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are sampled from geographic regions. In most cases, these regions are determined by state

borders or metropolitan areas and, hence, most schools within a region operate under

similar policies, curricula, and funding. Hence, a second level of dependency might exist.

In this section, the stratified two-stage sampling design is more precisely described.

NAEP is assessed in two types of samples: national and combined samples. Combined

samples are a combination of (all) state samples into one large national sample, while

national samples are only representative at the national level. Therefore, the national

sample allows for reporting results for student groups at the national level (e.g., female 4th

graders), while the combined sample also allows for state-specific results (e.g., female 4th

graders in Arizona). Depending on the subject and the grade, samples are either national

or combined. For either sample, first the stratification in public schools is determined.

In national samples, stratification is done by region of the country (northeast, south,

midwest, and west) and metropolitan statistical area status (yes or no). At the first stage, a

systematic sample of primary sampling units (PSU) is drawn with probability proportional

to size (PPS) and without replacement in each stratum. A PSU is a county or a group of

adjacent counties. Finally, students are sampled following a simple random sample scheme.

In combined samples, the states and Washington, DC serve as primary strata. Instead

of PSUs being counties or a group of adjacent counties, in combined samples a systematic

sample of schools is directly drawn PPS and without replacement and therefore one less

step is conducted. At the second stage, a simple random sample of students is selected from

each selected school.

Despite the fact that this is already a complex sampling structure, in practice the

sample is even more complex. Private schools are selected separately and follow a different

stratification. Also, in most 4th grade schools the option is utilized to assess all eligible

students to decrease the logistical burden.

2 Theory

Question 1 addresses the extent to which several methods used or proposed to be used

in NAEP are effective in estimating complex sample variability in circumstances of interest
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to NAEP. To address this question, first these methods are discussed and, subsequently,

some empirical work is presented.

2.1 Binder’s (1983) Method

Binder’s (1983) method, as proposed by Cohen and Jiang (2002) for use in NAEP, is

based on a Taylor series expansion of V(
→
γ̂ ) at γ̂ = γ0, where γ0 is the population parameter

value. It has the following form

V(
→
γ̂ ) = H−1ΩH−1, (10)

where the Hessian is computed as

H = −
N∑

i=1

wi

(
V (θ̃)i + σ2

)
→
xi

→
xi

′

σ4
(11)

and the variance of the population value is estimated according to Cohen and Jiang as

Ω =
H∑

h=1

wh
+

wh
+ − 1

C∑
c=1

(fch − f̄h)(fch − f̄h)
′ (12)

for c ∈ [1, 2, . . . , C] clusters and h ∈ [1, 2, . . . , H] strata. Also, wh
+ is the sum of weights

in stratum h and fchi is the gradient for student i in cluster c and stratum h, which is

computed as

fchi =

→
xchi θ̃chi−

→
xchi

→
xchi

′→
γ

σ2
(13)

and f̄h is the average fch across all C clusters in stratum h and fch =
∑Nch

i=1 wifchi.

Subsequently, the variance of a group mean can be computed by

V (µ̂θ) =
→
x.

′
V(

→
γ̂ )

→
x., (14)

where
→
x. is a vector of average weighted student indicators across all students in the sample

of interest (e.g., this could be all students in the sample or a specific subset such as males

or females).
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2.2 Approximation of the Hessian Matrix

According to Cohen and Jiang (2002), (11) can be approximated by

H = −
N∑

i=1

wif
′
ifi. (15)

Subsequently, this implies that

−H =
N∑

i=1

wi

(
V (θ̃)i + σ2

)
→
xi
→
xi

′

σ4
≈

N∑
i=1

wi

(→
xi θ̃i−

→
xi
→
xi

′→
γ

σ2

)2

, (16)

which, essentially, is only true if V (θ̃)i is very small as σ2 ≈ E[V (θ̃)i] + E(θ̃i−
→
xi

′→
γ )2.

It can reasonably be expected that in an assessment with many items per student the

approximation is quite accurate. However, in an assessment with few items per student,

the approximation is likely to be poor. In concrete terms, the Hessian matrix in (15) might

be underestimated and, therefore, the standard error might be overestimated as the inverse

of the Hessian is pre- and postmultiplied. In addition, it should be noted that there is a

striking difference in the level of complexity of the approximations presented here and more

standard procedures presented in Cochran (1977).

2.3 Resampling

The current NAEP methodology uses resampling to estimate standard errors, taking

the complex nature of the sample into account. Specifically, a leave-out-group jackknife

procedure is used based on the PSUs. One or more of those units are removed from the

sample and the statistic of interest is re-estimated. This process is repeated a reasonably

large number of times to quantify the variability in the sample. Details about this procedure

can be found in Allen, Donoghue, and Schoeps (2001). This method and related methods,

such as balanced repeated replications and variations thereof, are predominantly used in

the practice of survey research. The argument for using empirical approximations is that

the complexity of the sampling practice implies that appropriate analytic formulae are

exceedingly complex to derive. This issue can be circumvented by using empirical methods,

although the question surfaces whether it provides a satisfactory result under all relevant
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circumstances. A proposal from Qian (2005) and Qian and Haberman (2006) is to apply

the jackknife not only to NAEP’s reporting statistics, but also to the latent regression

model itself, essentially re-estimating the model with resamples. This approach has been

followed in this study.

The usual jackknife variance estimator is (Wolter, 1985)

V (µ̂θ) =
C − 1

C

C∑
c=1

(
µ̂

(c)
θ − µ̂θ

)2

, (17)

where C is the total number of clusters and µ̂
(c)
θ is the statistic based on the total sample

except cluster c. This estimator is slightly different from NAEP’s jackknife repeated

replications (JRR) approach. In NAEP’s JRR, 62 pairs of equivalent clusters (i.e., primary

sampling units or schools) are formed based on auxiliary income or proficiency data.

Subsequently, for one pair at a time, one of the two units is removed, the other unit is

doubled in weight, and the statistic of interest is computed based on this modified sample,

serving as µ̂
(c+)
θ in the following equation

V JRR(µ̂θ) =
C∑

c=1

(
µ̂

(c+)
θ − µ̂θ

)2

. (18)

However, for the comparisons in this paper, the usual jackknife variance estimator in (17)

is used.

3 Method

To investigate the research questions, a simulation study was conducted followed by

some real data analysis. The goals of the simulation were to look at relatively simple models

and small sample sizes to evaluate a large number of conditions. While that strategy can

illustrate important mechanisms underlying each of the approaches, the disadvantage is

that the simulation is somewhat disconnected from operational NAEP procedures. Hence,

real data analyses were conducted to relate the simulation results to NAEP applications.

There were several steps involved in the simulation:

1. For each of 100 replications and for each condition described below, parameters of a
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two-parameter item response model were generated, specifically a ∼ U(0.5, 1.4) and

b ∼ N(0, 1).

2. Population parameters were generated following γ ∼ N(0, 0.04), to reflect a typical

range of regression effects found in operational NAEP.

3. Ability parameters were drawn for each cluster c ∈ [1, 2, . . . , 60] from a multivariate

normal distribution with dimension 50 (i.e., the number of students per cluster, where

the first 50 students are in Cluster 1, the second 50 in Cluster 2 and so on), θc ∼

MV N(µc,S), where µc = (γ′xc1, γ
′xc2, . . . , γ

′xc50) and

S =

1

1

1

rci,ci′ 1
. . .

1

4. Three variables were manipulated in this study: (a) the level of clustering, rci,ci′ ∈

[0, 0.2, 0.5, 0.8]; (b) the number of items per student, k ∈ [10, 30, 70, 90]; and (c) the

level of saturation of the population model, reflected in the number of students per

group g, Ng ∈ [3000, 600, 300, 100, 50], or, conversely, the number of regression coeffi-

cients needed to represent all G groups, G ∈ [1, 5, 10, 30, 60]

The matrix x = IG⊗ i′Ng
was used to indicate which student belongs to what group via

dummy-coding, where i′Ng
is a Ng-dimensional unit column vector. In an unsaturated

model, there is only one group of 3000 students and x is a 3000-dimensional unit vector.

In a saturated population model, there would be 3000 groups with each a single student

and x would be a 3000 × 3000 unit diagonal matrix. This model is not identified. In

this study, there were always 50 students in 60 clusters and, therefore, the condition

with Ng = 50, G = 60 represented a complete fixed effect hierarchical model.
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5. Based on θ, item responses were generated according to the model. Different than in

NAEP, items were not sampled across simulees.

6. Population model parameters and posterior moments were estimated following stan-

dard NAEP methodology for marginal maximum likelihood estimation of one-dimensional

problems. Hence, the method of integration was a simple rectangular rule with 41

equally spaced points in the -5 to 5 interval for a normal prior. A solution was deemed

converged when none of the parameters changed more than 1·10−6 between two con-

secutive iterations.

7. The following variance estimates were computed: (a) the empirical variance based on

1,000 additional replications, taken as the true variance; (b) a simple random sample

approach, following (9); (c) Binder’s method, following (10); (d) Binder’s method with

the approximated Hessian, following (15); and (e) a jackknife approach, following (17).

For Methods c through e, the cluster designation used to generate the data was also

used as the cluster variable for computing variances.

4 Results

4.1 Simulation Study

In this section, the model parameters for the simple, nonclustering case are first

inspected, followed by standard errors evaluated across several levels of clustering. With

respect to the results for model parameters, first residual variances and then regression

coefficients are discussed. It should be noted that convergence of the estimation process

was carefully monitored and no issues (e.g., nonconvergence) were encountered.

4.1.1 Residual Variances

Table 1 shows residual variance estimates σ̂2 and Table 2 shows squared prediction

errors ε̂2
i =

(
θ̃i − γ̂xi

)2

averaged across 100 replications. Note that σ2 is the sum of the

average posterior variance and E (ε2), as shown in (6). Table 1 shows that the residual

variance decreases as the number of groups G increases. The number of items have no
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particular influence on the size of the residual variance, except for the case where the

number of items are small (i.e., n = 10). In contrast, Table 2 shows that the mean

squared regression error does increase as the number of items, k, increases. Also, this error

becomes smaller as the number of groups, G increases. In other words, as k increases,

the information about an individual student becomes more precise and, subsequently, the

regression error becomes larger as the population model fits the data relatively poorly. One

interpretation would be that the posterior distributions are becoming peaked and, hence,

the influence of the population model decreases. Another way to express this is that there

is less opportunity for regression towards the mean.

The observation that the residual variance is largely constant across the number of

items, k, can be explained from the variance decomposition of the residual variance into

posterior variance and ε2. As the number of items increases, the success of prediction

by the population model decreases, but the certainty about students’ ability increases

commensurately, shifting variability from one term to the other.

Table 1
Average Residual Variance Estimates, σ̂2, for Varying Number of Items,

k ∈ [10, 30, 70, 90], and Number of Groups, G ∈ [1, 5, 10, 30, 60], Across 100
Replications

k
G 10 30 70 90
1 0.999 1.001 0.999 0.999
5 0.969 0.962 0.965 0.969

10 0.961 0.961 0.964 0.960
30 0.950 0.953 0.956 0.954
60 0.934 0.940 0.944 0.944

4.1.2 Regression Effects

As far as the regression effects are concerned, Table 3 shows that the absolute bias of

regression effect estimates seems largely unaffected by the number of items. However, the

saturation of the model does affect the bias. This is to be expected because the saturation
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Table 2
Average Squared Regression Error, ε̂2, for Varying Number of Items,
k ∈ [10, 30, 70, 90], and Number of Groups, G ∈ [1, 5, 10, 30, 60], Across 100

Replications

k
G 10 30 70 90
1 0.776 0.913 0.958 0.967
5 0.749 0.874 0.925 0.937

10 0.747 0.874 0.924 0.928
30 0.735 0.867 0.916 0.923
60 0.719 0.854 0.904 0.913

Table 3
Average Absolute Difference Between γ and γ̂ Across G Parameters, for

Varying Number of Items, k ∈ [10, 30, 70, 90], and Number of Groups,
G ∈ [1, 5, 10, 30, 60], Across 100 Replications

k
G 10 30 70 90
1 0.016 0.015 0.014 0.015
5 0.036 0.032 0.034 0.032

10 0.052 0.048 0.047 0.047
30 0.090 0.083 0.079 0.078
60 0.127 0.117 0.113 0.112

determines the number of students a coefficient estimate is based upon.

4.1.3 Variances

One of the findings in Li and Oranje (2007) was that when a large nearly saturated

model was used, the Binder (1983) estimator appeared to severely underestimate the

standard error of the latent regression coefficients and was in some cases close to a simple

random sample estimate. In the following tables, several approaches to the estimation

of variances will be presented, averaged across regression effects and across repetitions.

These are compared to the empirical variance (i.e., the variance across 1,000 additional

replications). The four approaches are the simple random sample approach in (9), Binder’s
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formula in (10), Binder’s formula with an approximated Hessian matrix from (15), and a

leave-out group jackknife following (17).

Samples without clustering. The left side of Table 4 shows the ratio of the variance

estimates and the empirical variance (mean-squared error, or MSE) without clustering.

The top set of rows provides the MSE, which behaves mostly according to expectation:

The variability increases if there are fewer simulees per group. Also, the variability tend to

decrease if more items are assessed per simulee. However, this decrease is minor because

the success of prediction with the regression model reduces as well, even though more items

means less measurement variance. As far as the variance computation approaches under

investigation, the simple random sample approach appears to mostly underestimate the

empirical variance unless the number of items is substantial and the model not too large.

Because the true proficiency for each simulee is in part based on group membership, even

the nonclustering condition is in fact not a simple random sample, but is sampled following

a fixed effect multilevel model. Even though the model explains more variability as the

number of groups increases, the number of simulees available to estimate each regression

effect negatively impacts the variability (i.e., a smaller sample size increases the variability).

Binder’s approach appears to yield underestimates of the empirical variance by at least

60% but improves markedly as the number of items per student increases. Also, Cohen

and Jiang’s (2002) approximation generally provides reasonable variance estimates as long

as the model is not too large. In a large model, this method breaks down completely as

all the cluster variance is explained by the model. In contrast, the jackknife approach is

generally on target, but tends to show some overestimation for larger models. For the

condition G = 30, the variances are twice as large as the empirical variances regardless of

the number of cognitive items assessed per student. In this case, for each jackknife replicate,

half of the sample of a particular group is removed. Subsequently, a possible explanation

for this finding could be that the regression effect estimation for that group is relatively

unstable. In the condition G = 60, the model represents the clustering in the sense that

every cluster mean is estimated by a separate parameter. Binder’s (1983)method, Cohen

and Jiang’s approximation, and the jackknife approach display severe underestimation. For
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the jackknife approach, this can be expected as the regression effects for all other groups

are relatively indifferent to the removal of one cluster and no regression effect is estimated

for the removed cluster to assure identification. For the other two estimators, the model

explains all variability between clusters and, hence, the quantity Ω in (12) reduces to zero.

Clustered samples. In the right side of Table 4 and 5, average variance estimates can

be found for samples with clustering effects rci,ci′ = 0.2, 0.5, and 0.8. The results are quite

similar to the results for the condition where the within-cluster correlation is zero. The

variance does increase with increasing clustering for all methods except for the simple

random sampling approach as the number of groups increase. This is due to the fact that

models with many student groups explain the variability associated with clustering better

and, hence, the residual variance decreases.

4.2 Real Data Analysis

In this section real data analyses will be presented. NAEP 2005 reading data in

Grade 12 and NAEP 2004 mathematics long-term trend data for Age 17 was analyzed

and standard error computations were conducted using the methods described in the

theory section. For detailed information about sample sizes, predictors, and the instrument

designs, Perie, Grigg, and Donahue (2005) can be consulted for reading and Perie and

Moran (2005) for long-term trend. Because the accuracy of our implementation of Binder’s

(1983) method has to be established, parallel runs with AM beta version 0.06.03 (AIR,

2003) were conducted alongside the current NAEP operational methodology. AM is publicly

available software for the analysis of proficiency data for large-scale assessments and has

several specialized NAEP analysis modules. For standard errors, AM computes the Binder’s

method standard errors with approximation, which can be compared only to those in our

implementation. For the standard errors in Tables 6-8, Jackknife is computed following (17)

and Binder’s approach following (10) through (13). Approx. represents the approximation

as implemented in AM, where (11) is approximated by (15). The standard error from

the AM is also provided as is the simple random sample (SRS) estimator used in NAEP

for the imputation model. The data sets chosen are two assessments with relatively few
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Table 4
Mean Squared Error (MSE) Based on 1000 Repetitions and Average

Estimated Ratios of the Variance of the Regression Coefficients and the MSE
for Several Methods, for Varying Number of Items, k ∈ [10, 30, 70, 90], and

Groups, G ∈ [1, 5, 10, 30, 60], Across 100 Repetitions for Samples With No and
Mild Clustering, rci,ci′ ∈ [0, .2]

rc 0.0 0.2
k 10 30 70 90 10 30 70 90
G MSE
1 4.05 d−4 3.59 d−4 3.71 d−4 3.27 d−4 3.46 d−3 3.48 d−3 3.64 d−3 3.79 d−3

5 2.13 d−3 1.87 d−3 1.70 d−3 1.69 d−3 1.79 d−2 1.77 d−2 1.73 d−2 1.74 d−2

10 4.24 d−3 3.56 d−3 3.32 d−3 3.32 d−3 3.60 d−2 3.52 d−2 3.54 d−2 3.38 d−2

30 1.22 d−2 1.06 d−2 1.01 d−2 9.99 d−3 1.07 d−1 1.04 d−1 1.05 d−1 1.04 d−1

60 2.51 d−2 2.11 d−2 1.98 d−2 1.98 d−2 2.12 d−1 2.07 d−1 2.09 d−1 2.09 d−1

Simple random sample approach/MSE
1 8.21 d−1 9.29 d−1 8.98 d−1 9.60 d−1 9.58 d−2 9.54 d−2 9.15 d−2 8.80 d−2

5 7.59 d−1 8.61 d−1 9.48 d−1 9.56 d−1 8.90 d−2 9.02 d−2 9.29 d−2 9.19 d−2

10 7.57 d−1 9.02 d−1 9.68 d−1 9.63 d−1 8.62 d−2 8.90 d−2 8.80 d−2 9.15 d−2

30 7.81 d−1 9.01 d−1 9.46 d−1 9.56 d−1 8.10 d−2 8.31 d−2 8.26 d−2 8.25 d−2

60 7.47 d−1 8.95 d−1 9.56 d−1 9.57 d−1 7.12 d−2 7.29 d−2 7.23 d−2 7.21 d−2

Binder’s approach/MSE
1 4.18 d−1 7.12 d−1 8.04 d−1 8.20 d−1 4.31 d−1 7.09 d−1 8.11 d−1 8.15 d−1

5 3.65 d−1 6.08 d−1 7.63 d−1 8.19 d−1 3.58 d−1 6.45 d−1 7.94 d−1 8.12 d−1

10 3.34 d−1 5.83 d−1 7.27 d−1 7.33 d−1 3.25 d−1 5.70 d−1 6.94 d−1 7.21 d−1

30 2.01 d−1 3.31 d−1 4.32 d−1 4.37 d−1 1.77 d−1 3.37 d−1 4.12 d−1 4.27 d−1

60 9.58 d−32 1.19 d−31 1.33 d−31 1.32 d−31 4.16 d−32 4.34 d−32 4.49 d−32 4.60 d−32

Cohen et al.’s approximation/MSE
1 1.03 d+0 1.01 d+0 9.45 d−1 9.31 d−1 1.06 d+0 1.01 d+0 9.53 d−1 9.25 d−1

5 9.16 d−1 8.74 d−1 9.04 d−1 9.36 d−1 8.84 d−1 8.99 d−1 9.09 d−1 8.98 d−1

10 8.28 d−1 8.45 d−1 8.61 d−1 8.40 d−1 7.98 d−1 7.78 d−1 7.67 d−1 7.73 d−1

30 5.13 d−1 4.84 d−1 5.20 d−1 5.07 d−1 4.12 d−1 4.05 d−1 3.96 d−1 3.97 d−1

60 2.67 d−31 1.85 d−31 1.72 d−31 1.65 d−31 1.67 d−31 8.28 d−32 6.45 d−32 6.13 d−32

Jackknife/MSE
1 1.06 d+0 1.03 d+0 9.61 d−1 9.47 d−1 1.07 d+0 1.03 d+0 9.68 d−1 9.38 d−1

5 1.07 d+0 1.02 d+0 1.05 d+0 1.09 d+0 1.06 d+0 1.08 d+0 1.10 d+0 1.08 d+0

10 1.17 d+0 1.19 d+0 1.21 d+0 1.18 d+0 1.19 d+0 1.17 d+0 1.17 d+0 1.17 d+0

30 2.00 d+0 1.87 d+0 2.01 d+0 1.96 d+0 1.97 d+0 2.02 d+0 1.97 d+0 1.96 d+0

60 1.18 d−4 1.35 d−5 3.54 d−6 2.40 d−6 2.56 d−5 3.92 d−6 8.83 d−7 5.89 d−7

Note. d = 10. MSE = mean-squared error.
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Table 5
Mean-Squared Error (MSE) and Average Estimated Ratio of the Variance of
the Regression Coefficients and the MSE for Several Methods, for Varying
Number of Items, k ∈ [10, 30, 70, 90], and Groups, G ∈ [1, 5, 10, 30, 60], Across 100

Repetitions for Clustered Samples With rci,ci′ ∈ [0.5, 0.8]

rc 0.5 0.8
k = 10 30 70 90 10 30 70 90

G MSE
1 8.85 d−3 8.97 d−3 9.19 d−3 9.52 d−3 1.36 d−2 1.53 d−2 1.35 d−2 1.36 d−2

5 4.10 d−2 4.17 d−2 4.10 d−2 4.25 d−2 6.51 d−2 6.47 d−2 6.50 d−2 6.43 d−2

10 8.27 d−2 8.19 d−2 8.31 d−2 8.18 d−2 1.32 d−1 1.32 d−1 1.29 d−1 1.29 d−1

30 2.49 d−1 2.47 d−1 2.43 d−1 2.46 d−1 3.95 d−1 3.91 d−1 3.90 d−1 3.91 d−1

60 4.96 d−1 4.92 d−1 4.90 d−1 4.92 d−1 7.89 d−1 7.82 d−1 7.79 d−1 7.82 d−1

Simple random sample approach/MSE
1 3.77 d−2 3.73 d−2 3.63 d−2 3.50 d−2 2.44 d−2 2.19 d−2 2.48 d−2 2.45 d−2

5 3.82 d−2 3.73 d−2 3.82 d−2 3.67 d−2 2.35 d−2 2.38 d−2 2.34 d−2 2.39 d−2

10 3.61 d−2 3.61 d−2 3.60 d−2 3.68 d−2 2.17 d−2 2.14 d−2 2.21 d−2 2.24 d−2

30 2.98 d−2 2.95 d−2 3.03 d−2 2.95 d−2 1.48 d−2 1.51 d−2 1.47 d−2 1.51 d−2

60 1.93 d−2 1.95 d−2 1.97 d−2 1.94 d−2 4.90 d−3 5.01 d−3 4.97 d−3 5.23 d−3

Binder’s approach/MSE
1 3.99 d−1 6.63 d−1 7.80 d−1 7.63 d−1 4.09 d−1 6.20 d−1 8.48 d−1 8.64 d−1

5 3.73 d−1 6.12 d−1 7.75 d−1 7.77 d−1 3.55 d−1 6.39 d−1 7.67 d−1 8.20 d−1

10 3.27 d−1 5.65 d−1 7.09 d−1 7.36 d−1 3.11 d−1 5.45 d−1 7.00 d−1 7.47 d−1

30 1.68 d−1 3.16 d−1 4.14 d−1 4.18 d−1 1.32 d−1 2.84 d−1 3.66 d−1 4.05 d−1

60 3.45 d−32 3.12 d−32 3.65 d−32 3.70 d−32 3.62 d−32 2.38 d−32 2.88 d−32 2.98 d−32

Cohen et al.’s approximation/MSE
1 9.77 d−1 9.40 d−1 9.16 d−1 8.68 d−1 9.97 d−1 8.81 d−1 9.96 d−1 9.81 d−1

5 9.14 d−1 8.59 d−1 8.89 d−1 8.56 d−1 9.17 d−1 9.37 d−1 9.31 d−1 9.64 d−1

10 7.82 d−1 7.72 d−1 7.69 d−1 7.72 d−1 7.98 d−1 8.14 d−1 8.54 d−1 8.84 d−1

30 3.65 d−1 3.37 d−1 3.38 d−1 3.26 d−1 3.29 d−1 3.48 d−1 3.44 d−1 3.57 d−1

60 3.60 d−31 9.39 d−32 6.47 d−32 5.92 d−32 5.47 d−30 2.42 d−31 9.88 d−32 7.92 d−32

Jackknife/MSE
1 9.89 d−1 9.53 d−1 9.30 d−1 8.82 d−1 1.00 d+0 8.93 d−1 1.01 d+0 9.96 d−1

5 1.11 d+0 1.04 d+0 1.08 d+0 1.04 d+0 1.09 d+0 1.09 d+0 1.07 d+0 1.10 d+0

10 1.22 d+0 1.19 d+0 1.20 d+0 1.20 d+0 1.20 d+0 1.17 d+0 1.20 d+0 1.23 d+0

30 2.18 d+0 2.08 d+0 2.08 d+0 1.99 d+0 2.22 d+0 2.13 d+0 1.98 d+0 2.06 d+0

60 1.67 d−5 2.87 d−6 6.70 d−7 4.27 d−7 1.13 d−5 1.69 d−6 4.98 d−7 3.33 d−7

Note. d = 10. MSE = mean-squared error.
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(reading) and relatively many (mathematics) items per student, providing an interesting

comparison. Because AM allows only analysis of a single-variable, a limited set of models

was investigated. Specifically, intercept-only, gender, and school-reported race/ethnicity

models were used. For this study, the reading subscales literary experience, information,

and perform-a-task subscales were each analyzed as separate, univariate scales.

Table 6 shows that the means are similar between NAEP and AM, commensurate

with previous findings (von Davier, 2003). Also, the approximation made by AM and

the implementation thereof for the purpose of this paper are largely the same, suggesting

that our implementation is consistent. With respect to Binder’s (1983) method, the

approximation of the Hessian is to some extent defensible for long-term trend, which has

many items per student, but not defensible for reading, which has few items per student.

Nevertheless, the approximation is relatively close to the jackknife method. Table 7 shows

that the same is true for the gender model. Table 8 illustrates these findings further for a

race/ethnicity model.

It should be noted that the comparison with the simple random sample estimator is

somewhat misleading. The dominant part of this estimator is usually the sampling part,

which is σ2Ξ. This part is overestimated because the model does not take into account

hierarchical relations and, instead, attributes this variability to residual error. Subsequently,

the standard error is inflated. In combination with the fixed effect model, it could be

argued that this simple random sample estimator is not entirely inappropriate to account

for the hierarchical relations in the sample. However, the major issue is that the assessment

of the complexity of the sample through the residual variance is probably not very precise.

4.3 Impact on Plausible Values

The plausible value methodology was developed to provide secondary users with a

complete dataset and a straightforward procedure to take variability due to the latency of

proficiency into account in subsequent analyses. The following steps are executed:

1. A draw of a multivariate normal distribution with mean vector γ̂ and covariance matrix

V (γ̂) is taken to yield a vector of provisional estimates γ̂p.
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Table 6
Intercept-Only Model With 2005 Reading Strands, Grade 12, and 2004

Long-Term Trend Mathematics, Age 17, Means and Standard Errors Using
Various Estimation Methods

Reading LTT
Method Literary information Task math

Means NAEP 0.120 0.120 0.068 0.040
AM 0.119 0.119 0.067 0.037

SE Jackknife 0.022 0.018 0.021 0.039
Binder 0.012 0.009 0.012 0.034
Approx. 0.022 0.017 0.020 0.038
AM 0.022 0.017 0.022 0.039
SRS 0.012 0.011 0.012 0.012

Note. LTT = long term trend, SRS = simple random sample.

Table 7
Gender Model With 2005 Reading Strands, Grade 12, and 2004 Long-Term
Trend Mathematics, Age 17, Means and Standard Errors Using Various

Estimation Methods

Male Female LTT
Method Lit. Info. Task Lit. Info. Task Male Female

Means NAEP -0.031 0.003 -0.148 0.258 0.229 0.266 0.097 -0.016
AM -0.032 0.001 -0.149 0.257 0.229 0.265 0.094 -0.019

SE Jackknife 0.028 0.018 0.025 0.029 0.024 0.031 0.040 0.042
Binder 0.014 0.010 0.014 0.016 0.013 0.017 0.035 0.037
Approx. 0.026 0.017 0.024 0.030 0.025 0.031 0.036 0.044
AM 0.026 0.017 0.025 0.030 0.025 0.032 0.037 0.045
SRS 0.017 0.015 0.017 0.016 0.015 0.017 0.016 0.016

Note. Lit. = literary, LTT = long-term trend, info. = information, SRS = simple random
sample.
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Table 8
Race/Ethnicity Model With 2005 Reading Strands, Grade 12, and 2004

Long-Term Trend Mathematics, Age 17, Means and Standard Errors Using
Various Estimation Methods

White Black Hispanic Asian Native Other
Method Literary

Means NAEP 0.280 -0.353 -0.241 0.120 0.110 -0.360
AM 0.279 -0.357 -0.244 0.121 0.113 -0.381

SE Jackknife 0.028 0.055 0.046 0.069 0.192 0.206
Binder 0.015 0.026 0.022 0.036 0.100 0.098
Approx. 0.027 0.056 0.045 0.065 0.228 0.295
AM 0.027 0.056 0.045 0.066 0.230 0.296
SRS 0.015 0.026 0.031 0.053 0.145 0.145

Information
Means NAEP 0.263 -0.292 -0.209 0.179 -0.102 0.163

AM 0.262 -0.293 -0.210 0.179 -0.106 0.167
SE Jackknife 0.020 0.034 0.036 0.072 0.265 0.195

Binder 0.010 0.017 0.018 0.037 0.116 0.098
Approx. 0.019 0.037 0.038 0.065 0.221 0.189
AM 0.019 0.037 0.039 0.066 0.223 0.190
SRS 0.013 0.023 0.027 0.046 0.142 0.123

Task
Means NAEP 0.176 -0.284 -0.094 0.039 -0.317 -0.066

AM 0.175 -0.288 -0.095 0.038 -0.329 -0.069
SE Jackknife 0.026 0.048 0.050 0.069 0.153 0.270

Binder 0.014 0.027 0.028 0.038 0.085 0.143
Approx. 0.025 0.049 0.050 0.070 0.258 0.204
AM 0.027 0.049 0.050 0.070 0.260 0.205
SRS 0.016 0.027 0.032 0.054 0.157 0.147

Long-term trend
Means NAEP 0.226 -0.627 -0.395 0.389 -0.068 0.171

AM 0.223 -0.635 -0.400 0.385 -0.071 0.176
SE Jackknife 0.036 0.053 0.044 0.094 0.156 0.158

Binder 0.031 0.045 0.037 0.075 0.114 0.135
Approx. 0.035 0.055 0.042 0.076 0.106 0.201
AM 0.036 0.056 0.042 0.076 0.107 0.203
SRS 0.013 0.032 0.032 0.052 0.130 0.152

Note. Asian = Asian American, Native = Native American, SRS = simple random sample.
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Table 9

Example of Posterior Means with k ∈ [10, 20, 80] and Last Term Means

µ ∈ [1, 2, 3, 4]

µ 1 2 3 4

k = 10 9.48 · 10−3 2.88 · 10−2 7.57 · 10−2 1.82 · 10−1

k = 20 6.45 · 10−5 2.00 · 10−4 5.51 · 10−4 1.50 · 10−3

k = 80 6.06 · 10−18 1.87 · 10−17 5.16 · 10−17 1.41 · 10−16

2. Provisional moments θ̃p and V (θ̃)p are obtained for each student using γ̂p in (7) and

(8).

3. A draw from a normal distribution with mean θ̃p and variance V (θ̃)p is taken to obtain

the pth plausible value for each student.

4. Steps 1 through 3 are conducted P times to obtain P plausible values.

In (2), a product containing k +1 terms is used, where each of the terms is a probability

distribution. The product of these distributions has a posterior mean, which is estimated

by (7), and a dispersion, which is estimated by the posterior variance in (8). Suppose k

distributions are approximately normal with a similar mean and similar, substantially large

dispersion. Furthermore, assume that the (k + 1)th distribution also has a substantially

large dispersion. In that case, the larger n is, the less contribution the final term will make

to the posterior. To illustrate this point, posterior means were computed for k ∈ [10, 20, 80]

and all k-distributions are standard normal. Furthermore, the last term was also normal

with mean µ ∈ [1, 2, 3, 4] and unit standard deviation. Integration was conducted using a

rectangular rule over 11 points in the interval of −5 to 5. The results in Table 9 show that

with many items, the mean of the last term has very little influence on the posterior mean

even if the last term is deviant from the mean of the first k terms.

To provide an answer to the second part of Question 2 from the first section of this

report, several deductions can be made regarding the effect of the number of items and
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model saturation on plausible values. As shown in Table 9, in an assessment with relatively

many items per student, the posterior mean and variance are largely unaffected by the

population model. Hence, the expectation of the results in Step 3 in the imputation process

is similar regardless of the provisional values for γ̂ obtained in Step 1. Therefore, although

the result of most complex sample estimators is an increase in the standard error of the

regression parameters, the effect of using these estimators on the distribution of plausible

values will be small. If the number of items per student is small, these estimators will of

course have more impact. Yet, full account of the clustering can be accomplished only

if the posterior means are also drawn following a complex sample. In other words, for

each cluster, multivariate draws would have to be taken, where off-diagonal elements of a

distribution covariance matrix represent the intraclass correlation.

5 Discussion and Conclusion

In this study, the impact of several assessment designs on the success of estimating

latent regression model parameters and their standard errors, taking into account the

complex nature of the assessment, was evaluated. For these designs, the number of items,

the number of predictors, and the rate of clustering were manipulated. In this study, a

jackknife-based method was compared with Binder’s (1983) method and an approximation

thereof proposed by Cohen and Jiang (2002). The initial investigation of this approximation

(Li & Oranje, 2007) showed several surprising results related to the number of predictors

and the amount of information (i.e., number of items per student) used to define the latent

part of the model. Simulation and real data analysis were used to determine to what extent

these competing methods could be fruitful for designs typically found in NAEP. Conclusions

and limitations of the study are presented below.

5.1 Conclusions

There are several preliminary conclusions that can be drawn, provided that the limited

nature of the study is well understood.

22



• If a nearly saturated student grouping model is used, then essentially a fixed effect

hierarchical model is estimated and methods such as Binder’s (1983) will severely un-

derestimate sampling variability. Estimation using a straightforward jackknife method

has similar problems for nearly saturated models. This is associated with identifica-

tion of the model parameters. However, in all other cases, this method provides a good

approximation of the true variability. The results are somewhat conservative for larger

models.

• The approximation to the Hessian matrix in Binder’s (1983) method is only appropriate

if the posterior variance is small. This is usually not the case for subjects such as

main NAEP reading or mathematics, where the number of items is relatively small.

Nevertheless, in practical terms this method provides reasonable results as long as the

number of predictors is very small.

• A simple random sample formula for computing regression effect standard errors might,

in practice, not be entirely inappropriate. Complex sample variability may to some

extent be represented in an overestimate of the residual variance, which increases the

standard error comensurately.

• In real data analysis applications, Cohen and Jiang’s (2002) approximation seems to

be relatively close to a jackknife calculation when the statistic of interest is based on a

relatively large number of students. This is in line with the expectation of first-order

approximations. For statistics based on small samples, this is much less the case.

• The concept of model saturation has surfaced several times and can be viewed in dif-

ferent ways. As described in the introduction, in operational NAEP a large number

of variables is transformed into dummy variables and, subsequently, this matrix is re-

duced via principal component analysis. It can be said that this model is saturated

with respect to the available student group information that was collected in the first

place. However, it is uncertain to what extent this model is also saturated with re-

spect to the clustering and the cognitive model as neither cluster variables nor direct
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indicators of proficiency (e.g., raw scores, normit scores) are entered into the model.

Hence, the degree of saturation with respect to proficiency and clustering is mostly

limited to how well the student group information predicts proficiency and clustering.

Most NAEP subjects have residual variance terms between 40% and 60% of the total

variance, indicating a decidedly nonsaturated model at least with respect to proficiency.

• Individual proficiencies can be determined relative precisely if many items are assessed

per student. Subsequently, the population part of the model does not provide a sub-

stantial contribution to the estimation of posterior distributions of proficiency and

plausible values are relatively indifferent to the accuracy of regression effects and their

standard errors.

5.2 Limitations of the Study

In NAEP, a balanced incomplete block design is employed to assess a broad framework

represented by a large item pool while only a limited amount of time per student is

demanded. Under this design, students receive a systematic portion of the assessment and

are, as such, not directly comparable. However, as a group they receive the full range of

content and through common-item IRT equating student proficiencies are defined in terms

of a common latent scale. NAEP does not report individual proficiency data and only

posterior distributions for student groups are calculated. The simulation study assumed

that all students were responding to the same set of items.

As mentioned in the introduction, the number of covariates in the NAEP operational

population models is far larger and far more complex than that used in the simulation

study. Several hundred variables are collected and used in these latent regression models.

The operational models are large enough to say that for each cluster on average a fixed

effect is estimated through some linear combination of this large set of variables. However,

this might not be uniformly the case across clusters and within a cluster there is substantial

variability accounted for by the model (i.e., fixed-effect linear model). In the simulation

study, all within-cluster variability was due to proficiency.

The complex-sample standard errors studied here require determination of a cluster
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variable. For the real data analysis, pseudo-strata were used that serve as relatively large,

but homogeneous sampling units. However, many other choices could have been made, such

as schools, primary sampling units based on geographic location, or some combination of

those.

In estimating group effects in the real data analysis, prior means are presented as

essentially group effects, γ′x. However, this estimate is based on the probability of observing

proficiency given the student group indicators. Alternatively, a Bayesian estimate can be

used, which is based on the probability of observing proficiency given both the student

group indicators and item responses. This point has also been made by Mazzeo et al. (2006,

p. 22).

Finally, the jackknife in the real data analysis addressed only the sampling part of

the variance. In operational NAEP, a component due to the latency of proficiency is also

added. This component usually accounts for 5% to 10% of the variance unless the number

of items assessed per student is very small. For relatively many items per student assessed,

this term is negligible. That being said, in this study the complete model was subject to the

jackknife. This is unlike operational procedures in the sense that the jackknife is applied to

plausible values.
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Appendix

Cochran’s Formulae

While the following formulae were not used in the empirical study, they are presented

here to illustrate differences in complexity between the approximations following the

solutions proposed by Cohen et al. (2002). Cochran (1977) provides a host of formulae that

are specifically geared to the sampling procudures of surveys such as NAEP as described

in section 1.4. NAEP’s statistics of interest are usually referred to as Horvitz-Thompson

estimators (Qian, 2005) assuming the form

w+µ̂θ =
N∑

i=1

θ̂i

πi

(A1)

for the sum of proficiencies where πi is the probability that student i is selected in the

sample, 1
πi

= wi, and θ̂i is the proficiency estimate for student i. The associated variance

estimate (Cochran, 1977, Equation 9A.38) for single-stage sampling is:

VI(w+µ̂θ) =
N∑

i=1

1− πi

πi

θ̂2
i + 2

N∑
i=1

N∑
j>i

πij − πiπj

πiπj

θ̂iθ̂j, (A2)

where πij is the probability that student i and j are both in the sample, which is also referred

to as the inverse of the secondary order weight. This is currently not calculated in NAEP.

Cochran also provides two-stage sampling formulas when sampling is commensurate the

size of the sampling units. However, the units within a cluster are considered independent

and unweighted. The formula, decomposing the variance into within and between cluster

variance, is (Cochran, 1977, Equation 11.3)

VII(µ̂θ) =
1

ν

(
C∑

c=1

νc −Nc

Nc

s2
c +

C∑
c=1

νc (µθc − µθ)

)
, (A3)

where s2
c = 1

νc−1

∑νc

i=1

(
θ̂ci
− µθc

)2

, ν is the total number of units (e.g., students) in the

population, νc the total number of units in cluster c in the population, Nc the number

of units in the sample, µθ the average proficiency in the population and µθc the average

proficiency in the population for cluster c. Cochran also combines (A2) and (A3) in

Equation 11.14 for selection of units with equal size and there are several options to
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obtain sample estimates for population quantities. This illustrates that an exact analytic

formula is exceedingly complex, given that even these formulae do not take into account all

characteristics of an unequal probability multi-stage design.
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