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Abstract 

Issues of equity and fairness across subgroups of the population (e.g., gender or ethnicity) must 

be seriously considered in any standardized testing program. For this reason, many testing 

programs require some means for assessing test characteristics, such as reliability, for subgroups 

of the population. However, often only small sample sizes are available for the subgroups of 

interest. Traditionally used reliability estimates (e.g., Cronbach’s alpha) can have low precision 

for small samples. This study investigated whether an empirical Bayes (EB) technique could 

produce more precise reliability estimates than traditional methods in the presence of small 

samples. Several Bayesian estimates were compared to estimates obtained by other methods 

(e.g., the traditionally and currently used Cronbach’s alpha coefficient), in terms of both bias and 

variance. A secondary purpose of this study was to compare the various EB approaches across 

different sample sizes. This paper also discusses EB estimates of standard error of measurement 

(SEM), their accuracy and precision, and how they compare with SEM estimates derived from 

the alpha. 
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Overview and Background 

In an educational environment increasingly influenced by standardized testing, issues of 

equity and fairness across subgroups of the population (e.g., defined by ethnicity or disability 

status) must be seriously considered. An adequate assessment of the characteristics of a test in 

these subgroups becomes essential. Failure to assess the reliability of a test for a subgroup might 

result in the use of an unreliable instrument in high-stakes decision making (e.g., program 

admission or class placement). Alternatively, imprecise measurement of reliability for subgroups 

might result in the exclusion of a beneficial test from consideration as an assessment tool. Either 

one of these possibilities could have highly detrimental effects (e.g., increased social barriers for 

already disadvantaged groups). Many areas of this important issue remain to be addressed. 

Although estimation of subgroup reliability might seem to be a straightforward or even 

trivial matter, it presents several problems. Most notable is that the subsamples from the 

population may be quite small. This small sample size could necessarily have an effect on the 

quality of the reliability estimates. Walker and Zhang (2004) suggested a minimum sample size 

of 125 to 150 for calculating reliability, with at least as many people in the sample as items on 

the test. Another problem involves score range restrictions as a result of subsampling. Reliability 

of a test can be affected by changes in group heterogeneity or by systematic selection of scores 

(e.g., subsampling) because observed variances can be different in the selected subgroup and 

total group (Allen & Yen, 1979). These score range restrictions can attenuate the estimate of 

reliability, possibly leading to erroneous conclusions about the adequacy of the test for the 

subpopulation in question.  

Accordingly, research on estimating reliability with small samples is necessary. In the 

current study, empirical Bayes (EB) techniques were applied to the estimation procedure, 

integrating collateral information (e.g., reliability information on the same test from different 

subpopulations) to improve the accuracy of reliability estimates. This study investigated whether 

the EB-based reliability estimates improved the precision for estimating reliability of subgroups 

of a population, even for very small subsamples. It also compared the various EB approaches 

across different sample sizes. 

No studies to our knowledge directly employ EB techniques to estimate reliability, 

although the use of EB techniques to improve the accuracy of estimates has a long history. 

Several researchers have investigated the use of EB techniques. Braun and Jones (1984) studied 
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the validity of academic predictors of graduate school performance using EB methods and found 

that the EB coefficients provided a useful way of combining information across subsamples. The 

researchers reported that the EB models not only yielded better predictions of first-year grade 

averages than cluster analysis estimates, but also facilitated the accurate assessment of the 

quality of these predictions. Moreover, the prediction equations were quite stable and rarely 

displayed implausible features such as negative weights (Braun & Jones). As Braun and Jones 

combined information across subsamples, the current study also used reliability information 

across subsamples to estimate the target group reliability. 

Edwards and Vevea (2006) examined a subscore augmentation procedure using EB 

adjustments to improve the “overall accuracy” of measurement when information is limited. In a 

situation where tests originally designed for one purpose (e.g., producing a reliable overall score 

to rank examinees) are frequently being pressed into service for other purposes (e.g., providing 

subscores specific to a narrow content area as diagnostic information), an overall score on the 

test may be reliable; however, such a test may not provide reliable diagnostic information (or 

subscores) because the subscores are based on less information than the overall score. Edwards 

and Vevea investigated the feasibility of increasing the reliability of diagnostic subscores by 

incorporating information from the rest of the test. They found that the subscores produced by 

the EB augmentation procedure represented an overall improvement over nonaugmented 

subscores. The magnitude of the improvement gained was a function of the correlation among 

subscales and subscale length (reliability). A main focus of the study by Edwards and Vevea was 

to investigate reliability of diagnostic subscores (not the total test reliability), while for the 

current study the main focus was to estimate total test reliability and standard error of 

measurement (SEM) using subgroup information.  

Bayesian techniques have been applied to differential item functioning (DIF) analysis. 

Zwick and Thayer (2002) applied EB methods to DIF analysis and found the EB estimate of DIF 

to be an improvement over the traditionally used Mantel-Haenszel delta-DIF (MH D-DIF) 

statistic. Sinharay, Dorans, Grant, Blew, and Knorr (2006) investigated a full Bayesian (FB) 

approach to small-sample DIF estimation using the 10 least recent administrations of the 

Praxis°I®
: Pre-Professional Skills Test (PPST®). They reported that the FB approach performed 

better than the existing MH D-DIF for small samples, but the gain was not substantial.  
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Empirical Bayes techniques have also been proposed to estimate equating relationships 

with small numbers of test takers to improve the stability and accuracy” of equated scores in the 

target population (Livingston & Lewis, 2009, p. 1). The study proposed to estimate the equated 

scores separately at each score point, incorporating relevant prior information into the estimation 

process. This approach is very innovative and has some advantages, but it also has two 

limitations. First, it is not symmetric with respect to the new form and reference form. Second, in 

some situations the proposed procedure can produce a result that is less accurate than that 

provided by the current equating when the difficulty of the current form to be equated is 

significantly different from the difficulties of the forms used in prior equatings.  

One advantage of the EB statistical methods over traditional frequentist methods is that 

the Bayesian methods can incorporate existing collateral (or prior) information into the inference 

problem and lead to improved estimation, especially for small samples. In this context, EB 

methodology involves the simultaneous estimation of parameters in several samples. The 

combined information from other samples is used to adjust the parameter estimate for a given 

sample in order to make it more precise. Empirical Bayes methodology adjusts the estimate more 

or less depending upon the precision of the estimates obtained from the other samples. The 

success of this procedure depends, among other things, on the strength of the relationships 

among the various samples. The primary purpose of this study is to investigate whether the EB-

based reliability estimates improve the precision for estimating reliability of subgroups of a 

population, even from very small subsamples ranging from 25 to 250, by comparing the 

reliability estimates to Cronbach’s alpha coefficient. The secondary purpose of this study is to 

compare the various EB approaches across different sample sizes. This paper also discusses EB 

estimates of the SEM, their accuracy and precision, and how they compare with traditional SEM 

estimates. 

The following section briefly describes the Bayes and EB approaches. 

The Bayes Approach  

In general, the Bayesian analysis is a methodology to model and simulate the behavior of 

discrete events under uncertainty using past experience, data, or convenient assumptions in the 

form of a prior distribution (Brandel, 2004). Unlike the frequentist approach, probability in 

Bayesian statistics is not defined as the frequency of the occurrence of an event but as the 
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plausibility that a statement is true given the information (Botje, 2006). The basic assumption of 

Bayes methodology is that a state of variables to be modeled and simulated can be represented 

by probability functions (discrete variables) or probability density functions (continuous 

variables).  

In the case of the Bayes theorem for discrete variables, consider a set of observed data 

( )1, , ny y=y …  with some probability distribution ( )f |θy and an associated vector θ  of 

unknown parameters. Suppose that θ  is also a random vector, having a prior distribution 

( )g |θ η , where η  is a vector of hyperparameters. Here θ  andη  are assumed to be discrete 

variables. The Bayes formula is used to compute the posterior distribution ( )p | ,θ y η  for 

discrete parameter θ : 

( ) ( ) ( )
( ) ( )

f | g |
p | , .

f | g |
=
∑
θ

y θ θ η
θ y η

y θ θ η
 (1) 

In the case of the Bayes theorem for continuous variables, let ( )1, , ny y=y …  denote a 

sample from a probability density function by a continuous parameterθ , with prior density 

distribution ( )g |θ η . Then the posterior density distribution for θ  is given by  

( ) ( ) ( )
( ) ( )

f | g |
p | , .

f | g | d
=
∫

y θ θ η
θ y η

y θ θ η θ
 (2) 

If one is unsure of the value ofη , then a proper Bayesian approach would adopt a hyperprior 

distribution ( )h η . Then the posterior distribution for θ  is obtained by integrating the 

conditional density function with respect toη  as well: 
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( )
( ) ( ) ( )
( ) ( )

f | g | h
p |

f | g | ( )

d

h d d
= ∫
∫∫

y θ θ η η η
θ y

y θ θ η η η θ
. (3) 

The Empirical Bayes Approach 

As an alternative to (3), simply replace η  with an estimate η̂  that maximizes the 

marginal distribution ( )m |y η : 

( ) ( ) ( )m | f | g | .d= ∫y η y θ θ η θ
 (4) 

This estimate η̂  is then used as a known quantity in (2). Consider, for example, the case in 

which ( )f |θy  is a normal distribution with mean θ  and known variance 2σ . Let ( )g |θ η  

also be a normal distribution with hyperparameters ( )2,= N μ τη . When the hyperparameters 

are known, or when estimates η̂  are obtained from the data, then derivation of the posterior 

distribution for θ  is as follows:  

( ) p( , y)p | y
p(y)

f (y | )g( )           ,
p(y)

θ
θ =

θ θ
=

 (5) 

when solving the above equation based on the density function of the normal distribution,1  
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( )

2 2

2 2

22 2 2 2

2 2 2 2

(y ) ( )
2 2

( ) y     
2

1 1e e
2 2

p | y ,
p(y)

1 e
2           .

p(y)
           

−θ θ−μ
− −

σ τ

⎧ ⎫⎛ ⎞σ +τ τ μ+σ⎪ ⎪⎜ ⎟− ⋅ θ −⎨ ⎬⎜ ⎟σ τ σ +τ⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟σ π τ π
⎝ ⎠⎝ ⎠θ =

πστ=

 (6) 

Therefore, ( )p | yθ  is a normal distribution with variance of 
2 2

2 2
σ τ
σ τ+

 and mean of 

2 2

2 2
σ μ τ
σ τ

+
+

y
 derived from equation (6). 

That is, the posterior distribution for θ  is  

( )
2 2 2 2

2 2 2 2| | , . σ μ τ σ τθ θ
σ τ σ τ

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

yp y N

 (7) 

Let 
2

2 2B σ
σ τ

=
+

. Then the posterior distribution has mean ( )1B B yμ + −  and variance 

( )2 21B Bτ σ= − . In this sense, B is a weighting factor that is positively proportional to 2σ  

but inversely proportional to 2τ .  

Methods 

Data 

Data were selected from the Preliminary SAT/National Merit Scholarship Qualifying 

Test (PSAT/NMSQT®) program with a yearly population size of over three million. The 
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PSAT/NMSQT measures developed critical reading skills, math problem-solving skills, and 

writing skills, which are related to successful performance in college. The PSAT/NMSQT 

critical reading, math, and writing skills sections are shortened versions of the College Board 

SAT Reasoning Test™ and measure the same abilities. The scores for all three measures are 

reported on a two-digit 20-to-80 scale. To meet the purposes of this study, 19 states and 

Washington, DC,2 were selected as subgroups by varying population size (e.g., small to large) 

and population reliability (e.g., low to high). Four sample sizes (i.e., N = 25, 50, 125, and 250) 

were examined, and these samples were randomly selected from the population for each 

selected state.  

Two hundred replications (or resampling) of these samples of 25, 50, 125, and 250 

examinees were conducted for each state. The smallest sample was fairly small relative to the 

number of items on the test (48 items for critical reading, 38 items for math, and 39 items for 

writing), whereas the largest sample size of 250 represented a sufficient sample size for 

reliability estimation according to previous research (Walker & Zhang, 2004). Descriptive 

statistics for 19 states and Washington, DC, are displayed in Table 1 for each measure (i.e., 

critical reading, math, and writing).  

Research Design 

Test scores, from which reliability can be computed, were available for each person. To 

aid in estimation, we assumed that the reliability coefficient for each state was randomly sampled 

from some distribution with unknown parameter θ of states’ reliability coefficients, while θ had 

a distribution with parameter η. We estimated the parameters of this distribution using the data 

from the states in the study. Using Bayes’ formula and taking this distribution as the collateral 

distribution, we obtained the posterior distribution (3) of the reliability coefficient for any given 

subgroup (i.e., state). The mean of this posterior distribution became the EB reliability estimate 

for the subgroup of interest. In practice, the EB estimate can be seen as the subgroup estimate 

that has shrunk so that it is closer to the estimate of the common parameter across all subgroups. 

The amount of shrinkage depends upon the relative precision of the subgroup and common mean 

estimates.  
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Table 1 

Comparison of Population Reliabilities and Standard Error of Measurement for 20 States  

    Critical reading    Math   Writing  

State N  
State 

reliability State SEM   
State 

reliability State SEM   
State 

reliability State SEM 

AL 24,117 0.883 3.500  0.901 2.869  0.872 3.243 

AZ 19,415 0.883 3.529  0.899 2.905  0.871 3.297 

AK 11,821 0.881 3.497  0.892 2.883  0.868 3.258 

CT 36,180 0.897 3.506  0.913 2.900  0.889 3.283 

DE 17,877 0.894 3.511  0.904 2.927  0.884 3.283 

W. D.C. 11,387 0.911 3.509  0.915 2.868  0.901 3.220 

ID 4,262 0.875 3.462  0.884 2.841  0.853 3.264 

IA 9,954 0.865 3.443  0.880 2.803  0.837 3.225 

KT 20,292 0.879 3.477  0.896 2.859  0.867 3.257 

LA 15,695 0.876 3.496  0.890 2.866  0.865 3.227 

ME 26,375 0.879 3.509  0.893 2.919  0.869 3.322 

MI 29,945 0.878 3.499  0.895 2.884  0.861 3.282 

MO 5,891 0.867 3.503  0.881 2.873  0.846 3.292 

NE 6,838 0.860 3.508  0.879 2.871  0.839 3.293 

ND 2,537 0.852 3.466  0.877 2.815  0.833 3.270 

SD 3,217 0.853 3.471  0.863 2.835  0.823 3.258 

TN 34,121 0.900 3.482  0.913 2.861  0.889 3.230 

WA 30,878 0.898 3.467  0.904 2.894  0.882 3.274 

WV 6,160 0.866 3.515  0.885 2.907  0.853 3.248 

WY 2,226 0.864 3.506  0.876 2.897  0.841 3.287 

Mean   0.878 3.493   0.892 2.874   0.862 3.266 

SD   0.016 0.022   0.014 0.033   0.021 0.028 

Min 2,226  0.852 3.443  0.863 2.803  0.823 3.220 

Max 36,180  0.911 3.529  0.915 2.927  0.901 3.322 

Note. Statistics in bold are the three states with large, medium, and small population size (i.e., 

Connecticut, Louisiana, and Wyoming) to illustrate how population size affects reliability and 

the standard error of measurement (SEM).  
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Criterion for Comparison 

The population reliability coefficient and population SEM for each state were used as 

criteria in this study.  

Empirical Bayes Reliability Estimators 

A total of four EB-based reliability coefficients were estimated in (9) through (13). An 

uncorrected (UC) reliability estimate was determined from Cronbach’s alpha coefficient 

calculated directly from each sample. A mean of the 200 replications of the reliability 

coefficients using EB methods were computed. Then, the mean of each of the four EB reliability 

estimates and the one UC reliability estimate were compared to the population reliability 

(criterion) for each state. 

Reliability estimates were obtained using UC, and EB methods. All estimates were based 

on Cronbach’s alpha coefficient: 

2

1

1 1

,
1

k

i
i

k k

ij
i j

k
k

σ
α

σ

=

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑∑
 (8) 

where k is the number of items in the test form, and 2
iσ  and ijσ  are the variance and covariance 

of the item scores, respectively. The estimates were compared to the actual test reliability of the 

population for each state. Because the procedure was repeated on multiple samples (i.e., 200 

replications), standard errors and bias estimates were obtained. The average squared bias, 

average variance, and root mean squared error (RMSE) for the EB and conventional methods 

were compared across sample sizes. Four different EB approaches were tried. 

Empirical Bayes Reliability Approach 1. For this approach, EB reliability was estimated 

using the following equation, appropriate for normally distributed estimators:  
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2 2

1

2 2

1 1

( ) 1 1

i i j

i j

i j

R S R S
R S RS

EB i j

R S RS

R S
μ α

σ σ
α

σ σ

+

=
+

, (9) 

where 2

iR Sσ  and 
iR Sμ  are the variance and mean of the reliability estimates for all states in the 

study for the ith replication ( iR ); 2
jRSσ is the variance of State j  for all 200 replications; and 

( )
i jR S rsα α= is the reliability estimate for State j ( jS ) at the ith replication ( iR ). See Table 2 for an 

overview of the design. 

Empirical Bayes Reliability Approach 2. The reliability estimates iα  are likely not 

normally distributed. It may, however, be possible to transform them to approximate normality. 

One could, for example, apply Fisher’s z-transformation through 11( ) ln
2 1

rs
rs

rs

Z αα
α

⎛ ⎞+′ = ⎜ ⎟−⎝ ⎠
 (C. 

Lewis, personal communication, September 12, 2006). Once the transformation was carried out, 

(9) can be applied and the results translated back to the original metric via 

 

( ){ }
( ){ }2

exp 2 1
exp 2 1rs

rs
EB

rs

z
z
α

α
α

′ −
=

′ +
  (10) 

Empirical Bayes (EB) Reliability Approach 3. This approach is very similar to EB 

Reliability Approach 2, except for the treatment of rsα in the estimation of Z ′ . If a reliability 

coefficient is considered to be a squared correlation between observed and true score, then the 

square roots of the reliabilities should be found and then Fisher’s z-transformation should be 

used:  

11( ) ln
2 1

rs
rs

rs

Z
α

α
α

⎛ ⎞+
′ = ⎜ ⎟⎜ ⎟−⎝ ⎠ . (11) 

Once the transformation was carried out, (9) was applied and the results were translated 

back to the original metric via  
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( ){ }
( ){ }

2

3

exp 2 1
exp 2 1rs

rs
EB

rs

z
z

α
α

α

⎛ ⎞′ −
= ⎜ ⎟⎜ ⎟′ +⎝ ⎠ . (12) 

Empirical Bayes (EB) Reliability Approach 4. In EB Reliability Approach 4, the 

reliability was estimated using the EB SEM formula,  

1

2

4 21= − EB rs

rsEB
rs

SEM

SD
α

, (13) 

where 1rsEBSEM is based on (15) in the next section, and ( )=
i jrs R SSD SD is the standard deviation 

of the score at the ith replication ( iR ) for State j ( jS ). 

Table 2 

Layout of the Empirical Bayes Approaches 

Replications States  
1 2 3 . . . . 19 20 Mean  Variance 

1 
1 1R Sα  

1 2R Sα  
1 3R Sα  . . . . 

1 19R Sα
1 20R Sα  

1R S
αμ  

1

2
R Sασ  

2 
2 1R Sα            

3 
3 1R Sα            

. .           

. .           

. .           

. .           
199 

199 1R Sα            
200 

200 1R Sα  . . . . . . . 
200 20R Sα  

R Si j
αμ  2

R Si j
ασ  

Mean  
1R Si

αμ  . . . . . . . 
20R Si

αμ    

Variance 
1

2
R Si

ασ  . . . . . . . 
20

2
R Si

ασ    
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Empirical Bayes Standard Error of Measurement  

Similarly, a total of four EB-based SEM estimates were estimated in (15) through (18) 

and a mean of the 200 replications were computed. Then, the mean of each of the four EB 

reliability estimates and one UC reliability estimate were compared to the population SEM 

(criterion) for each state. 

The current study evaluated empirically the accuracy of reliability estimates computed by 

EB approaches, as well as the traditionally used Cronbach’s alpha coefficient (UC reliability 

estimate). While estimating reliability based on the EB approaches is an attractive approach with 

small sample groups, a potential danger exists when one group is large and the others small. In 

this case, the estimates for the small groups will be regressed toward the estimate for the total 

group, which is dominated by the largest group.  The resulting values may give the misleading 

impression that the groups are similar because their EB estimates are similar. Another concern is 

that reliability is sensitive to the degree of heterogeneity within a group. In general, the more 

heterogeneous the group, the higher the reliability (Nunnally & Bernstein, 1994, p. 261).3 Thus it 

may not be reasonable to try to achieve similar reliability from group to group. Instead, a 

quantity less sensitive to heterogeneity/homogeneity, such as the SEM, may be a more 

appropriate parameter to estimate using EB methods (Charles Lewis, personal communication, 

October 6, 2006; Lord & Novick, 1968). Therefore, four different EB approaches for SEM were 

also tried. 

Empirical Bayes standard error of measurement (EB SEM) Approach 1. This approach 

estimated SEM and EB SEM  as follows:  

1
i j i jR S R SSEM SD α= −

, (14) 

where 
i jR SSD is the standard deviation of the score for State j ( jS ) at the ith replication ( iR ), and 

i jR Sα is the corresponding reliability: 

2 2

1

2 2

1 1

( ) 1 1

i i j

i j

i j

R S R S
R S RS

EB i j

R S RS

SEM

SEM R S

μ
σ σ

σ σ

+

=
+

, (15) 
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where 2
iR Sσ  and 

iR Sμ  are the variance and mean of SEM for the states at the ith replication ( iR ) 

respectively; 2
jRSσ is the variance of SEM for State j  for all 200 replications; and 

i jR SSEM  is 

SEM for State j ( jS ) at the ith replication ( iR ). 

Empirical Bayes standard error of measurement (EB SEM) Approach 2. This approach 

was estimated using the EB-based reliability described in EB Reliability Approach 1. The 

formula for EB SEM Approach 2 is defined as follows:   

2 11
rs rsEB rs EBSEM SD α= −

, (16) 

Where 1rsEBα is based on (9). 

Empirical Bayes standard error of measurement (EB SEM) Approach 3. This approach 

estimated SEM by employing the EB reliability with z-transformation used for the EB Reliability 

Approach 2:  

3 21
rs rsEB rs EBSEM SD α= −

, (17) 

where 2rsEBα is based on (10). 

Empirical Bayes Standard Error of Measurement (EB SEM) Approach 4. This approach 

4 estimated SEM by employing the reliability from EB Reliability Approach 3:  

4 31= −
rs rsEB rs EBSEM SD α

, (18) 

where 3rsEBα is based on (12). 

Evaluation Indexes 

The current study compared the estimated EB reliabilities and EB SEMs with each state’s 

population reliabilities and SEMs using average squared bias, average variance, and RMSE. 

Average squared bias for reliability is equivalent to the sum of the average squared mean 

differences between the EB-based reliabilities (or uncorrected reliabilities) and population 

reliabilities for the states, divided by the number of states (i.e., 20). That is,  
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, (19) 

where ( )ˆ
ji Sρ represents the EB-based reliability estimates for the jth state (J = 20) and the ith 

replication (I = 200) and ( )ji Sρ represent the state population reliability for the jth state which is 

regarded as a criterion reliability. Accordingly, a total of 200 resamplings were replicated for the 

states for the analysis. We regard the population reliability as truth for the evaluation. 

Average variance is defined as the sum of the variances of the 200 replications for the 

states, divided by 20 (the number of states):  

220

( ) ( )
=1

ˆ( )
= 

⎡ ⎤−⎣ ⎦∑ j ji S i S
jAverage Variance 

J

σ ρ ρ

. (20) 

RMSE is defined as follows:  

   +  RMSE Average Squared Bias Average Variance= . (21) 

Average squared bias for SEM is equivalent to the sum of the average squared mean differences 

between the EB-based SEMs (or UC SEMs) and the population SEM for the states, divided by 

the number of states (i.e., 20). The formulas for the average squared bias, average variance, and 

RMSE for SEM are the same as (19), (20), and (21), replacing the reliability estimators with the 

SEM estimators.    

Procedure 

The current study was conducted using the following steps:  

1. Selected 20 states out of 50 states by varying population size and reliability from 

small to large. 

2. Calculated population reliability and SEM for the 20 states to use as a criterion. 

3. Performed random sampling of four sample sizes of 25, 50, 125, and 250 from the 

population for each of the states. 
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4. Conducted resamplings 200 times for each sample size of 25, 50, 125, and 250 for 

each of the states.  

5. Calculated UC reliability and UC SEM for each sample.  

6. Calculated four EB reliabilities as in (9) to (13) and EB SEMs as in (15) to (18) for 

each sample.  

7. Compared the UC and EB reliabilities and SEMs to the population reliability and 

SEM across replications for each sample size and state using the evaluation indexes 

(i.e., average squared bias, average variance, and RMSE).  

Results 

Empirical Bayes Reliability Estimators 

Table 1 displays population reliability and SEM for the three measures (critical reading, 

math, and writing) for all 20 states. The mean of the 20 states’ reliabilities for critical reading is 

0.88 and ranges from 0.85 to 0.91; for math, the mean is 0.89 and ranges from 0.86 to 0.92; and 

for writing, the mean is 0.86 and ranges from 0.82 to 0.90. The mean SEMs for all 20 states are 

3.49, 2.87, and 3.27 for critical reading, math, and writing, respectively. The SEM for reading 

ranges from 3.44 to 3.53; for math, from 2.80 to 2.93; and for writing, from 3.22 to 3.32. The 

reliability coefficient for each state for each measure is moderately high; the SEMs also look 

reasonably small. Overall, math reliabilities are slightly higher and SEMs are slightly lower than 

those of critical reading and writing. Statistics in bold font in the Table 1 are for the three states 

with large, medium, and small population size (i.e., Connecticut, Louisiana, and Wyoming) to 

illustrate how population size affects reliability and SEM. As shown, the reliability of the state 

with large population size tends to be higher than that of the state with small population size. 

Table 2 displays a layout of the empirical Bayes approaches for 200 replications across 20 states.  

Table 3 presents a comparison of average squared bias, average variance, and RMSE for 

uncorrected (UC) and empirical Bayes (EB) reliability estimators.4 The shaded areas in the table 

indicate the smallest indexes within each test and each sample size. As expected, as sample sizes 

are increased from 25 to 250, the extent of average squared bias, average variance, and RMSE 

are reduced.  

For the smallest sample size of 25, EB Reliability Approach 2 (using z-transformation) 
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Table 3 

Comparison of Statistics for Uncorrected and Empirical Bayes Reliability Estimators  

    (Avg. squared bias) ×100 (Avg. variance) ×100 RMSE 
  Reliability coefficient  Reading Math Writing Reading Math Writing Reading Math Writing
N = 25 Uncorrected 0.0106 0.0071 0.0101 0.1664 0.1251 0.1824 0.0421 0.0363 0.0439 

Empirical Bayes 0.0134 0.0090 0.0154 0.0596 0.0454 0.0691 0.0270 0.0233 0.0291 
EB with z-transform 0.0089 0.0155 0.0096 0.0529 0.0386 0.0532 0.0249 0.0233 0.0251 
EB with z-transform (sqrt) 0.0089 0.0155 0.0097 0.0531 0.0387 0.0533 0.0249 0.0233 0.0251 
Based on EB SEM 0.0103 0.0072 0.0096 0.1569 0.1184 0.1698 0.0409 0.0354 0.0424 

N = 50 Uncorrected 0.0021 0.0015 0.0022 0.0635 0.0473 0.0751 0.0256 0.0221 0.0278 
Empirical Bayes 0.0046 0.0037 0.0066 0.0263 0.0192 0.0335 0.0176 0.0151 0.0200 
EB with z-transform 0.0041 0.0077 0.0085 0.0257 0.0193 0.0271 0.0172 0.0165 0.0189 
EB with z-transform (sqrt) 0.0041 0.0077 0.0086 0.0257 0.0193 0.0271 0.0172 0.0165 0.0189 
Based on EB SEM 0.0021 0.0018 0.0021 0.0596 0.0448 0.0701 0.0249 0.0216 0.0269 

N = 125 Uncorrected 0.0005 0.0003 0.0007 0.0229 0.0174 0.0284 0.0153 0.0133 0.0171 
 Empirical Bayes 0.0023 0.0022 0.0034 0.0118 0.0088 0.0161 0.0119 0.0105 0.0140 
 EB with z-transform 0.0023 0.0042 0.0063 0.0119 0.0094 0.0136 0.0119 0.0117 0.0141 
 EB with z-transform (sqrt) 0.0023 0.0042 0.0063 0.0119 0.0094 0.0136 0.0119 0.0117 0.0141 
 Based on EB SEM 0.0005 0.0004 0.0007 0.0216 0.0165 0.0265 0.0149 0.0130 0.0165 
N = 250 Uncorrected 0.0001 0.0001 0.0001 0.0109 0.0082 0.0131 0.0105 0.0091 0.0115 
 Empirical Bayes 0.0012 0.0010 0.0015 0.0069 0.0052 0.0091 0.0090 0.0078 0.0103 
 EB with z-transform 0.0012 0.0017 0.0036 0.0070 0.0055 0.0080 0.0091 0.0084 0.0108 
 EB with z-transform (sqrt) 0.0012 0.0017 0.0036 0.0070 0.0055 0.0080 0.0091 0.0084 0.0108 
  Based on EB SEM 0.0002 0.0001 0.0002 0.0104 0.0079 0.0124 0.0103 0.0090 0.0112 

Note. Shaded areas in the table indicate the smallest indexes within each test and each sample size. EB SEM = empirical Bayes 

standard of error measurement, RMSE = root mean squared error, sqrt = square root. 
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produced the smallest bias for reading and writing, and the UC reliability estimate yielded the 

smallest bias for math. For the sample size 50, the UC reliability estimates produced the smallest 

average squared bias for critical reading and math, and EB Reliability Approach 4 (using EB 

SEM) yielded the smallest bias for writing. For the sample sizes of 125 and 250, the UC 

reliability estimates produced the smallest average squared bias for all three measures. The 

results showed that when sample size is very small (i.e., N = 25), EB-based reliability estimates 

produced smaller bias than the bias of the UC reliability estimates for critical reading and 

writing. In terms of average variance and RMSE, EB reliability estimates (either EB Reliability 

Approach 1 or Approach 2) produced relatively small average variance and RMSE for all 

measures. It suggests that EB reliability estimates performed better than the traditional UC 

reliability estimates in terms of stability. As shown in Table 3, EB estimates with z-

transformation (EB Reliability Approach 2) and EB estimates with z-transformation sqrt (EB 

Reliability Approach 3) are identical.  

Figures 1 through 6 depict distributions of the UC and EB reliability estimates of 200 

replications for critical reading, math, and writing, respectively. The first top panel of Figure 1 

includes the reliability estimates distributions of two population sizes (large and small) among 

the states for sample size 25. Connecticut (N = 36,180) and Wyoming (N = 2,226) were selected 

as large and small population sizes of states, respectively, for illustration purposes. The next 

panel in Figure 1 is for sample size 50, and in Figure 2, it is for sample sizes 125 and 250. In 

each plot, four distributions are depicted: UC reliability (solid line), EB reliability (dashed line), 

EB reliability with z-transformation (dashed-dotted line), and EB reliability using EB SEM 

(dotted line). Since EB estimates in Approach 2 and Approach 3 are nearly identical, Approach 3 

was dropped from the figures. The criterion line (i.e., population reliability estimates) is depicted 

with a vertical solid line. The horizontal axis of the plot shows the reliability and the vertical axis 

shows relative frequency in percent of the 200 replications whose estimates fell at a given level. 

As shown in Figures 1 and 2, the sample size used to estimate the reliability has an impact on 

each distribution of reliability estimates. As sample sizes are increased from 25 to 250, shapes of 

distributions of the UC and EB reliability estimates become closer to each other; and their means 

approach the criterion (dotted vertical line), which is the population reliability value. Distribution 

shapes of UC reliability (solid line) and EB reliability estimates using the EB SEM approach 

(dotted line) are very similar compared to other EB reliability estimates. Their means are also  
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Figure 1. Frequency distribution of uncorrected and empirical Bayes reliability estimators from the resampling (N = 200) for 

reading, sample sizes 25 and 50. 

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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Figure 2. Frequency distribution of uncorrected and empirical Bayes reliability estimators from the resampling (N = 200) for 

reading, sample sizes 125 and 250. 

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  



 

 

20

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

10
15

20

CONNECTICUT, N=36180

Math, sample size 25

P
er

ce
nt

UC Rel
EB Rel
zEB Rel
EBsem Rel

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

10
15

20

 WYOMING, N=2226

Math, sample size 25

P
er

ce
nt

UC Rel
EB Rel
zEB Rel
EBsem Rel

 

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

10
15

20

CONNECTICUT, N=36180

Math, sample size 50

P
er

ce
nt

UC Rel
EB Rel
zEB Rel
EBsem Rel

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
5

10
15

20

 WYOMING, N=2226

Math, sample size 50

P
er

ce
nt

UC Rel
EB Rel
zEB Rel
EBsem Rel

 

Figure 3. Frequency distribution of uncorrected and empirical Bayes reliability estimators from the resampling (N = 200) for 

mathematics, sample sizes 25 and 50.  

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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Figure 4. Frequency distribution of uncorrected  and empirical Bayes  reliability estimators from the resampling (N = 200) for 

mathematics, sample sizes 125 and 250. 

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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Figure 5. Frequency distribution of uncorrected and empirical Bayes reliability estimators from the resampling (N = 200) for 

writing, sample sizes 25 and 50.  

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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Figure 6. Frequency distribution of uncorrected  and empirical Bayes reliability estimators from the resampling (N = 200) for 

writing, sample sizes 125 and 250. 

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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close to the population reliability for all sample sizes with a few exceptions (e.g., sample size 25 

for Wyoming), indicating low bias. It appears that the population size of each state affects the 

distribution shape of the UC and EB reliability estimates using the SEM approach appreciably 

only when the sample sizes are very small. The distribution shapes of UC reliability (solid line) 

and EB reliability estimate using the EB SEM approach (dotted line) are more skewed than other 

EB estimates for the states with small population size (Wyoming), particularly for a sample size 

of 25. Overall, the EB Reliability Approach 1 (dashed line) performs better than the UC 

reliability and other EB reliability estimates in terms of accuracy and stability, particularly when 

both the sample and population sizes are very small (i.e., sample size = 25 for Wyoming). 

Figures 3 and 4 show the comparison of UC and EB reliability distributions for math. The 

distribution shapes and patterns are similar to the findings from the reading plots in Figures 1 and 

2. As sample sizes increase, the shapes of distributions of the UC and EB reliability estimates 

converge and their means approach the population reliability. Distribution shapes of UC 

reliability (solid line) and EB reliability estimates using the EB SEM approach (dotted line) are 

very similar compared to the other EB reliability estimates. Also, their means are close to the 

population reliability estimates for almost all sample sizes. When the sample and population 

sizes are small, the EB Reliability Approach 1 (dashed line) performs better than the UC 

reliability and other EB reliability estimates in terms of accuracy and stability (i.e., sample size = 

25 for Wyoming). 

Figures 5 and 6 display a comparison of UC and EB reliability distributions for writing. 

The distribution shapes and patterns are similar to the finding from critical reading and math. 

While shapes of distributions of the UC and EB reliability estimates become more similar to 

each other and their means are closer to the population reliability as sample sizes increase, when 

both sample and population sizes are small, EB Reliability Estimate Approach 1 (dashed line) 

performs better than UC and other EB reliability estimates.   

In summary, EB-based approaches (either EB Reliability Approach 1 or EB Reliability 

Approach 2) produced relatively small average variances and RMSEs compared to the UC 

reliability estimates for all three measures. In terms of average bias, EB reliability estimates 

produce relatively smaller average squared bias than UC reliability estimates for reading and 

writing, particularly when sample size is very small, while UC reliability estimates produce 
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relatively smaller average squared bias than EB reliability estimates for all three measures, 

particularly when sample size is greater than 25, except for a few exceptions in writing.   

Among the four EB reliability approaches, Reliability Approach 2 and Reliability 

Approach 3 are nearly identical for average squared bias, average variance, and RMSE for all 

three measures across different sample sizes (see Table 3). Interestingly, EB Reliability 

Approach 4 seems to be more similar to UC approach than other EB reliability approaches in 

terms of average squared bias, average variance, and RMSE. As shown in the Figures 1 to 6, 

when both the sample and population sizes are very small (N = 25 for Wyoming), EB Reliability 

Approach 1 (dashed line) performs better than UC and other EB estimates.  

Empirical Bayes Standard Error of Measurement Estimators 

Table 4 displays a comparison of average squared bias, average variance, and RMSE for 

UC versus EB SEM estimators.5 As observed in the reliability results, as sample sizes increased, 

average squared bias, average variance, and RMSE of the SEM indexes decreased. Analysis 

results for SEM are very consistent across different sample sizes and measures. Uncorrected 

SEM estimates produce the smallest average squared bias for all three measures across different 

sample sizes. As observed in the reliability results, a sample size of 250 yields the smallest bias. 

For average variance and RMSE, EB SEM Approach 1 (EB methodology applied to the SEM 

computed from the uncorrected reliability index) produces the smallest average variance and 

RMSE for all three measures across different sample sizes.  

Table 4 shows that the estimates produced by EB SEM Approach 3 (EB reliability with z-

transformation) and EB SEM Approach 4 (EB reliability with z-transformation sqrt) are virtually 

identical for average squared bias, average variance, and RMSE for all three measures across 

different sample sizes. The difference between EB SEM Approach 3 and EB SEM Approach 4 is 

that Approach 3 computed SEM using the EB reliability with Fisher’s z-transformation while 

Approach 4 employed square roots of the EB reliabilities and then used the z-transformation.    

Figures 7 through 12 illustrate distributions of the UC and EB SEM estimates across 200 

replications for critical reading, math, and writing, respectively. The top panel of Figure 7 

includes the SEM distributions for states with large and small population sizes for sample size 

25. The next panel is for sample size 50, and so on. As shown in the figures, sample sizes used 
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Table 4 

Comparison of Statistics for Uncorrected and Empirical Bayes Standard Error of Measurement Estimators  

    (Avg. squared bias) ×100 (Avg. variance) ×100 RMSE 
  SEM coefficient Reading Math Writing Reading Math Writing Reading Math Writing
N = 25 Uncorrected 0.0032 0.0019 0.0022 0.6226 0.5434 0.6223 0.0791 0.0738 0.0790

Empirical Bayes SEM 0.0125 0.0247 0.0164 0.2006 0.1845 0.2065 0.0462 0.0457 0.0472
Based on EB reliability 1.4567 0.8733 1.4441 4.5296 3.0007 3.0202 0.2446 0.1968 0.2113
Based on EB reliability with z-transform 1.1286 1.6020 1.6965 3.9668 3.1806 2.8176 0.2257 0.2187 0.2125
Based on EB reliability with z-transform (sqrt) 1.1289 1.6026 1.6971 3.9645 3.1766 2.8186 0.2257 0.2186 0.2125

N = 50 Uncorrected 0.0019 0.0014 0.0010 0.3071 0.2564 0.2912 0.0556 0.0508 0.0541
Empirical Bayes SEM 0.0113 0.0201 0.0132 0.1037 0.1000 0.1086 0.0339 0.0347 0.0349
Based on EB reliability 1.0821 0.6296 0.9791 1.4869 0.9860 0.9630 0.1603 0.1271 0.1394
Based on EB reliability with z-transform 1.0753 1.1816 1.4711 1.3699 1.0790 1.0823 0.1564 0.1504 0.1598
Based on EB reliability with z-transform (sqrt) 1.0751 1.1809 1.4744 1.3696 1.0781 1.0830 0.1564 0.1503 0.1599

N = 125 Uncorrected 0.0009 0.0005 0.0006 0.1142 0.1081 0.1209 0.0339 0.0330 0.0349
Empirical Bayes SEM 0.0086 0.0124 0.0115 0.0453 0.0535 0.0522 0.0232 0.0257 0.0252
Based on EB reliability 0.5704 0.3865 0.5006 0.3245 0.2358 0.2035 0.0946 0.0789 0.0839
Based on EB reliability with z-transform 0.6104 0.7562 0.9399 0.3060 0.2534 0.2537 0.0957 0.1005 0.1093
Based on EB reliability with z-transform (sqrt) 0.6102 0.7554 0.9424 0.3060 0.2532 0.2540 0.0957 0.1004 0.1094

N = 250 Uncorrected 0.0003 0.0001 0.0002 0.0582 0.0512 0.0578 0.0242 0.0227 0.0241
 Empirical Bayes SEM 0.0071 0.0070 0.0070 0.0263 0.0313 0.0306 0.0183 0.0196 0.0194
 Based on EB reliability 0.2692 0.1708 0.2019 0.0926 0.0677 0.0569 0.0602 0.0488 0.0509
 Based on EB reliability with z-transform 0.2917 0.3183 0.4632 0.0882 0.0733 0.0731 0.0616 0.0626 0.0732
  Based on EB reliability with z-transform (sqrt) 0.2916 0.3178 0.4648 0.0882 0.0733 0.0731 0.0616 0.0625 0.0733
 Note. Shaded areas in the table indicate the smallest indexes within each test and each sample size. EB SEM = empirical Bayes 
standard of error measurement, RMSE = root mean squared error, sqrt = square root. 
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Figure 7. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for reading, sample sizes 25 and 50. 

Note. UC SEM = uncorrected standard of error measurement, EB SEM = empirical Bayes standard of error measurement, EBsem Rel 

= empirical Bayes reliability standard error of measurement EB zRel SEM = empirical Bayes reliability with z-transformation using 

standard of error measurement.  



 

 

 

28

2.5 3.0 3.5 4.0

0
2

4
6

8
10

CONNECTICUT, N=36180

Reading, sample size 125

P
er

ce
nt

UC SEM
EB SEM
EB Rel SEM
EB zRel SEM

2.5 3.0 3.5 4.0

0
2

4
6

8
10

 WYOMING, N=2226

Reading, sample size 125

P
er

ce
nt

UC SEM
EB SEM
EB Rel SEM
EB zRel SEM

 

2.5 3.0 3.5 4.0

0
2

4
6

8
10

CONNECTICUT, N=36180

Reading, sample size 250

P
er

ce
nt

UC SEM
EB SEM
EB Rel SEM
EB zRel SEM

2.5 3.0 3.5 4.0

0
2

4
6

8
10

 WYOMING, N=2226

Reading, sample size 250
P

er
ce

nt

UC SEM
EB SEM
EB Rel SEM
EB zRel SEM

 

Figure 8. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for reading, sample sizes 125 and 250.  

Note. UC SEM = uncorrected standard of error measurement, EB SEM = empirical Bayes ustandard of error measurement, EBsem 

Rel = empirical Bayes reliability using standard error of measurement EB zRel SEM = empirical Bayes reliability with z-

transformation using standard of error measurement.  
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Figure 9. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for mathematics, sample sizes 25 and 50. 

Note. UC SEM = uncorrected standard of error measurement, EB SEM = empirical Bayes standard of error measurement, EBsem Rel 

= empirical Bayes reliability standard error of measurement EB zRel SEM = empirical Bayes reliability with z-transformation using 

standard of error measurement.  
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Figure 10. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for mathematics, sample sizes 125 and 250. 

Note. UC SEM = uncorrected standard of error measurement, EB SEM = empirical Bayes standard of error measurement, EBsem Rel 

= empirical Bayes reliability standard error of measurement EB zRel SEM = empirical Bayes reliability with z-transformation using 

standard of error measurement.  
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Figure 11. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for writing, sample sizes 25 and 50.  

Note. UC Rel = uncorrected reliability, EB Rel = empirical Bayes reliability, zEB Rel = empirical Bayes reliability with z-

transformation, EBsem Rel = empirical Bayes reliability using standard error of measurement.  
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Figure 12. Frequency distribution of uncorrected and empirical Bayes standard error of measurement estimators from the 

resampling (N = 200) for writing, sample sizes 125 and 250.  

Note. UC SEM = uncorrected standard of error measurement, EB SEM = empirical Bayes standard of error measurement, EBsem Rel 

= empirical Bayes reliability standard error of measurement EB zRel SEM = empirical Bayes reliability with z-transformation using 

standard of error measurement
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 to estimate the SEM impact the SEM distributions. As sample sizes increase from 25 to 250, 

shapes of the distributions of the UC and EB SEM estimates become more similar to each other 

and their means approach the criterion (the population SEM, indicated by the dotted vertical 

line). The shapes of distributions of the UC SEM and EB SEM Approach 1 are most similar 

when compared to other EB SEM distributions. The means of the UC SEM and EB SEM 

Approach 1 are also close to the population SEM for all sample sizes. Population size does not 

appear to affect appreciably the distribution shape of the UC and EB SEM estimates for large 

sample sizes, but it seems to affect the distributions of the EB SEM approaches in the small 

sample size of 25, particularly for EB SEM Approach 2 (dotted-dashed line) and EB SEM 

Approach 3 (dotted line) for all three measures.  

In summary, UC SEM estimates produce smaller average squared bias than EB SEM 

estimates, while EB-based approaches (either EB SEM Approach 1) produce relatively small 

average variances and RMSEs compared to the UC SEM estimates for all three measures. For all 

three measures across different sample sizes, EB SEM Approach 3 and EB SEM Approach 4 are 

nearly identical for bias, error, and RMSE (see Table 3). As displayed in Figures 7 through 12, 

when sample sizes are small (N = 25 or N = 50), EB SEM Approach 1 performs better than the 

UC and other EB SEM approaches.  

Discussion 

In the current study, an EB procedure was evaluated for estimating reliability of 

subgroups of a population, even for very small subgroups; this evaluation was to improve the 

precision and accuracy of reliability estimation by integrating collateral information from the 

reliability of other subgroups (i.e., states). The Bayesian estimates were compared to the 

traditionally and currently used Cronbach’s alpha coefficient, in terms both of average squared 

bias, average variance, and RMSE.  

The general findings for both reliability and SEM estimates from the current study are 

that the EB-based approach produced greater bias but less error, with a few exceptions. Sample 

size seems to have the a sizable impact on both EB and UC analyses results in terms of bias and 

error, and population size does have some impact on the distribution of EB and UC estimates 

only when the sample size is small.  
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More specifically, as sample sizes increase, sizes of average squared bias, average 

variance, and RMSE decrease, the shapes of distributions of the UC and EB estimates became 

more similar to each other and the UC and EB estimates’ means are close to the criterion.  

In regard to population size, it appears that population size of each state does not affect 

appreciably the distribution shape of reliability and SEM estimates, particularly in the large 

sample sizes, but it seems to affect the distributions of the reliability and SEM estimates only in 

small sample size of 25. Particularly, UC reliability and EB Reliability Approach 4, as well as 

EB SEM Approach 2 and EB SEM Approach 3, are distant from a normal distribution when both 

population size and sample size are small.  

For comparison of UC and EB reliability estimates, the EB reliability estimates usually 

produce relatively greater average squared bias than UC reliability estimates except for a few 

exceptions in writing. However, absolute differences in the average squared bias (×100) between 

UC and EB reliability estimates are very small even in the small sample size of 25. Differences 

ranged from 0.0002 to 0.0028 for reading, from 0.0016 to 0.0049 for math, and from 0.0010 to 

0.0048 for writing. Particularly, the absolute differences between UC reliability and EB 

Reliability Approach 4 (based on EB SEM) are almost negligible. In addition, EB Reliability 

Approach 1 and EB Reliability Approach 2 produce relatively small average variances and 

RMSEs compared to the UC reliability for all three measures across different sample sizes. 

These results indicate that EB-based reliability estimation seems promising with even small 

sample sizes, particularly in terms of average variance and RMSE.  

Although estimating reliability based on the EB approaches is attractive for small sample 

groups, the EB estimates for the small groups will be regressed toward the estimate for the large 

group when one group is large and the others small. Another concern is that the reliability is 

sensitive to the degree of heterogeneity within a group. Therefore, we calculated the SEM 

estimate, which is a quantity less sensitive to heterogeneity/homogeneity.  

For comparison of the UC and EB SEM estimates, the pattern of results is similar to the 

results that we found from the reliability analysis results, but the SEM results are more consistent 

across different sample sizes and measures than the results from the reliability estimates. The EB 

SEM estimates produce relatively larger average squared bias than UC reliability estimates for 

all three measures across four sample sizes. The EB SEM Approach 1 produced small average 

variances and RMSEs for all three measures across sample sizes. The results of EB SEM 
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Approach 3 and EB SEM Approach 4 were nearly identical for average squared bias, average 

variance, and RMSE for all three tests across different sample sizes.  

As shown in the Table 1, the data used for the current study were reasonably stable and 

did not include any extreme small or large values in population size, reliability coefficients, and 

SEMs. From a practical point of view, the results of the current study provide some support for 

EB-based reliability estimation using collateral information with even very small sample sizes of 

25 in terms of average squared bias, average variance, and RMSE.  

The current study leaves a number of issues to be considered even though the EB-based 

approaches would seem to have some benefits that traditional reliability estimation methods do 

not have. As commonly recognized, EB estimation works better when more groups are used, 

because the between-groups variability must be estimated from the empirical group information, 

so the current study used 20 states. In practice, however, some situations may not have enough 

subgroups (e.g., gender group) and, consequently, not enough collateral information. Or in some 

situations, one group is large (e.g., the White group in the ethnic subgroup) but the other group is 

small (e.g., the American Indian group). In such cases, EB-based reliability estimation could not 

be expected to function very well because the estimates for small groups will be regressed 

toward the estimates for the large group. That is, the effectiveness of the EB-based approaches 

greatly depends on the characteristics of the collateral information. Therefore, it requires prudent 

judgment to select adequate collateral information to obtain precise and accurate reliability 

estimates. 
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Notes 
 

1 The continuous probability density function of the normal distribution is defined as 
2
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2 In the interests of conciseness, this paper will refer to both the 19 states in the study and 

Washington, DC, generally as states. 

3 Nunnally and Bernstein (1994) made the argument by referring to the formula from classical 

test theory for the reliability coefficient: 2 2
xx ' e x1 .ρ = − σ σ   If the error variance remains 

fairly constant across groups (an assumption of many derivations from classical test theory), 

then the size of the reliability coefficient is completely determined by the variance of X. 

4 Because average squared bias and average variance of UC and EB estimates were very small in 

numerical value (e.g., 0.0001065 for reading average squared bias in sample size 25), those 

indexes were multiplied by 100. 

5 Because average squared bias and average variance of UC and EB estimates were very small in 

numerical value (e.g., 0 000032 for reading average squared bias in sample size 25), 

multiplied by 100 to those indexes. 

 




