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Abstract 

The purpose of this report is to demonstrate loglinear smoothing using SAS PROC GENMOD. 

The results from four published examples, which include the smoothing of a) univariate 

distributions, b) bivariate distributions, c) distributions with teeth, and d) bivariate distributions 

with structural zeros, are reproduced to show the flexibility of the SAS procedure. Comparisons 

of graphical displays and likelihood ratio statistics show that the SAS procedure yields results 

identical to the published results. SAS PROC GENMOD provides an alternative approach to 

smoothing that is readily available for researchers and graduate students in educational 

measurement, as well as researchers from other scientific fields.  
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Smoothing represents a set of statistical procedures that aim to replace a discrete 

empirical dataset with a discrete dataset that preserves some features of the observed data 

without the irregularities that are attributable to sampling. The type of smoothing described in 

this paper involves the fitting of loglinear models to discrete test score distributions (Holland & 

Thayer, 1987; 2000). These loglinear models can preserve a variety of different features in 

observed data with a relatively small number of parameters. Loglinear smoothing has numerous 

applications, one of which is in educational assessment as a preliminary step in the equating of 

scores on different forms of a test. More precisely, loglinear smoothing is first applied and then 

the smoothed results can be used with nonlinear equating procedures such as the traditional 

equipercentile procedure or the kernel procedure (von Davier, Holland, & Thayer, 2004; Hanson, 

1996; Holland & Thayer, 1989; Rosenbaum & Thayer, 1987). Loglinear smoothing can also be 

used, however, prior to the actual equating in situations where available sample sizes are small 

(Livingston, 1993). 

While there are software routines that carry out loglinear smoothing, they are usually 

implemented as part of larger software packages that perform test equating (e.g., the operational 

software used by ETS; the equating software from Iowa Testing Programs, 

http://www.uiowa.edu/~itp/pages/SWEQUATING.SHTML). Because they are embedded within 

a larger system of routines oriented towards very specific purposes, these software packages are 

either neither generally available nor flexible enough for general smoothing purposes. Therefore, 

it is important to have alternative tools for smoothing that are readily available to researchers and 

graduate students. 

The purpose of this report is to illustrate how SAS PROC GENMOD can be used to 

implement the same loglinear smoothing procedures that are described in previously published 

descriptions of loglinear smoothing (von Davier et al., 2004; Holland & Thayer, 1987, 2000). 

The first section gives a brief overview of the relevant models and the model-fitting process that 

accomplishes loglinear smoothing. Then the model-fitting process is described in terms of how it 

can be implemented with PROC GENMOD. The results of four published examples from 

Holland and Thayer (2000) and von Davier et al. (2004) are reproduced with PROC GENMOD, 

including the smoothing of univariate distributions, bivariate distributions, distributions with 

“teeth” (a regular pattern of cells with frequencies that are much lower than those of neighboring 

cells, usually due to the use of rounded formula scores), and bivariate distributions with 
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structural zeros (impossible score combinations in the score probabilities that can arise in the 

joint distribution of a total test and an internal anchor, so that the total test score can never be less 

than the score on the internal anchor test). To emphasize the agreement of the results of the 

published examples with the results from SAS PROC GENMOD, references are made to results 

in the published examples.  

Evaluations of the fit of the models themselves are discussed at length in the previously 

published papers and are, therefore, only briefly discussed in this report.  

Loglinear Smoothing Models 

Assume we have a random variable X that defines test form X (we use the same notation 

for a test form and a random variable) with possible values x0,…,xJ , or xj, with j = 0,…,J (the 

possible score values), and a corresponding vector of observed score frequencies n = (n0,…,nJ )t 

that sum to the total sample size, N. Under some distributional assumptions about n, like 

multinomial or Poisson distributional assumptions, the vector of the population score 

probabilities p = (p0,…,pJ )t is said to satisfy a loglinear model if 

log ( )e j jp uα= + + jb β  

where the {pj} are assumed to be positive and sum to one, bj  is a row vector of constants 

referred to as score functions throughout this text (e.g., xj
1

, xj
2

, xj
3), β is a vector of free 

parameters, uj is a known constant that specifies the distribution of the {pj} when the vector β is 

set to zero, and α is a normalizing constant that insures that the probabilities sum to one. 

Under different choices of u, b, or β, the loglinear model becomes equivalent to the 

discrete uniform distribution (u = 0, β = 0) or the binomial distribution (see Holland & Thayer, 

1987, 2000, for details).  

Loglinear models are a class of the exponential families of discrete distributions, which 

can be described in terms of their sample moments. As in Holland and Thayer (1987, 2000), we 

will make use of this property and the fact that  are known constants. Therefore, in this paper, 

the loglinear model used to fit a univariate distribution is 

ju

1
log ( ) ( )

I
i

e j i j
i

p xα β
=

= +∑ ,       (1) 

 2



where the u  are set to zero. When the data are test score data, the terms in this model can be 

defined as follows: bj is a vector of score functions; (xj)i are the score functions; and βi are the I 

free parameters to be estimated in the model-fitting process. 

j

The value of I determines the number of moments of the actual test score distribution that 

are preserved in the fitted distribution. If I = 1, then the fitted distribution preserves the first 

moment (the mean) of the observed distribution. If I = 4, then the fitted distribution preserves the 

first, second, third, and fourth moments (mean, variance, skewness, and kurtosis) of the observed 

distribution. 

The model in (1) can be extended to fit the bivariate distribution of the scores of two tests 

(call them X and Y): 

1 1 1 1

log ( ) ( ) ( ) ( ) ( )
I H G F

i h g
e j k xi j yh k gf j k

i h g f

fp x y xα β β β
= = = =

= + + +∑ ∑ ∑ ∑ y ,  (2) 

where j kp  is the joint score probability of the score (xj, yk) (score xj on test X and score yk on test 

Y). The fitting of Model (2) produces a fitted bivariate distribution that preserves I moments in 

the marginal (univariate) distribution of X, H moments in the marginal (univariate) distribution 

of Y, and a number of cross-moments ( ,  G I F H≤ ≤ ) in the bivariate X-Y distribution. Model 

(2) is also appropriate for the smoothing of bivariate distributions with impossible X-Y score 

combinations, or “structural zeros.” Distributions with structural zeros arise when X and Y 

represent the scores of a total test and an internal anchor, so that the total test score can never be 

less than the score on the internal anchor test. The fitting of distributions with structural zeros is 

described in the fourth example of this report and involves models of the form in (2) with 

appropriate specification of the data layout. 

Another extension of (1) incorporates indicator functions. These indicator functions allow 

for the fitting of both the full univariate distribution and a subset of the distribution (e.g., “teeth” 

or lumps at different score points). One example of such a model is: 

1 2 1
1 2 3 4log ( ) ( ) ( ) ( ) ( ) ( )e j j j s j sp x x I j x Iα β β β β= + + + + j ,   (3) 

where the indicator function IS(j) = 1 if j belongs to a defined subset, S, of all js and IS(j) = 0 

otherwise. S denotes the set of the score points where the frequencies are systematically lower or 

higher than most of the test frequencies. Model (3) will preserve the mean and variance of the 
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total distribution of X (β1 and β2), the total frequency in the cells denoted by S (β3), and the mean 

of the cell values for the cells in S (β4). 

Fitting Loglinear Smoothing Models 

Under the assumption that the vector of the frequencies is multinomial, the estimation of 

the free parameters (βi) proceeds by maximizing the following log-likelihood function: 

 ,       (4) log ( )j e j
j

L n p=∑

where nj and jp  are the observed frequencies and the population score probabilities in the jth 

cell, respectively (Holland & Thayer, 1987, 2000). 

The maximization can be accomplished through the use of the Newton-Raphson 

algorithm (Holland & Thayer, 1987, p. 11). Holland and Thayer specify two criteria for the 

convergence solution from the algorithm. The first criterion involves the maximization of the 

log-likelihood function, which happens when the relative change in the log-likelihood is less than 

some specified value. The second criterion involves the satisfaction of the likelihood equation for 

all of the estimated parameters (β), meaning that the relative error in each fitted moment must be 

less than some specified value. At convergence both criteria should be met. 

To add stability to the algorithm, it has been suggested that the score functions be 

transformed so that they sum to zero and their squares sum to one (Holland & Thayer, 1987, 

2000; Rosenbaum & Thayer, 1987). Holland and Thayer also suggest specific starting values. 

The suggested starting values for the parameter estimates are based on converting the observed 

frequencies into a smoother form with nonzero frequencies at all score points and then 

computing a function of these converted frequencies and the score functions.  

Fitting Loglinear Smoothing Models With SAS PROC GENMOD 

The examples that are presented next will demonstrate how SAS PROC GENMOD can 

be used to fit Models (1), (2), and (3). While modeling procedures based on Poisson and 

multinomial distributional assumptions produce the same maximum likelihood estimates 

(Bishop, Fienberg, & Holland, 1975; Fisher, 1922; Haberman, 1974), the Poisson-based 

modeling procedures in SAS are much more flexible than the multinomial-based modeling 

procedures. Therefore, for our purposes, the discrete observed frequencies {nj} are assumed to be 
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independently Poisson-distributed with parameters Npj. In this case, the log-likelihood to be 

maximized is: 
( )( )

log
!

j jn Np
j

e
j j

Np e
L

n

− 
= 

  
∑  .       (5) 

(SAS Institute, 2002, pp. 1534–1535). 

Maximization is accomplished through a ridge-stabilized Newton-Raphson algorithm 

(SAS Institute, 2002, p. 1536). This algorithm converges when the change in parameter estimates 

between iterations is less than some specified value. After convergence is determined for the 

parameters, the algorithm checks the convergence of the inverse matrix of second derivatives 

relative to the log-likelihood function, which is another indication of whether or not the 

likelihood function has been maximized. The user has the option of specifying the values for 

both of these convergence criteria. The default initial parameter values are weighted least squares 

estimates based on using the observed frequencies for the initial mean estimates. The user has the 

option of specifying these initial values. For the examples discussed in this report, the default 

convergence criteria, initial parameter values from SAS, and the unscaled score functions yield 

acceptable solutions. Appendix A describes the general form of SAS PROC GENMOD. 

Evaluating Model Fit With SAS PROC GENMOD 

The examples will focus on comparing likelihood ratio chi-square statistics, the statistics 

most often reported in the published sources, to deviances from SAS outputs. The likelihood 

ratio chi-square statistic is defined as: 

2 2 log (
ˆ

j
j e

j j

n
G n )

p N
= ∑ ,       (6) 

where ˆ jp  is the fitted value of pj under the model. This measure is used in Holland and Thayer 

(1987, 2000). It should be equal to one of the measures of fit produced in the SAS results, the 

deviance: 

ˆDeviance 2 [ log ( ) ( )]
ˆ

j
j e j j

j j

n
n n

p N
= −∑ p N− .    (7) 
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The difference between the likelihood ratio chi-square and the deviance, 2 [ , 

is defined as twice the maximum achievable likelihood (SAS, 2002, p. 1537) and is zero for all 

cases where there is complete convergence.  

ˆj j
j

n p N−∑ ]

Example 1: Fitting Univariate Distributions 

An example from von Davier et al. (2004, pp. 100–104) is used to illustrate how SAS 

PROC GENMOD smooths univariate distributions. Univariate smoothing models are of the form 

in (1). von Davier et al. selected a 2-moment model for test X and a 3-moment model for test Y. 

The SAS code given in Appendix B illustrates how to enter their data (which are already in a 

frequency form) and create the relevant score functions (which are the scores in their original, 

squared, and cubed form for preserving the first, second, and third moments). 

von Davier et al. (2004) report that the likelihood ratio chi-square statistic (computed as 

in [6]) is 18.35 on 18 degrees of freedom for the fit of X and 20.24 on 17 degrees of freedom for 

the fit of Y. Appendix C shows the commands and partial results from SAS PROC GENMOD—

first for the fit of X, then for the fit of Y. These results show that the degrees of freedom (DF) 

match the published results. In addition, the deviances from SAS PROC GENMOD also match 

the likelihood ratio chi-square statistics reported by von Davier et al. (2004). 

Appendix D shows the observed and fitted frequencies from SAS PROC GENMOD, 

along with the fitted frequencies reported in Table 7.2 of von Davier et al. (2004, p. 102). The 

observed-fitted plots that correspond to Figures 7.1 and 7.2 in von Davier et al. (2004, pp. 103–

104) are shown in Figures 1 and 2.  

The moments from the fitted and observed distributions can also be compared. The 2-

moment fit of X should result in observed and fitted distributions with equal means and 

variances. The 3-moment fit of Y should result in observed and fitted distributions with equal 

means, variances, and skewness. The SAS commands of Appendices E and F demonstrate how a 

dataset of individual observations can be obtained from the observed or fitted score frequencies. 

The fitted and observed moments are compared for X (Appendix E) and for Y (Appendix F). The 

results agree with the published results, except that the statistic called “kurtosis” in the SAS 

output is actually the standardized fourth moment (i.e., a deviation from zero rather than a 

deviation from 3) rather than the actual kurtosis that is reported in von Davier et al. (2004). 
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Figure 1. Example 1: Fitting univariate distributions for X and Y (2-moment fit). 
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Figure 2. Example 1: Fitting univariate distributions for X and Y (3-moment fit). 
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Example 2: Fitting Bivariate Distributions 

To illustrate the fitting of bivariate data of the form described in (2), another example 

from von Davier et al. (2004, pp. 114–120) is used. This modeling calls for a fitting of the 

bivariate frequencies based on two tests, X and Y (Y is different from the Y used in Example 1). 

von Davier et al. fit a model that preserved 3 moments on X, 3 moments on Y, and 1 cross-

moment for X and Y. The reported likelihood ratio of the chi-square statistic is 242.73 on 433 

degrees of freedom (note that this statistic is not chi-square distributed due to the sparseness of 

the data).  

The SAS code in Appendix G indicates how to enter the bivariate data (where frequency 

is now the total number of cases with a particular score on X and a particular score on Y), and 

create the score functions used for the desired model. The code and results of SAS PROC 

GENMOD are presented in Appendix H. 

von Davier et al. (2004) present the marginal fitted frequencies of X (summed over Y) and 

Y (summed over X) in Table 8.3 (p. 118). The corresponding marginal fitted frequencies from 

SAS PROC GENMOD are shown in Appendix I, along with von Davier et al.’s fitted 

frequencies. Table 1 shows the fitted bivariate frequencies from SAS PROC GENMOD. Table 2 

shows the fitted bivariate frequencies from von Davier et al. (from Table 8.4, p. 120).  

Table 1 

Example 2: The Fitted X-Y Frequencies From SAS PROC GENMOD 

     0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20
0 0.3 0.4 0.4 0.4 0.4 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.4 0.6 0.8 1.0 0.9 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.4 0.8 1.3 1.7 1.9 1.7 1.2 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.4 0.9 1.7 2.6 3.3 3.4 2.8 2.0 1.1 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.3 0.9 1.9 3.3 4.8 5.6 5.5 4.4 2.9 1.6 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.2 0.7 1.7 3.5 5.7 7.8 8.8 8.1 6.2 3.9 2.0 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.1 0.5 1.3 3.0 5.8 9.1 11.7 12.5 11.0 8.0 4.8 2.4 1.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
7 0.1 0.3 0.8 2.2 4.9 8.8 13.1 16.1 16.4 13.7 9.4 5.4 2.5 1.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0
8 0.0 0.1 0.4 1.4 3.4 7.2 12.3 17.4 20.4 19.6 15.6 10.2 5.5 2.5 0.9 0.3 0.1 0.0 0.0 0.0 0.0
                      

(Table continues) 
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Table 1 (continued) 

    0   1   2   3   4   5   6   7   8   9    10    11    12    13    14    15    16    17    18    19    20
  9 0.0 0.0 0.2 0.7 2.0 4.9 9.7 15.8 21.3 23.7 21.7 16.4 10.2 5.3 2.2 0.8 0.2 0.1 0.0 0.0 0.0
10 0.0 0.0 0.1 0.3 1.0 2.8 6.4 12.1 18.8 24.0 25.4 22.1 15.9 9.4 4.6 1.9 0.6 0.2 0.0 0.0 0.0
11 0.0 0.0 0.0 0.1 0.4 1.4 3.6 7.8 14.0 20.6 25.1 25.1 20.8 14.2 8.1 3.8 1.4 0.5 0.1 0.0 0.0
12 0.0 0.0 0.0 0.0 0.2 0.6 1.7 4.3 8.8 14.9 20.9 24.2 23.1 18.2 11.9 6.4 2.8 1.0 0.3 0.1 0.0
13 0.0 0.0 0.0 0.0 0.0 0.2 0.7 2.0 4.7 9.2 14.8 19.8 21.7 19.7 14.8 9.2 4.7 2.0 0.7 0.2 0.0
14 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.8 2.1 4.8 8.9 13.7 17.4 18.2 15.7 11.2 6.6 3.2 1.3 0.4 0.1
15 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.8 2.1 4.6 8.1 11.8 14.2 14.2 11.7 8.0 4.5 2.1 0.8 0.3
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.8 2.0 4.1 6.9 9.5 10.9 10.4 8.1 5.3 2.8 1.3 0.5
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.8 3.4 5.4 7.2 7.9 7.1 5.3 3.3 1.7 0.7
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.6 1.4 2.7 4.1 5.1 5.3 4.6 3.3 1.9 0.9
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.5 1.1 2.0 2.9 3.4 3.4 2.8 1.9 1.1
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.8 1.4 1.9 2.2 2.1 1.6 1.0

 

 

Table 2 

Example 2: The Fitted X-Y Frequencies From von Davier, Holland, and Thayer  

    0   1   2   3   4   5   6   7   8   9    10    11 12    13    14    15    16    17    18    19    20
  0 0.2 0.3 0.4 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  1 0.3 0.6 0.8 0.9 0.9 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  2 0.4 0.8 1.3 1.7 1.8 1.6 1.2 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  3 0.4 0.9 1.7 2.6 3.2 3.3 2.8 1.9 1.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  4 0.3 0.9 1.9 3.3 4.7 5.6 5.4 4.4 2.9 1.5 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  5 0.2 0.7 1.7 3.4 5.7 7.8 8.7 8.1 6.2 3.9 2.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  6 0.1 0.4 1.3 3.0 5.7 9.0 11.7 12.5 11.0 7.9 4.7 2.3 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
  7 0.0 0.2 0.8 2.2 4.8 8.8 13.1 16.1 16.3 13.6 9.4 5.3 2.5 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0
  8 0.0 0.1 0.4 1.3 3.4 7.1 12.3 17.4 20.3 19.6 15.5 10.2 5.5 2.4 0.9 0.2 0.0 0.0 0.0 0.0 0.0
  9 0.0 0.0 0.2 0.7 2.0 4.9 9.7 15.8 21.3 23.6 21.6 16.3 10.2 5.2 2.2 0.7 0.2 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.3 1.0 2.8 6.4 12.1 18.9 24.0 25.3 22.0 15.8 9.4 4.6 1.8 0.6 0.1 0.0 0.0 0.0
                      

(Table continues) 
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Table 2 (continued) 

    0   1   2   3   4   5   6   7   8   9    10    11    12    13    14    15    16    17    18    19    20
11 0.0 0.0 0.0 0.1 0.4 1.3 3.6 7.8 13.9 20.6 25.0 25.1 20.8 14.2 8.0 3.7 1.4 0.4 0.1 0.0 0.0
12 0.0 0.0 0.0 0.0 0.1 0.5 1.7 4.2 8.7 14.9 20.9 24.2 23.1 18.2 11.8 6.3 2.8 1.0 0.3 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.2 0.6 1.9 4.6 9.1 14.8 19.7 21.7 19.7 14.8 9.1 4.7 1.9 0.7 0.2 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 2.1 4.7 8.9 13.6 17.3 18.1 15.7 11.2 6.6 3.2 1.3 0.4 0.1
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 2.1 4.5 8.0 11.8 14.2 14.2 11.6 7.9 4.4 2.0 0.8 0.2
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 1.9 4.0 6.8 9.5 10.9 10.3 8.1 5.2 2.8 1.2 0.4
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.7 1.7 3.4 5.4 7.2 7.8 7.1 5.3 3.2 1.6 0.7
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 1.4 2.6 4.0 5.1 5.3 4.6 3.2 1.9 0.9
19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 1.1 1.9 2.8 3.4 3.4 2.8 1.9 1.0
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.8 1.3 1.9 2.1 2.0 1.6 1.0

Note. From von Davier et al. (2004, p. 120). 

 

The final part of Example 2 compares the moments and cross-moment of the observed 

and fitted distributions. To accomplish this, two large datasets are constructed, one based on the 

observed bivariate frequencies and the other based on the fitted bivariate frequencies. Then the 

moments and cross-moment of X and Y in the datasets are compared. Appendix J shows that the 

means, variances, and skewness of X and Y are preserved in the fitted distribution. Appendix K 

shows that the X-Y covariance is also preserved. Since the variances of X and Y are matched, the 

X-Y correlation is also preserved in the fitted distribution. 

Example 3: Fitting Distributions With Teeth 

SAS PROC GENMOD can also fit separate parts of distributions, which can be useful 

when distributions have naturally occurring teeth or when negative formula scores get rounded to 

zero, creating a “lump at zero.” The form of the model for this example is a combination of (2) 

because the data are bivariate, and (3) because of the teeth. In this example, parts of Example 3 

in Holland and Thayer (2000, pp. 157–169) will be reproduced. 

The suggested progression of the modeling is to work from the “outside” (marginal 

distributions) to the “inside” (bivariate distribution). The first model fits the marginal 

distributions for the two tests in the bivariate data. This model does not include any cross-

product terms to match the cross-moments, and therefore allows the two tests (X and Y) to be 

independent.  
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Holland and Thayer’s (2000) first model fits the first five moments of X’s overall 

distribution, the frequency of the teeth in X, the first five moments of the teethed distribution in 

part of X, and the first five moments in Y. This model has 16 total parameters, and results in a 

likelihood ratio chi-square statistic of 24,187.26 on 534 degrees of freedom. This large statistic 

indicates that the model does not fit the data very well, and might be improved upon by 

accounting for the dependence of X and Y. The SAS code that produces the score functions is 

shown in Appendix L and then the code and relevant results from SAS PROC GENMOD are 

shown in Appendix M. 

Holland and Thayer (2000) consider a second and third model, so that the first model 

considered is nested within the second and third models, which contain all of the terms as used in 

the first model plus additional terms for the cross-moments of X and Y. Because the third model 

contains all of the terms of the second model, the second model is also nested within the third 

model. For evaluating the second and third model, a large reduction in the likelihood ratio chi-

square relative to the reduction in the degrees of freedom as compared to the first model 

indicates a superior fit. The second model adds one term to the first model to fit the cross-

moment of X and Y. This results in a likelihood-ratio chi-square statistic of 577.72 on 533 

degrees of freedom, a large decrease in the likelihood-ratio chi-square statistic (23,609.54) 

relative to the decrease in degrees of freedom (1). The third model adds three terms to the second 

model to fit the X2–Y cross-moment, the X–Y2 cross-moment, and the X2–Y2 cross-moment. This 

20 parameter model has a likelihood-ratio chi-square statistic of 435.48 on 530 degrees of 

freedom, also a large decrease in the likelihood-ratio chi-square statistic (23,751.78 when 

compared to the first model, 142.24 when compared to the second model) relative to the decrease 

in degrees of freedom (4 when compared to the first model; 3 when compared to the second 

model). See Appendixes N and O. 

The evaluations and comparisons of the three models would need to be more extensive if 

the purpose were to select one of them as the “best.” Additional fit indexes would be useful for 

comparing the relative fits of the three models, including Akaike Information Criterion, 

Consistent Akaike Information Criterion, Freeman-Tukey residuals for the marginal 

distributions, and plots of the observed and the fitted conditional means and conditional 

variances (see von Davier et al., 2004). These additional fit indexes are mentioned but not 
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reported here because the purpose of this report is simply to show the agreement in the results of 

SAS PROC GENMOD with Holland and Thayer’s (2000) results. 

The SAS code and output that fits these two models are shown in Appendixes N and O. 

While the results of these two models agree with Holland and Thayer’s (2000), it is interesting to 

note that SAS reports convergence problems for the second model. Messages about the Mean 

Parameter being out of range are supposed to alert the user that SAS PROC GENMOD was 

unable to get the fitted frequencies to conform to the restrictions of the Poisson model and sum 

to N. The agreement of the results of SAS PROC GENMOD and the results of Holland and 

Thayer for this second model and the absence of convergence problems for the more complex 

third model suggest that the problem in SAS PROC GENMOD’s results is not that there is 

nonconvergence, but that the convergence criterion used does not always recognize that the 

likelihood function has been maximized and that the converged solution has been achieved. 

One of the ways Holland and Thayer (2000) report the results of these three model fits is 

with figures of the actual and fitted frequencies of the marginal X and Y distributions. Figures 3 

and 4 show the observed and fitted marginal frequencies from SAS PROC GENMOD. These 

plots correspond to Figures 7 and 8 of Holland and Thayer (p. 162). 

Example 4: Fitting Bivariate Distributions With Structural Zeros 

Holland and Thayer (2000, pp. 178–181) describe how to smooth data that make up half 

of an array. For their 5th smoothing example, they describe a data set of X and Y scores with a 

structure where X cannot be greater than Y. The frequencies of the dataset are shown in Table 3, 

where the shaded, zero frequencies are impossible combinations of X and Y. 

Table 3 

Example 4: The Dataset for the Structural Zeros Problem 

Scores Y = 1 Y = 2 Y = 3 Y = 4 Y = 5 
X = 1 8 15 12 23 11 
X = 2 0   1   4 10   9 
X = 3 0   0   4   4   6 
X = 4 0   0   0   5   4 
X = 5 0   0   0   0   5 

Note. The shaded area represents impossible X-Y combinations. 
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Rounded Formula Scores: Row Margins (X)
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Figure 3. Example 3: Observed and fitted marginal frequencies plots based on Models 1–3 

for row margins (X). 

 

Rounded Formula Scores: Column Margins (Y)

0

500

1000

1500

2000

2500

3000

3500

-7 -2 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83

Rounded Formula Scores

Fr
eq

ue
nc

y Observed
Fitted:Model 1
Fitted:Model 2
Fitted:Model 3

 
 

Figure 4. Example 3: Observed and fitted marginal frequencies plots based on Models 1–3 

for column margins (Y). 
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Fitting bivariate distributions with structural zeros with SAS PROC GENMOD requires 

only one additional step in the definition of the dataset. The model-fitting process then proceeds 

with fitting bivariate frequencies with models of the form in (2). The SAS code in Appendix P 

shows how the entire dataset is entered and then reduced to the array of interest. 

Holland and Thayer (2000) fit two models to these data. The first model fits the first two 

moments of X and Y. The likelihood ratio chi-square statistic for this model was 13.45 on 10 

degrees of freedom. The corresponding code and output from SAS PROC GENMOD is shown in 

Appendix Q. The second model adds one X-Y cross-moment term. The result is a likelihood ratio 

chi-square statistic of 10.13 on 9 degrees of freedom. For the second model, Holland and Thayer 

note that the estimated parameter for the X-Y cross moment was 0.2614. Appendix R shows the 

code and output, including the parameter estimate that verifies the agreement with Holland and 

Thayer’s results. Finally, the fitted frequencies for the two models are shown in Appendix S, 

along with Holland and Thayer’s results (from Tables 10 and 11, p. 181). 

Conclusions 

This report illustrates the use of SAS PROC GENMOD for estimating loglinear models. 

This approach represents an alternative to the existent software routines that are embedded 

within larger software packages. In this form the smoothing methodology can be made more 

readily available for researchers and graduate students in educational measurement, as well as 

from other scientific fields. The results of this report suggest that SAS PROC GENMOD can be 

used for many applied smoothing problems. 

An important issue that will be addressed in a follow-up report is the identification of 

situations where SAS PROC GENMOD will not provide satisfactory results. There are datasets 

with characteristics and models with specifications that SAS PROC GENMOD is not able to 

handle. For these modeling situations, it is important to understand not only why the models do 

not converge, but also the extent to which previously proposed strategies for improving the 

stability of the algorithm will help. Again, the strategies that have been proposed involve 

centering and/or rescaling of the score functions, adjustments to the convergence criteria, and 

specific choices of starting values for the parameter estimates. Also important in this discussion 

is the issue of convergence criteria, as the criterion used within SAS PROC GENMOD has been 

described as “indirect” relative to alternative convergence criteria that might be used for 

loglinear smoothing (Holland & Thayer, 2000, p. 147). 
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So far, the results only cover the estimation of the score probabilities. The demonstrations 

in this paper could be expanded so that SAS PROC GENMOD could provide other measures of 

model fit (e.g., AIC, CAIC, Freeman-Tukey residuals, plots of conditional means, variances, and 

skewness). It will also be important to demonstrate how to generate C-matrices, the factorization 

matrices of the covariance matrix of the estimated frequencies from the loglinear model (von 

Davier et al., 2004; Holland & Thayer, 1987, 2000). The C-matrices cannot be directly requested 

in SAS PROC GENMOD and will instead need to be produced from the SAS PROC GENMOD 

fitted frequency output by making use of the library of matrix operations in SAS IML. 
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Appendix A 

The Form of SAS PROC GENMOD That Implements Loglinear Smoothing 

 

The form of the SAS code for PROC GENMOD is: 

proc genmod data=DATA; 
output out=RESULTS p=fitted; 
model freq=score score2 score3 …. / link=log dist=p type3; 
run;  

The first line invokes the GENMOD procedure for a desired dataset called DATA. The 

second line asks for the fitted frequencies (along with observed frequencies and predictors) to be 

written to a dataset (called RESULTS) that can be used to evaluate the results. The third line 

specifies the model to be fit, where the observed frequencies are to be related to the score 

functions. An intercept that corresponds to α and a scale parameter that is constrained to 1 are 

included by default in the model. After the required backslash (/), the appropriate link function 

for linking the frequencies to the score functions (log) and distribution (p = Poisson) are 

requested. The user can request a sequential modeling process (type 1), where the score functions 

are entered in one at a time, or a nonsequential modeling process (type 3). If it is of interest, an 

α-only model can be fit by specifying the model in the third line as: 

model freq= / link=log dist=p type3;  

The fitted frequencies from an α-only model are equal to N divided by the total number 

of score levels so that the smoothed test score distribution will be uniform. The fourth line asks 

SAS to run the desired model.  
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Appendix B 

Example 1—Entering the Dataset and Defining the Score Functions 

 

data llin; 
input score xfreq yfreq; 
cards;  
0 1 0 
1 3 4 
2 8 11 
3 25 16 
4 30 18 
5 64 34 
6 67 63 
7 95 89 
8 116 87 
9 124 129 
10 156 124 
11 147 154 
12 120 125 
13 129 131 
14 110 109 
15 86 98 
16 66 89 
17 51 66 
18 29 54 
19 15 37 
20 11 17 
; 

 

data llin;set llin; 
/*Defining the score functions for preserving the 2nd and 
3rd moments.*/ 
score2=score**2; 
score3=score**3; 
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Appendix C 

Example 1—Fitting the Two Univariate Models 

 

/*Here is the 2-moment fit for X.*/ 
proc genmod data=llin; 
output out=llinoutx p=xpp; 
model xfreq=score score2 /link=log dist=p type3; 
run; 

 

 

The GENMOD Procedure 

Model Information 

 Data Set  WORK.LLIN  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  xfreq  

 Observations Used  21  

 

 

 
Criteria For Assessing Goodness Of Fit 

        
 Criterion  DF  Value  Value/DF 
        
 Deviance  18  18.3525  1.0196 
 Scaled Deviance  18  18.3525  1.0196 
 Pearson Chi-Square  18  17.4615  0.9701 
 Scaled Pearson X2  18  17.4615  0.9701 
 Log Likelihood    5134.4977   
        

Algorithm converged.       
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/*Here is the 3-moment fit for Y.*/ 
proc genmod data=llin; 
output out=llinouty p=ypp; 
model yfreq=score score2 score3 /link=log dist=p type3; 
run; 

 

 

The GENMOD Procedure 

Model Information 

 Data Set  WORK.LLIN  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  yfreq  

 Observations Used  21  

 

 

 
Criteria For Assessing Goodness Of Fit 

        
 Criterion  DF  Value  Value/DF 
        
 Deviance  17  20.2373  1.1904 
 Scaled Deviance  17  20.2373  1.1904 
 Pearson Chi-Square  17  18.3453  1.0791 
 Scaled Pearson X2  17  18.3453  1.0791 
 Log Likelihood    5108.5027   
        

Algorithm converged.       
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Appendix D 

Example 1—Observed and Fitted Frequencies 

Observed and fitted frequencies are from SAS PROC GENMOD and from von Davier et 

al. (2004, p. 102). 

 

data llinoutx;set llinoutx;keep score xfreq xpp; 
proc print data=llinoutx noobs;run; 

 

 
score xfreq    xpp von Davier et al.’s 

fitted frequencies 

0  1  3.300 3.30 

1  3  6.435 6.44 

2  8  11.767 11.77 

3  25  20.175 20.17 

4  30  32.433 32.43 

5  64  48.889 48.89 

6  67  69.099 69.10 

7  95  91.572 91.57 

8  116  113.787 113.79 

9  124  132.575 132.58 

10  156  144.832 144.83 

11  147  148.356 148.36 

12  120  142.490 142.49 

13  129  128.321 128.32 

14  110  108.355 108.35 

15  86  85.790 85.79 

16  66  63.688 63.69 

17  51  44.332 44.33 

18  29  28.935 28.93 

19  15  17.707 17.71 

20  11  10.161 10.16 
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data llinouty;set llinouty;keep score yfreq ypp; 
proc print data=llinouty noobs;run; 

 

 
score yfreq    ypp von Davier et al.’s 

fitted frequencies 

0  0  1.706 1.71 

1  4  3.775 3.77 

2  11  7.650 7.65 

3  16  14.242 14.24 

4  18  24.436 24.44 

5  34  38.752 38.75 

6  63  56.978 56.98 

7  89  77.905 77.91 

8  87  99.354 99.35 

9  129  118.542 118.54 

10  124  132.723 132.72 

11  154  139.868 139.87 

12  125  139.154 139.15 

13  131  131.097 131.10 

14  109  117.307 117.31 

15  98  100.000 100.00 

16  89  81.457 81.46 

17  66  63.596 63.60 

18  54  47.732 47.73 

19  37  34.545 34.54 

20  17  24.180 24.18 
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Appendix E 

Example 1—Comparing the Fitted and Observed Moments for X 

 

data xactual;set llinoutx; 
do i=1 to 1000*xfreq; 
output; 
end; 
drop i; 
proc means data=xactual mean std skew kurt; 
var score; 
title 'Moments based on the actual frequencies of X.'; 
run; 

 

 
Moments based on the actual frequencies of X 

 
The MEANS Procedure 

Analysis Variable: score 
        

 Mean  Std Dev  Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 10.8183070  3.8058570  0.0025777  -0.4678344 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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data xfitted;set llinoutx; 
do i=1 to 1000*xpp; 
output; 
end; 
drop i; 
proc means data=xfitted mean std skew kurt; 
var score; 
title 'Moments based on the fitted frequencies of X.'; 
run; 

 

 
Moments based on the fitted frequencies of X 

 
The MEANS Procedure 

Analysis Variable: score 
        

 Mean  Std Dev  Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 10.8183085  3.8058348  -0.0648419  -0.3010408 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Appendix F 

Example 1—Comparing the Fitted and Observed Moments for Y 

 

data yactual;set llinouty; 
do i=1 to 1000*yfreq; 
output; 
end; 
drop i; 
proc means data=yactual mean std skew kurt; 
var score; 
title 'Moments based on the actual frequencies of Y.'; 
run; 

 

 
Moments based on the fitted frequencies of Y 

 
The MEANS Procedure 

Analysis Variable: score 
        

 Mean  Std Dev  Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 11.5931271  3.9342663  -0.0626866  -0.4988359 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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data yfitted;set llinouty; 
do i=1 to 1000*ypp; 
output; 
end; 
drop i; 
proc means data=yfitted mean std skew kurt; 
var score; 
title 'Moments based on the fitted frequencies of Y.'; 
run; 

 

 
Moments based on the fitted frequencies of Y 

 
The MEANS Procedure 

Analysis Variable: score 
        

 Mean  Std Dev  Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 11.5931343  3.9342516  -0.0626788  -0.4277965 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Appendix G 

Example 2—Entering the Dataset and Defining the Score Functions 

 

The dataset includes all possible X-Y score combinations. For space considerations, only 

the first and last X-Y combinations are shown in this appendix. 

 

data llinbi; 
input x y freq;  
cards;  
0 0 0 
0 1 0 
0 2 1 
0 3 0 
0 4 0 
………………… 
20 14 0 
20 15 0 
20 16 2 
20 17 3 
20 18 3 
20 19 2 
20 20 0 
; 
/*This defines the relevant score functions corresponding 
to the desired moments.*/ 

data llinbi;set llinbi; 
x2=x**2; 
y2=y**2; 
x3=x**3; 
y3=y**3; 
xy=x*y; 
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Appendix H 

Example 2—Fitting the Bivariate Model 

 

/*Here is the bivariate model.*/ 
proc genmod data=llinbi; 
output out=llinoutb p=fpp; 
model freq=x y x2 y2 x3 y3 xy/link=log dist=p type3; 
run; 

 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.LLINBI  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  441  

 

 

 
Criteria For Assessing Goodness Of Fit 

        
 Criterion  DF  Value  Value/DF 
        
 Deviance  433  242.7285  0.5606 
 Scaled Deviance  433  242.7285  0.5606 
 Pearson Chi-Square  433  232.7659  0.5376 
 Scaled Pearson X2  433  232.7659  0.5376 
 Log Likelihood    1889.4990   
        

Algorithm converged.       
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Appendix I 

Example 2—The Marginal Fitted Frequencies for X and Y  

 

The marginal fitted frequencies for X and Y are from SAS PROC GENMOD and from 

von Davier et al. (2004, p. 118). 

 

proc means data=llinoutb noprint;  
var fpp;  
class x;  
output out=llinbifx sum=sfy;run;  
data llinbifx;set llinbifx;drop _TYPE_ _FREQ_; 
/*Table 8.3*/ 
proc print data=llinbifx noobs;run;  
 

 

   x     sfy von Davier et al.’s 

fitted frequencies 

0  2.30 2.3 

1  5.17 5.17 

2  10.47 10.47 

3  19.22 19.22 

4  32.32 32.32 

5  50.01 50.01 

6  71.57 71.57 

7  95.03 95.03 

8  117.40 117.4 

9  135.26 135.26 

10  145.70 145.7 

11  147.07 147.07 

12  139.44 139.44 

13  124.46 124.46 

14  104.81 104.81 

15  83.44 83.44 

16  62.90 62.9 

17  44.93 44.93 

18  30.39 30.39 

19  19.42 19.42 

20  11.67 11.67 
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proc means data=llinoutb noprint;  
var fpp ;  
class y;  
output out=llinbify sum=sfx;run;  
data llinbify;set llinbify;drop _TYPE_ _FREQ_; 
/*Table 8.3*/ 
proc print data=llinbify noobs;run;  
 

 
   y     sfx von Davier et al.’s 

fitted frequencies 

0  2.29 2.29 

1  5.27 5.27 

2  10.86 10.86 

3  20.31 20.31 

4  34.68 34.68 

5  54.38 54.38 

6  78.55 78.55 

7  104.78 104.78 

8  129.34 129.34 

9  147.99 147.99 

10  157.19 157.19 

11  155.24 155.24 

12  142.76 142.76 

13  122.39 122.39 

14  97.87 97.87 

15  72.94 72.94 

16  50.49 50.49 

17  32.25 32.25 

18  18.83 18.83 

19  9.93 9.93 

20  4.67 4.67 
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Appendix J 

Example 2—Comparing the Observed and Fitted Moments 

 

/*Observed moments.*/ 
data xyobs;set llinoutb; 
do i=1 to 1000*freq; 
output; 
end; 
drop i; 
proc means data=xyobs mean std skew kurt; 
title 'Moments based on the actual frequencies of X and 
Y.'; 
var x y; 
run; 
 

 

Moments based on the actual frequencies of X and Y 
 

The MEANS Procedure 
        

Variable  Mean  Std Dev Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
x  10.8183070  3.8058570  0.0025777  -0.4678344 

y  10.3888507  3.5866342  -0.0055610  -0.5156722 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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/*Fitted Moments.*/ 
data xyfit;set llinoutb; 
do i=1 to 1000*fpp; 
output; 
end; 
drop i; 
proc means data=xyfit mean std skew kurt; 
title 'Moments based on the fitted frequencies of X and 
Y.'; 
var x y; 
run; 

 

 
Moments based on the fitted frequencies of X and Y 

 
The MEANS Procedure 

        
Variable  Mean  Std Dev  Skewness  Kurtosis 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
x  10.8184227  3.8055450  0.0026940  -0.3406657 

y  10.3888881  3.5863219  -0.0055181  -0.2597099 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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Appendix K 

Example 2—Comparing the Observed and Fitted Cross-moment 

 

/*Observed Cross-Moment.*/ 
proc corr data=xyobs cov noprob; 
title 'Covariances and Correlations based on the actual X-Y 
frequencies.'; 
var x y; 
run; 

 

 

Covariances and Correlations based on the actual X-Y frequencies 

The CORR Procedure 

2 Variables: x y 

 

Covariance Matrix 

 x y 

x 14.48454750 10.58270279 

y 10.58270279 12.86394511 

   

Pearson Correlation Coefficients 

 x y 

x 1.00000 0.77528 

y 0.77528 1.00000 
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/*Fitted Cross-Moment.*/ 
proc corr data=xyfit cov noprob; 
title 'Covariances and Correlations based on the fitted X-Y 
frequencies.'; 
var x y; 
run; 

 

 

Covariances and Correlations based on the fitted X-Y frequencies 

The CORR Procedure 

2 Variables: x y 

 

Covariance Matrix 

 x y 

x 14.48217263 10.58250193 

y 10.58250193 12.86170494 

   

Pearson Correlation Coefficients 

 x y 

x 1.00000 0.77539 

y 0.77539 1.00000 
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Appendix L 

Example 3—Entering the Dataset and Defining the Score Functions 

 

/*Calling in the Dataset from an Excel file named 
ht2000p159.xls.*/ 
PROC IMPORT OUT= WORK.HTEX3  
            DATAFILE= "C:\ht2000p159.xls"  
            DBMS=EXCEL2000 REPLACE; 
     GETNAMES=YES; 
RUN; 

 

/*Defining an Indicator variable for the X scores that have 
teeth.*/ 
data htex3;set htex3; 
if x=47.5 then tx=1; 
if x=41.5 then tx=1; 
if x=37.5 then tx=1; 
if x=31.5 then tx=1; 
if x=27.5 then tx=1; 
if x=21.5 then tx=1; 
if x=17.5 then tx=1; 
if x=11.5 then tx=1; 
if x=7.5 then tx=1; 
if x=1.5 then tx=1; 
if x=-2.5 then tx=1; 
run; 

 

/*Defining the relevant score functions for Models 1-3.*/ 
data htex3;set htex3;  
x2=x**2;  
x3=x**3;  
x4=x**4;  
x5=x**5;  
y2=y**2;  
y3=y**3;  
y4=y**4;  
y5=y**5;  
xy=x*y;  
x2y=x2*y;  
xy2=x*y2;  
x2y2=x2*y2;  
if tx=. then tx=0;  
run; 
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Appendix M 

Example 3—Fitting the First Model 

 

/*Fitting Model 1 (16 parameters).*/  
proc genmod data=htex3;  
output out=ht3mod1 p=pred1;  
class tx;  
model freq=x x2 x3 x4 x5 tx x*tx x2*tx x3*tx x4*tx x5*tx y 
y2 y3 y4 y5/link=log dist=p type3;  
run; 

 

 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.HTEX3  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  551  

 

 

 
Class Level Information 

Class Levels Values 

tx 2 0 1 

 

 

 

Criteria For Assessing Goodness Of Fit 
        
 Criterion  DF  Value  Value/DF 
        
 Deviance  534  24187.2590  45.2945 
 Scaled Deviance  534  24187.2590  45.2945 
 Pearson Chi-Square  534  30739.9815  57.5655 
 Scaled Pearson X2  534  30739.9815  57.5655 
 Log Likelihood    94229.6611   
        
Algorithm converged.       
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Appendix N 

Example 3—Fitting the Second Model 

 

/*The second model.*/ 
proc genmod data=htex3;  
output out=ht3mod2 p=pred2;  
class tx;  
model freq=x x2 x3 x4 x5 tx x*tx x2*tx x3*tx x4*tx x5*tx y 
y2 y3 y4 y5 xy /link=log dist=p type3;  
run; 

 

 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.HTEX3  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  551  

 

 

 
Class Level Information 

Class Levels Values 

tx 2 0 1 

 

 

 

Criteria For Assessing Goodness Of Fit 
        
 Criterion  DF  Value  Value/DF 
        
 Deviance  533  577.8977  1.0842 
 Scaled Deviance  533  577.8977  1.0842 
 Pearson Chi-Square  533  556.0665  1.0433 
 Scaled Pearson X2  533  556.0665  1.0433 
 Log Likelihood    -1.79769E308   
        

ERROR: The mean parameter is either invalid or at a limit of its range 
for some observations. 
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Appendix O 

Example 3—Fitting the Third Model 

 

/*The third model.*/ 
proc genmod data=htex3;  
output out=ht3mod3 p=pred3;  
class tx;  
model freq=x x2 x3 x4 x5 tx x*tx x2*tx x3*tx x4*tx x5*tx y 
y2 y3 y4 y5 xy x2y xy2 x2y2/link=log dist=p type3;  
run; 

 

 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.HTEX3  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  551  

 

 

 
Class Level Information 

Class Levels Values 

tx 2 0 1 

 

 

 

Criteria For Assessing Goodness Of Fit 
        
 Criterion  DF  Value  Value/DF 
        
 Deviance  530  435.4766  0.8217 
 Scaled Deviance  530  435.4766  0.8217 
 Pearson Chi-Square  530  410.4314  0.7744 
 Scaled Pearson X2  530  410.4314  0.7744 
 Log Likelihood    106105.5523   
        
Algorithm converged.       
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Appendix P 

Example 4—Entering the Dataset and Defining the Score Functions 

 

data xy; 
input x y freq; 
cards; 
1 1 8 
1 2 15 
1 3 12 
1 4 23 
1 5 11 
2 1 0 
2 2 1 
2 3 4 
2 4 10 
2 5 9 
3 1 0 
3 2 0 
3 3 4 
3 4 4 
3 5 6 
4 1 0 
4 2 0 
4 3 0 
4 4 5 
4 5 4 
5 1 0 
5 2 0 
5 3 0 
5 4 0 
5 5 5 
; 

/*The frequencies that are zero are impossible X-Y 
combinations that must be eliminated before the smoothing 
model is fit (X cannot be greater than Y).*/ 
data xy; set xy; 
if freq=0 then delete; 

/*Defining the score functions.*/ 

data xy; set xy;  
x2=x**2;  
y2=y**2;  
xy=x*y;  
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Appendix Q 

Example 4—Fitting the First Model 

 

/*Model 1*/ 
proc genmod data=xy;  
output out=xyffit1 p=xyffit;  
model freq=x x2 y y2 /link=log dist=p type3;  
run; 

 

 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.XY  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  15  

 

 
 

 

Criteria For Assessing Goodness Of Fit 
        
 Criterion  DF  Value  Value/DF 
        
 Deviance  10  13.4550  1.3455 

 Scaled Deviance  10  13.4550  1.3455 

 Pearson Chi-Square  10  11.9491  1.1949 

 Scaled Pearson X2  10  11.9491  1.1949 

 Log Likelihood    149.6674   

        
Algorithm converged.       
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Appendix R 

Example 4—Fitting the Second Model 

 

/*Model 2*/ 
proc genmod data=xy;  
output out=xyffit2 p=xyffit;  
model freq=x x2 y y2 xy /link=log dist=p type3;  
run; 

 
 

 
The GENMOD Procedure 

Model Information 

 Data Set  WORK.XY  

 Distribution  Poisson  

 Link Function  Log  

 Dependent Variable  freq  

 Observations Used  15  

 

 

 
 

Criteria For Assessing Goodness Of Fit 
        
 Criterion  DF  Value  Value/DF 
        
 Deviance  9  10.1326  1.1258 

 Scaled Deviance  9  10.1326  1.1258 

 Pearson Chi-Square  9  9.5425  1.0603 

 Scaled Pearson X2  9  9.5425  1.0603 

 Log Likelihood    151.3286   

        
Algorithm converged.       
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Analysis Of Parameter Estimates 

        

Parameter DF Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Chi- 

Square 

Pr > ChiSq 

        

Intercept 1 3.0399 0.7594 1.5515 4.5284 16.02 <.0001 

x 1 -2.1072 0.5382 -3.1620 -1.0523 15.33 <.0001 

x2 1 0.0960 0.0871 -0.0746 0.2667 1.22 0.2700 

y 1 0.7877 0.4290 -0.0531 1.6286 3.37 0.0663 

y2 1 -0.1468 0.0721 -0.2881 -0.0055 4.15 0.0417 

xy 1 0.2614 0.1467 -0.0262 0.5490 3.17 0.0749 

Scale 0 1.0000 0.0000 1.0000 1.0000   

        

NOTE: The scale parameter was held fixed. 

 

        

 

 

 

 43



Appendix S 

Example 4—The Observed (freq) and Fitted (xyffit) Frequencies 

 

The Observed (freq) and Fitted (xyffit) Frequencies from Models 1 and 2 Y are from 

SAS PROC GENMOD and from Holland and Thayer (2000, p. 181). 

 

 

/*Fits from Model 1*/ 
proc print data=xyffit1 noobs;run; 

 

 

x y freq x2 y2 xy xyffit Holland and 

Thayer’s fitted 

frequencies 

1 1 8 1 1 1 6.9597 6.96 

1 2 15 1 4 2 11.3114 11.31 

1 3 12 1 9 3 15.4183 15.42 

1 4 23 1 16 4 17.6259 17.63 

1 5 11 1 25 5 16.8991 16.90 

2 2 1 4 4 4 4.7763 4.78 

2 3 4 4 9 6 6.5104 6.51 

2 4 10 4 16 8 7.4426 7.44 

2 5 9 4 25 10 7.1357 7.14 

3 3 4 9 9 9 4.0499 4.05 

3 4 4 9 16 12 4.6297 4.63 

3 5 6 9 25 15 4.4388 4.44 

4 4 5 16 16 16 4.2427 4.24 

4 5 4 16 25 20 4.0678 4.07 

5 5 5 25 25 25 5.4917 5.49 
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/*Fits from Model 2*/ 
proc print data=xyffit2 noobs;run; 

 

 
x y freq x2 y2 xy xyffit Holland and 

Thayer’s fitted 

frequencies 

1 1 8 1 1 1 6.8968 6.90 

1 2 15 1 4 2 12.6751 12.68 

1 3 12 1 9 3 17.3671 17.37 

1 4 23 1 16 4 17.7405 17.74 

1 5 11 1 25 5 13.5106 13.51 

2 2 1 4 4 4 3.4671 3.47 

2 3 4 4 9 6 6.1696 6.17 

2 4 10 4 16 8 8.1848 8.18 

2 5 9 4 25 10 8.0952 8.10 

3 3 4 9 9 9 2.6558 2.66 

3 4 4 9 16 12 4.5758 4.58 

3 5 6 9 25 15 5.8776 5.88 

4 4 5 16 16 16 3.0999 3.10 

4 5 4 16 25 20 5.1711 5.17 

5 5 5 25 25 25 5.5130 5.51 
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