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Abstract

Large-scale educational assessments such as the National Assessment of Educational Progress

(NAEP) sample examinees to whom an exam will be administered. In most situations the

sampling design is not a simple random sample and must be accounted for in the estimating model.

After reviewing the current operational estimation procedure for NAEP, this paper describes

a Bayesian hierarchical model for the analysis of complex large-scale assessments. The model

clusters students within schools and schools within primary sampling units. The paper discusses

an estimation procedure that utilizes a Markov chain Monte Carlo algorithm to approximate the

posterior distribution of the model parameters. Results from two Bayesian models, one treating

item parameters as known and one treating them as unknown, are compared to results from the

current operational method on a simulated data set and on a subset of data from the 1998 NAEP

reading assessment. The point estimates from the Bayesian model and the operational method

are quite similar in most cases, but there does seem to be systematic differences in measures of

uncertainty (e.g., standard errors, confidence intervals).

Key words: Bayesian analysis, Markov chain Monte Carlo, item response theory (IRT), cluster

sampling, large-scale assessments
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1 Introduction

Large-scale assessments such as the National Assessment of Educational Progress (NAEP),

the National Adult Literacy Survey (NALS), and the Trends in International Mathematics and

Science Study (TIMSS) are developed to collect information on the knowledge and skills of

the population at hand and report how that knowledge varies across different groups in the

population. If knowledge could be observed, then standard survey methodology could be used to

analyze the data. However, large-scale assessments, in addition to encountering the difficulties

of any large-scale survey, must deal with the fact that knowledge is usually not something that

should be considered directly observable.

In an attempt to measure the knowledge or skill of interest, large-scale assessments administer

a series of test questions that require that skill or knowledge. One of the major difficulties

associated with these assessments is trying to extract information about the underlying knowledge

from the responses of the survey respondents, or examinees. Early methods for the analysis of

assessment data would simply treat the number of items correct or the score on the test as a

normal random variable. Modern methods use item response theory (IRT) models (cf. Lord, 1980;

Linden & Hambleton, 1997).

Item response models are a class of generalized mixed effects models that describe the

dependence structure inherent in the item responses by incorporating a latent variable, denoted

θ, into the model. The primary assumptions of item response models are unidimensionality (the

latent variable θ is unidimensional), conditional independence (conditional on θ, the item responses

of a single examinee are independent), and monotonicity (the probability of receiving a high score

on any item is an increasing function of θ). If these assumptions hold, it is at least reasonable to

treat θ as equivalent to the skill of interest. This paper uses the term proficiency when referring

to the latent variable θ.

(Scott & Ip, 2002) proposed a Bayesian hierarchical model for multidimensional assessments;

however, their model did not account for the complex clustered structure inherent in the sampling

design. This paper proposes a Bayesian hierarchical model that does account for the sampling

design. The model expands the superpopulation models (Potthoff, Woodbury, & Manton, 1992;

Cassel, Särndal, & Wretman, 1993) proposed by (Longford, 1995) and (Raudenbush, Fotiu,

& Fai, 1999), which assumed students’ proficiencies were known. Our model extends these

superpopulation models by incorporating the scaling level, which relates the observable item
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responses to the unobservable student proficiency. The parameters of the model are estimated

using Markov chain Monte Carlo (MCMC; Geman & Geman, 1984; Gelman, Carlin, Stern, &

Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996). Our approach is an alternative to the

approach that has been implemented in some form since 1984 for the official analysis of NAEP

data.

The remainder of the paper is organized as follows: Section 2 summarizes the reading to

perform a task scale from the NAEP 1998 reading assessment at grade 8; section 3 summarizes

the general methodology used in large-scale assessments; section 4 reviews the current operational

methodology for the analysis of NAEP data; section 5 introduces the Bayesian hierarchical model

and discusses the MCMC algorithm for estimation; section 6 analyzes a simulated data set to

study the ability of our model to recover model parameters, and compares the estimates for the

NAEP 1998 reading data from our model to those found using the operational methodology; and

section 7 discusses the conclusions.

2 NAEP Data

NAEP is a survey of the academic achievement of students in the United States. NAEP is

administered by the National Center for Educational Statistics, a division of the U.S. Department

of Education, to a sample of students in 4th, 8th, and 12th grades. The results are reported for a

number of academic subjects on a regular basis in a document called The Nation’s Report Card.

The assumption central to the NAEP methodology is that each student in the population has

some unobservable underlying proficiency for each subject area, and that the items administered

on the test are discrete measures of this latent proficiency. Let θi denote the latent proficiency

of student i. One of the major goals of NAEP is to summarize the distribution of abilities (θ)

for the entire population of students in the United States and for various subgroups within that

population (e.g., female students whose parents finished college).

NAEP presents results for each assessment and compares these results to previous assessments

in the subject area. The academic achievement is described in terms of the average student

proficiency for all students in the United States and in terms of the percentage of students

attaining fixed levels of proficiency. These achievement levels, defined by the National Assessment

Government Board, are judgments of what students should know at each grade level. In addition

to producing these numbers for the nation as a whole, NAEP reports the same results for
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subgroups in the population (e.g., racial groups, male, female).

Because the goal of NAEP is to measure the academic achievement of the United States as

a whole rather than the achievement of individual students, it is not necessary that each student

receives a large number of items. To reduce the number of items a given examinee is presented,

NAEP uses a matrix sampling of items. Items are split into several blocks of items, and each

examinee is presented with three blocks.

The NAEP 1998 in reading assessment at grade 8 contained 110 items split into 10 blocks;

each item was developed to measure one dimension of a three-dimensional reading proficiency.

Forty-eight of these items were developed to measure reading to gain information, 33 items were

developed to measure reading to perform a task, and 29 items were developed to measure reading

for literary experience. This paper performs a unidimensional analysis of the reading to perform a

task scale.

There are two types of cognitive items used in NAEP assessments— constructed-response and

multiple-choice items. For reading, constructed-response items are designed to provide an in-depth

view of students’ proficiency to read thoughtfully and to respond appropriately to what was read.

Constructed responses can be as short as a sentence or two for simple questions, or they can be

used for items where more thoughtful consideration is required. Multiple-choice items are used

whenever reading comprehension can be measured using such items. For the NAEP 1998 grade 8

reading to perform a task, 11 items were multiple choice, and 22 items were constructed response.

As part of the NAEP assessments, a series of questionnaires was also administered to the

students, teachers, and school administrators. Students were asked to provide the answers to

three sets of multiple-choice background questions: general background (e.g., gender, parents’

educations, race, etc.), reading background, and motivation. In total there were 46 questions on

the students’ reading background questionnaire. The teacher and administrator questionnaires

were used to supplement the students’ responses. This paper focuses on three background

questions from the students’ general background set.

Eleven-thousand-fifty-one (11,051) eighth grade students participated in the NAEP 1998

reading assessment. The students were sampled according to a three-stage sampling design.

The primary sampling units (PSU) were made up of cities, counties, or groups of counties. In

the second stage, schools were sampled from within each PSU. Finally, students were sampled

within each school. The three stages are summarized below; for a more detailed discussion of the
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procedure, see The NAEP 1998 Technical Report (Allen, Donoghue, & Schoeps, 2001).

Sampling of Geographic Areas

The basic PSU sampling design is a stratified probability sample with a single PSU drawn

in each stratum. A single PSU consists of a consolidated metropolitan statistical area (CMSA),

a metropolitan statistical area (MSA), a New England county metropolitan area (NECMA), a

county, or group of contiguous counties in the United States. The PSU sampling frame follows the

rules below:

• Each CMSA and MSA not contained in a CMSA is a separate PSU. In New England, NEC-

MAs were the metropolitan PSUs. We use the term MSA for all three metropolitan area

PSUs (MSA, NECMA, CMSA).

• Non-MSA PSUs consist of non-MSA counties. In most cases, non-MSA PSUs contain only

contiguous counties with a minimum 1990 population of 60,000 people in the northeastern

and southwestern regions of the country and 45,000 in the other regions of the country.

The sampling frame consists of 1,027 PSUs; 290 of the PSUs are MSAs.

The largest 22 PSUs were included in the sample with certainty. The remaining PSUs were

first stratified according to region of the country and MSA status of the PSU. Crossing the region

of the country (northeast, southeast, central, west) with MSA status (MSA, non-MSA) defined the

8 major strata. Within each of the major stratum, further stratification was achieved by ordering

PSUs on additional socioeconomic characteristics, yielding 72 strata with approximately equal

populations according to the 1990 U.S. Census. Within each of the 72 strata, a single PSU was

drawn with probability proportional to the population of the PSU. Combining the 22 certainty

PSUs with the 72 noncertainty PSUs gave a total of 94 from which schools were sampled.

Sampling of Schools

Schools were sampled within PSUs with a sampling probability proportional to a measure of

school size with two adjustments. In order to increase the precision of estimates for the group

means of minority and private school students, schools designated high minority (HM; the Black

and Hispanic students account for more than 10% of the total student population) and private

schools were oversampled. The sampling probability for high minority schools was double that of
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nonhigh minority schools; and the sampling probability was tripled for private schools. That is,

Pr{School s is in the sample} ∝


Ks if school s is public, non-HM

2Ks if school s is public, HM

3Ks if school s is private

where Ks is a measure of the size of school s. A total of 483 schools participated in the NAEP

1998 reading assessment at grade 8.

Sampling of Students

Students were sampled randomly from a list of all enrolled students in the specified grade.

In public schools with low minority enrollment, Black and Hispanic students were oversampled.

This was accomplished by creating a list of all of the nonselected Black and Hispanic students

and sampling from it the same number of Black and Hispanic students as in the original student

sample from the school. A similar method was used to oversample students with disabilities and

students of limited English proficiency.

To account for the differential probabilities of selection and to allow for adjustments for

nonresponse, each student was assigned a sampling weight. Let wi denote the sampling weight for

examinee i. The interested reader can find more information on the derivation of the sampling

weights in (Allen et al., 2001).

3 The General Methodology

One of the goals of NAEP is to report how students in the United States are performing in

any given subject. NAEP utilizes the cognitive responses and background information of each

examinee to report various characteristics of the entire population and for numerous subgroups

of this population (e.g., female students whose parents graduated from college) in terms of the

unobservable proficiency or proficiency θ.

This paper examines two types of summaries commonly examined in NAEP: (a) group means

and (b) proportion of students within achievement levels for each group. Both summaries can be

treated as the average value of some function of the latent proficiencies [g(θ)] for individuals in

a given group. Let G denote such a group. For group means g(θ) = θ, and for achievement level
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results

g(θ) = I(a,b)(θ) =


1 θ ∈ (a, b)

0 θ /∈ (a, b)

where a and b are cutoffs defining regions of the ability scale.

There are two ways to think about the quantity of interest. The first method is to treat the

problem as a finite population problem, in which case the quantity we wish to estimate for group

G is

gG =
1

NG

∑
i∈G

g(θi), (1)

where NG is the number of individuals in group G, a subset of the entire population Ω. The second

method is to treat the problem as a superpopulation problem where the goal is to estimate:

E[g(θ) | G] =
∫

t
g(t)dF (t | G),

where F (θ | G) is the distribution of proficiencies in subgroup G. The estimation of either quantity

would be relatively straightforward if the latent proficiencies were observed for each examinee in

the sample. However, we only observe the repeated discrete measures of the proficiency from the

test items and the background data.

The NAEP methodology applies item response models (Linden & Hambleton, 1997) to

recover information about the latent proficiency (θ) from these multiple item responses. Item

response models are a class of generalized mixed effects models that account for the dependency

among the item responses of a single individual by modeling the probability of the responses as a

function of the latent variable θ. The basic assumption in item response models is the conditional

independence assumption; examinee’s responses Xi = (Xi1, . . . , XiJ)t to items j = 1, . . . , J are

independent conditional on the examinee’s proficiency θi.

The NAEP methodology models multiple-choice items with the three-parameter logistic (3PL)

model (Lord, 1980). The 3PL defines the probability of a correct response with the following

function of examinee’s unobservable proficiency θi:

Pr{Xij = 1 | θi,ψj} ≡ Pj(θi) = πj + (1− πj)Rj(θi) (2)

where

Rj(θi) =
1

1 + exp{αj(βj − θi)}
, (3)
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αj is the discrimination of item j, βj is the difficulty of item j, and πj is the asymptote of item j,

and ψj = (αj , βj , πj)t.

In addition to multiple-choice items, NAEP assessments contain a number of constructed-

response items, which can be dichotomous (correct/incorrect) or polytomous (degrees of

correctness). Let Xij ∈ {0, . . . ,Mj} be the response of examinee i to item j where Xij = 0

indicates poor performance and Xij = Mj indicates excellent performance of examinee i on item

j. For the NAEP 1998 grade 8 reading to perform a task scale Mj ∈ {1, . . . , 5}. NAEP posits

the generalized partial credit model (GPCM; Muraki, 1992) for constructed-response items. The

GPCM defines the response function by assuming the adjacent category logits are linear in the

latent proficiency θi:

logit
(
Pr{Xij = k | Xij ∈ {k, k − 1}, θi,ψj}

)
= αj(θi − βj + δjk) (4)

for k = 1, . . . ,Mj , where the item-category parameters δj satisfy
∑Mj

k=1 δjk = 0 for all j. Notice

when Mj = 1, the GPCM in (4) is equivalent to Rj(θ) in (3). This typically is called the

two-parameter logistic (2PL) model (Birnbaum, 1968).

The information contained in the cognitive responses is combined with background information

to estimate the quantities of interest, namely subgroup means and subgroup achievement level

results. NAEP samples students from a complex, two-stage clustered sample, so care must be

taken when calculating the variances of these estimators.

Section 4 provides a review of the current three-stage operational procedures used for the

analysis of NAEP data. Section 5 formulates the problem as a hierarchical Bayesian model and

suggest an MCMC procedure for the estimation of the quantities of interest.

4 Operational Procedure for the Analysis of NAEP

The current operational method for the analysis of NAEP data is a three-stage procedure.

The first stage called scaling uses item responses to estimate parameters for each item in the

NAEP assessment. The conditioning stage uses the estimates in conjunction with item responses

and background characteristics to estimate the effects of background variables and to impute

the value of the latent variable θ for each student in the assessment. Section 4.2 describes these

imputed or plausible values (PV; Mislevy, 1991) in more detail. The proper estimation of sampling

variability for the statistics reported in NAEP is a complicated task. For this reason NAEP uses a
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jackknife estimate of the standard errors for the reported statistics. Each of the three estimation

procedures are summarized below. For more detailed information about the current operational

procedures see The NAEP 1998 Technical Report (Allen et al., 2001) or the special issue of the

Journal of Educational Statistics on NAEP (Zwick, 1992).

Although this section discusses the estimation procedure in terms of the NAEP analysis,

similar methodologies have been employed for the analysis of the TIMSS and the NALS.

Scaling

The first step in the operational analysis of NAEP data is to estimate the item parameters

of the item response models in (2) and (4). Under the assumption of conditional independence of

the item responses given the latent proficiency score θ, the joint probability of the item response

vector xi conditional on θi is

Li(θ | xi,ψ) = Pr{xi | θi,ψ} =
J∏

j=1

Pr{Xij = xij | θi,ψj}. (5)

The joint maximum likelihood (JML) estimates of the item parameters (ψ) and examinee

abilities are found by maximizing L(ψ,θ;X) =
∏

i Li(θ | xi,ψ) with respect to ψ and θ

simultaneously. However, as (Andersen, 1970) noted, JML estimates are inconsistent. The NAEP

operational analysis estimates item parameters with the marginal likelihood found by integrating

the joint likelihood function over a distribution of student abilities, denoted FΘ. That is

L(ψ; X) =
∫

Θ
L(ψ,θ; X)dFΘ(θ), (6)

is maximized with respect to the item parameters ψ.

The NAEP analysis assumes examinee proficiencies θi are independently and identically

distributed and that the distribution FΘ is a discrete distribution on 41 equally spaced points

from −4 to 4 with unknown mass. That is, the distribution for θ is

fΘ(t) =


pt if t ∈ {−4,−3.8, . . . , 4}

0 otherwise

where
∑

t pt = 1. For this distribution of proficiencies the marginal likelihood in (6) becomes

L(ψ; X) =
N∏

i=1

∑
t∈{−4,...,4}

Pr{xi | t,ψ}pt.
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The NAEP BILOG/PARSCALE program estimates item parameter vectors ψj and the probability

masses of the proficiency distribution pt. The interested reader is directed to (Mislevy & Bock,

1982) and (Muraki & Bock, 1997) for more information on the BILOG/PARSCALE software.

Conditioning

The conditioning stage uses background information from examinees, teachers, schools,

and PSUs to estimate the effects of these background variables on the student proficiency

θ. In the conditioning stage of estimation, the operational analysis fixes item parameter

vectors ψj at the estimates ψ̂j from the scaling stage, thus defining the likelihood for θ,

L(θ; X) =
∏

i L(θi; ψj = ψ̂j ,xi).

Unlike the proficiency distribution used in the scaling stage, the prior in the conditioning

stage is a structured distribution. In fact, the distribution for θ used in the conditioning stage

assumes proficiencies follow a normal linear model. That is,

θi
iid∼ N (γ ′yi, σ

2) i = 1, . . . , n, (7)

where yi is the vector of background variables for examinee i, γ is the vector of regression effects,

and σ2 is the variance.

The marginal likelihood of (γ, σ2) given the item response matrix X and the item parameters

ψ is

L(γ, σ2;X, ψ̂) = σ−2n
n∏

i=1

∫
t
L(t; xi)φ

(
t− γ ′yi

σ

)
dt, (8)

where φ(·) is the standard normal density function. The operational analysis of NAEP data

obtains maximum likelihood estimates of γ and σ2, denoted γ̂ and σ̂2, through the use of an

estimation-maximazation (EM) algorithm (Dempster, Laird, & Rubin, 1977; Thomas, 1993),

where student proficiencies are deemed nuisance parameters. The EM algorithm requires

evaluation of the mean θi and variance σ2
i of the conditional posterior distribution

p(θi | xi,yi,γ, σ2) ∝ Pr{xi | θi, ψ̂}φ
(

θi − γ ′yi

σ

)
. (9)

The integrals required to calculate the means (θi) and variances (σ2
i ) of the conditional posterior

distribution in (9) are intractable. The operational analysis approximates the means and

variances by approximating the distribution with a discrete distribution over Q quadrature points
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(t1, t2, . . . , tQ) each with mass:

p̂(tk | xi,yi,γ, σ2) =
Pr{xi | tk, ψ̂}φ

(
tk−γ′yi

σ

)
∑

q Pr{xi | tq, ψ̂}φ
(

tq−γ′yi
σ

)
Estimating group results. After completion of the EM algorithm, plausible values for

each examinee’s proficiency [θi] are drawn from an approximation of the conditional posterior

distribution in (9) using the following algorithm:

1. Draw γ(m) ∼ N (γ̂, V (γ̂)), where V (γ̂) is the estimated variance of the maximum likelihood

estimate γ̂.

2. Conditional on the generated value γ(m) and the fixed variance σ2 = σ̂2, calculate the mean

θi and variance σ2
i of the conditional posterior in (9) for each examinee i in the sample.

3. Draw a single θi ∼ N (θi, σ
2
i ) independently for each i = 1, . . . , n.

These three steps are repeated M times producing M sets of imputed values (θ(1)
i , . . . , θ

(M)
i ) for

each examinee in the sample. Imputed values are used to approximate posterior expected values.

As noted earlier, one of the goals of NAEP is to estimate the performance of subgroups by

examining the average value of some function g(·) over all individuals in that group. To estimate

the average value of g for all individuals in group G, the NAEP operational analysis calculates the

posterior expected value of

ĝG(θ) =
1
nG

∑
i∈GS

wig(θi), (10)

where nG =
∑

i∈GS wi and GS denotes the members of group G that are in the sample S. To find

the posterior expected value of ĝG(θ), the NAEP methodology first approximates the conditional

posterior expectation E
[
ĝG(θ) | γ(m)

]
with ĝG(θ(m)), and then averages the ĝG(θ(m))s over the M

plausible values. Let g̃G denote this estimate of the expected value of g for individuals in group G.

That is, let

g̃G =
1
M

M∑
m=1

1
nG

∑
i∈GS

wig(θ(m)
i ).

Variance Calculation

The third step in the three-step NAEP operational analysis is to find the variance of the

group estimators g̃G . There are two sources of uncertainty associated with the estimates. First,
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NAEP only samples a small portion of the entire population of students. Second, the true values

of the sampled students’ proficiencies [θ] are not directly observed; examinees simply provide

multiple discrete measures of their proficiency through the assessment items. Following (Rubin,

1987), the operational analysis applies a conditioning argument to split the total variation into the

two additive pieces: the variation due to sampling, and the variance due to latency of proficiencies.

NAEP uses the multiple imputation or plausible value methodology (Rubin, 1987) to estimate the

variance due to latency and a jackknife estimate of the sampling variance.

Variance due to latency of θ. The variance due to latency of θ, or measurement error of θ,

is the variance of the latent proficiency given the item responses. If the abilities θ were observed

directly, then the measurement error would be zero. However, because we observe only a finite

number of item responses for each examinee, the measurement error will be nonzero.

The operational analysis estimates the variance of g̃G due to latency of θ for subgroup G,

denoted UG , by calculating the variance of ĝ
(m)
G = ĝ(θ(m)) over plausible values m = 1, . . . ,M .

That is

UG =
1

M − 1

M∑
m=1

(ĝ(m)
G − g̃G)2.

Variance due to sampling of students. The variance due to sampling of students is the

sampling variance that would be observed if all proficiencies θ for students in the sample were

actually observed. The NAEP estimation procedure uses a jackknife estimator to estimate the

variance due to sampling.

Thirty-six PSU pairs are formed from the 72 noncertainty PSUs where the pairs are composed

of PSUs from adjacent strata (thus PSU pairs were relatively similar in socioeconomic makeup).

The schools from the 22 certainty PSUs are split into 26 groups based on information about the

schools. These 26 groups are then split into two pseudo-PSUs. Combining the 36 noncertainty

PSU pairs with the 26 pairs of pseudo-PSUs formed from the certainty PSUs leads to 62 PSU

groups.

In turn, a single PSU is dropped from one of the 62 groups and the estimated mean g̃G is

recalculated with correctly adjusted weights. Let g̃
(p)
G denote the estimate for replicate group p.

The NAEP jackknife estimate of sampling variance, denoted VG is defined

VG =
62∑

p=1

(ĝG − ĝ
(p)
G )2.
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In practice, the NAEP operational analyses use only the first plausible value to calculate the

group estimate ĝ
(p)
G for replicate set p and as we note in the analysis sections this may bias the

estimates of the standard errors, especially those for achievement level results.

Alternative approaches to estimating the sampling variance of the group statistics have been

explored by (Longford, 1995) and (Raudenbush et al., 1999). In both cases the authors use

superpopulation methods (Cassel et al., 1993; Potthoff et al., 1992) to derive estimates of sampling

variance; (Longford, 1995) employs a classical approach and (Raudenbush et al., 1999) applies

MCMC techniques (Gilks et al., 1996) to perform a Bayesian analysis. However, like the current

NAEP estimation procedures, these methods are based on the plausible values, which assume the

items’ parameters are known and fixed at their estimates from scaling. The next section proposes

a Bayesian hierarchical model that combines the scaling model with a superpopulation model for

student proficiencies, which incorporates the background information and hence does not assume

the item parameters are fixed and known.

5 Bayesian Hierarchical Model for Large-Scale Assessment

Model Formulation

For NAEP, we have a data set {Xij : i = 1, . . . , n; j = 1, . . . , J} consisting of the scores of

n individuals to J test items (some responses will be missing since each student only receives a

subset of the items).

We model constructed-response (CR) items with the GPCM (Muraki, 1992) defined in (4),

and model multiple-choice (MC) items with the 3PL model (Lord, 1980) defined in (2).

[Xij | θi, βj , αj , πj , δj ] ∼


GPCM(θi, βj , αj , δj) if item j is CR

3PL(θi, βj , αj , πj) if item j is MC
(11)

Because this is a fully Bayesian model, we define prior distributions for all model parameters. The

prior for the guessing parameter is πj ∼ Beta(aπ, bπ). We set values for aπ and bπ based on the

number of choices available (e.g., aπ = 10 and bπ = 40 might be used for a five-choice item). For

the difficulty βj and discrimination αj parameters, we use uninformative prior distributions; the

prior distribution for the discrimination parameter places all of its mass above zero.

We model the student ability distribution with a model similar to that used in the conditioning

stage of the current NAEP estimation strategy. Like the distribution assumed in the conditioning
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stage, the mean is a linear function of background variables yi. However, to properly account for

the clustered nature of NAEP data, the model uses a linear mixed effects model (Laird & Ware,

1982) to cluster examinees by the school they attend (examinee i attends school s(i)) and to

cluster schools by the PSU they belong to (school s belongs to PSU p(s)). This is similar to the

treatment proposed by (Longford, 1995) and (Raudenbush et al., 1999) for the analysis of known

student proficiencies, [
θi | νs(i),γ,yi, σ

]
∼ N

(
νs(i) + γ ′yi, σs(i)

)
[νs | τ ] ∼ N (ηp(s), τ

2)

[ηp | ω] ∼ N (0, ω2).

 (12)

Assume the within-school variances σ2
s are constant across schools (i.e., σs = σ for

s = 1, . . . , S). The between-school variance τ2 measures the variance among school-intercepts νs,

and the between-PSU variance ω2 measures the variance among PSU-intercepts ηp. By integrating

the school-intercepts out of the conditional distribution of θ, we find

Σjk = Cov(θj , θk) =



V ar(θj) = ω2 + τ2 + σ2 j = k

ω2 + τ2 s(j) = s(k), j 6= k

ω2 p(s(j)) = p(s(k)), s(j) 6= s(k)

0 p(s(j)) 6= p(s(k)).

(13)

So students in the same school and in the same PSU are correlated with one another. We use

inverse-gamma distributions for the prior distributions of σ2, τ2, and ω2. Let (aσ, λ), (aτ , bτ ), and

(aω, bω) denote the hyperparameters of these prior distributions respectively. All hyperparameters

except λ are fixed constants and chosen to reflect any prior information that may be available

about the particular variance component.

Markov Chain Monte Carlo Estimation

Given the item response matrix X, estimation of the posterior distributions for the item

response model parameters in (11) using MCMC methods is a straightforward exercise (Patz &

Junker, 1999). We extend the MCMC estimation procedure to include a superpopulation, mixed

effects model to describe the distribution of latent proficiencies θ. The layer of the hierarchical

model that relates the proficiencies to background variables is similar to the models proposed by

(Longford, 1995) and (Raudenbush et al., 1999) when student proficiencies are fixed and known.

13



The complete conditional distribution of the background effects γ, the school intercepts

ν, and the PSU-intercepts η are conditionally independent of the item responses and the item

parameters given the student proficiencies θ and the variance components σ2, τ2, and ω2. To

improve the mixing of the MCMC algorithm, we choose to draw school- and PSU-intercepts and

background effects γ from the joint conditional posterior distribution

fγ,ν,η(γ,ν,η | θ, σ, τ, ω,Y ) = fγ(γ | θ,Y , σ, τ, ω)fη(η | γ,θ, σ, τ, ω)fν(ν | γ,η,θ, σ, τ)

by first drawing γ conditional on the variance-covariance matrix defined in (13) and the student

proficiency vector θ

[γ | θ,Y , σ, τ, ω] ∼ N
(
(Y tΣ−1Y )−1Y tΣ−1θ, (Y tΣ−1Y )−1

)
.

The algorithm then draws the PSU-intercepts η from conditional posterior distribution given the

vector of background effects γ

[ηp | γ,θ, σ, τ, ω] ∼ N

(
V
∑

s

rs

σ2 + nsτ2
, V

)
,

where rs = 1
ns

∑
i∈s{θi−γ ′yi} is the average residual for school s, and V =

(
1

ω2 +
∑

s
ns

σ2+nsτ2

)−1
.

Conditional on the draws of the background effects γ, the PSU-intercepts η and the variance

components, we draw the school-intercepts from the complete conditional posterior distribution

[νs | γ,η, τ,σ] ∼ N

(
nsτ

2rs + σ2
sηp(s)

nsτ2 + σ2
s

,
τ2σ2

s

nsτ2 + σ2
s

)
.

The complete conditional posterior distributions for the variance components σ2, τ2, and ω2

are inverse-gamma distributions. For the within-school variance σ2
s for school s, the complete

conditional distribution is

[
σ2

s | θ,γ,Y ,ν
]
∼ Inverse-Gamma

(
aσ + ns/2, λσ +

1
2

∑
i∈s

(ri − νs − ηp(s))

)
,

where ri = θi − γ ′Y . The between-school variance τ2 depends on the school- and PSU-intercepts,

ν and η, [
τ2 | ν,η

]
∼ Inverse-Gamma

(
aτ + S/2, bτ +

S∑
s=1

(νs − ηp(s))
2

)
,
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where S is the number of schools in the sample. The final variance component is the between-PSU

variance; the complete conditional distribution for the between-PSU variance depends only on the

PSU-intercepts, [
ω2 | η

]
∼ Inverse-Gamma

(
aω + Q/2, bω +

Q∑
k=1

η2
k

)
,

where Q is the number of PSUs in the sample.

Estimating Group Quantities

In a superpopulation formulation of the NAEP model, we want to estimate the expected value

of the function g(θ) for a randomly sampled individual from group G. Specifically, we examine the

posterior distribution of g(θ) for a student from group G given the data observed in the sample,

denoted D = (X,Y ). The posterior mean of g(θ) serves as a point estimate

E[g(θi) | D, i ∈ G] =
∫

y
E[g(θ) | D,Y = y]dF (y|D,G), (14)

where F (y | G) is the distribution of background characteristics for individuals in group G and

E[g(θ) | D,Y = y] =
∫

γ
E[g(θ) | γ,Y = y]dF (γ | D). (15)

Calculating the quantity E[g(θ) | γ,Y ] is straightforward because, by assumption the distribution

of θ conditional on the background vector Y is normal,

[θ | Y = y] ∼ N (γ ′y, σ2 + τ2 + ω2).

The MCMC algorithm estimates the posterior distribution F (γ | D). However, estimating

the population distribution F (y | D,G) of background characteristics for a given group can be as

complicated as the estimation of the distribution of the latent proficiencies for a group. Although

we could develop a complicated model to derive an estimate of the distribution F (y | D,G), that is

beyond the scope of this paper. Instead, we use the sampling weights to estimate the distribution.

Specifically, we estimate the population density of the background characteristics y with the

weighted sample proportion

f(y | D,G) =

∑
{i:Y i=y, i∈G} wi∑

i∈G wi
.

Given the output from the MCMC algorithm, we estimate the posterior expectation g(θ) for

group G according to the following algorithm.

For MCMC iterations t = 1, . . . , T
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1. Draw γ(t) from the MCMC estimated posterior distribution.

2. For each individual i in the sample calculate

g
(t)
i = E[g(θ) | γ(t),Y i] =

∫
θ
g(θ)dΦ(θ; γ(t)Y i, σ

2 + τ2 + ω2),

where Φ(·;µ, σ2) is the cumulative distribution function (cdf) for a normal random variable

with mean µ and variance σ2. The integral in the equation above is simple for many quan-

tities of interest such as the mean, variance, or the probability of an individual having an

proficiency greater some cutpoint. For more complex functions of g(·), we use numerical in-

tegration techniques. The numerical integration could be achieved using either Monte Carlo

or quadrature techniques. For computational efficiency, we suggest numerical quadrature.

3. Set

g
(t)
G =

∑
i∈G wig

(t)
i∑

i∈G wi
.

The values g
(t)
G are draws from the posterior distribution of g(θ) for individuals in group G. We use

these draws to perform Monte Carlo integration in order to estimate features of the distribution

f(g(θ)|D,G) (e.g., median, mean, quantiles) using the discrete set {g(t)
G : t = 1, . . . , T}.

6 Analysis

We examine the performance of our proposed hierarchical model using two data sets. The

first data set is a simulated data set meant to mimic the real NAEP data. The second data set is

a subset from an actual data set from the NAEP 1998 reading assessment at grade 8.

Simulated Data Set

A data set was simulated to mimic a true observed NAEP data set. The latent abilities (θ) for

4,700 examinees were simulated according to the following specifications. First, the PSU means

(η) for 94 PSUs were sampled such that the between PSU variance explains 6.2% of the total

variance. Second, school means (ν) were drawn for five schools within each PSU, such that the

the between school variance within each PSU accounted for 16.3% of the total variance. Finally 10

students were simulated for each school. Each student was classified into one of 32 demographic

groups defined by race, gender, and parents’ education. The between group variation accounted

for 24.2% of the total variance. The remaining 53.3% is within-school, within-group variance.
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The item responses of these 4,700 simulated examinees were generated according the 2PL

and 3PL models and the GPCM. We used the item types and item parameters from the reading

to perform a task scale in the NAEP 1998 reading assessment at grade 8. The items in this scale

are divided into three blocks. We assume that each student only receives two blocks of the items.

Each examinee in the simulated data set receives two blocks at random according to a spiraled

design and the third block is treated as missing by design.

In order to assess the performance of the Bayesian estimation procedure, we examine how

well the program is able to recover the simulating parameters. We examine the performance by

comparing the variance components, group mean estimates, and achievement level results.

Recoverability of variance components. The posterior median for the percentage of the total

variance attributable to between-PSU variation is 5.5% and the 95% posterior credible interval

is (2.8, 9.1). Although the point estimate is lower than the simulating percentage (6.2%), the

credible interval clearly contains the true value. The model estimates the proportion of variation

explained by between-school variation to be 15.5% with a 95% credible interval of (12.5, 19.0).

Again the point estimate is a little lower than the simulating 16.3%, but the credible interval

does contain that value. Conversely the within-school, or unexplained variance component is

overestimated. The estimate suggests that the within-school variance makes up 56.2% of the total

variation with a 95% credible interval equal to (52.8, 60.2), which contains the simulating value.

Recoverability of group means. Table 1 contains the true simulating means and the estimated

group means for the demographic groups used to simulate the data set. The first column is an

identifier of the group, the second column is the simulating value, and the third column is the

posterior median, followed by the 95% posterior credible interval estimated using our MCMC

estimation procedure; the final three rows are estimates derived from an operational analysis of

the simulated data.

In each of the 10 groups, the true simulating parameter is contained inside both the 95%

credible interval from the Bayesian analysis and within the 95% confidence interval from the

current estimation procedure. However, the confidence intervals derived from the current

operational strategy are 50% narrower than those found with the Bayesian analysis. Part of this

difference is attributable to the fact that the NAEP analysis treats the item parameters as fixed

and known.

No interaction effects were included in the model. therefore if we refine the table and look at
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Table 1.

The True and Estimated Mean Proficiencies for Groups in the Simulated Data Set

MCMC–posterior NAEP

Group True Median 95% C.I. MLE 95% C.I.

mean

Male −0.21 −0.21 (−0.28, −0.14) −0.20 (−0.24, −0.16)

Female 0.17 0.16 ( 0.09, 0.23) 0.17 ( 0.13, 0.21)

White & Other 0.27 0.26 ( 0.19, 0.33) 0.27 ( 0.24, 0.30)

Black −0.61 −0.61 (−0.70, −0.53) −0.61 (−0.68, −0.55)

Hispanic −0.48 −0.49 (−0.57, −0.41) −0.47 (−0.53, −0.40)

Asian 0.28 0.32 ( 0.20, 0.45) 0.29 ( 0.17, 0.42)

Less than H.S. −0.63 −0.62 (−0.70, −0.53) −0.61 (−0.68, −0.54)

High School −0.30 −0.31 (−0.39, −0.23) −0.29 (−0.35, −0.24)

More than H.S. 0.11 0.13 ( 0.05, 0.22) 0.13 ( 0.05, 0.21)

College 0.30 0.28 ( 0.21, 0.35) 0.29 ( 0.25, 0.33)

Note. The 95% C.I. for the MCMC approximated posterior calculations is the 95% equal-tailed

posterior credible interval for the group.

the mean of the simulated proficiencies for the crossed groups (e.g., White, female, < high school;

see Table 2) and compare to the estimated means for these subgroups, we find that our estimates

are unsatisfactory. Just over 59% (19 out of 32) of the 95% posterior credible intervals contain the

simulating parameter. As is true in all regression-type analyses, it is best to be sure that there are

no interaction effects before interpreting a simple main-effects-only model.

Recoverability of proportion in achievement levels. Finally, we examine the performance of

the MCMC algorithm for large-scale assessment data in terms of achievement levels. Let all

students with a proficiency greater than the cutoff point 1.59 be classified as advanced students,

and all students with a proficiency greater than -0.51 be classified as students with an above basic

understanding.

Table 3 contains the true proportion of the simulated proficiencies that are in the two
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Table 2.

Group Means for the Simulated Data for Subgroups

Male Female

Group True MCMC True MCMC

mean mean

White & Other, < High School −0.61 (−0.57, −0.37) −0.22 (−0.18, 0.02)

White & Other, High School −0.20 (−0.33, −0.15) 0.13 (0.06, 0.24)

White & Other, > High School 0.16 (0.1, 0.28) 0.51 (0.49, 0.68)

White & Other, College 0.35 (0.2, 0.36) 0.70 (0.59, 0.75)

Black,< High School −1.22 (−1.43, −1.2 ) −0.73 (−1.03, −0.81)

Black, High School −1.21 (−1.18, −0.97) −0.63 (−0.78, −0.59)

Black, > High School −0.59 (−0.75, −0.54) −0.10 (−0.35, −0.14)

Black, College −0.59 (−0.65, −0.45) −0.18 (−0.26, −0.06)

Hispanic, < High School −0.92 (−1.11, −0.91) −0.58 (−0.72, −0.52)

Hispanic, High School −0.71 (−0.87, −0.67) −0.28 (−0.48, −0.29)

Hispanic, > High School −0.41 (−0.45, −0.24) 0.01 (−0.06, 0.15)

Hispanic, College −0.36 (−0.35, −0.16) 0.14 (0.04, 0.23)

Asian, < High School 0.05 (−0.55, −0.27) −0.19 (−0.17, 0.12)

Asian, High School 0.16 (−0.32, −0.05) 0.03 (0.06, 0.35)

Asian, > High School 0.22 (0.11, 0.38) 0.50 (0.5, 0.77)

Asian, College 0.22 (0.21, 0.46) 0.58 (0.6, 0.86)

Note. Subgroups defined by crossing the three demographic variables gender, race, and parents’

highest level of education.

achievement levels, the 95% posterior credible intervals estimated from the MCMC algorithm,

and the 95% confidence intervals approximated with the operational NAEP analysis for the 10

groups defined by gender, race, and parents’ education. All of the credible intervals and confidence

intervals contain the proportion calculated directly from the proficiency scores used to simulate

the data set.
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Table 3.

The True and Estimated Proportion of Students Above Basic Proficiency Levels and

in Advanced Proficiency Level for Groups in Simulated Data Set

Above basic Advanced

Group True MCMC NAEP True MCMC NAEP

prop. prop.

Male 0.62 (0.59, 0.64) (0.60, 0.64) 0.029 (0.028, 0.042) (0.024, 0.041)

Female 0.75 (0.72, 0.77) (0.74, 0.77) 0.071 (0.068, 0.094) (0.056, 0.085)

White & Other 0.80 (0.77, 0.82) (0.79, 0.82) 0.072 (0.069, 0.096( (0.063, 0.089)

Black 0.44 (0.41, 0.49) (0.39, 0.49) 0.009 (0.007, 0.013) (0.001, 0.014)

Hispanic 0.52 (0.47, 0.54) (0.48, 0.56) 0.014 (0.011, 0.019) (0.004, 0.018)

Asian 0.83 (0.78, 0.85) (0.78, 0.89) 0.072 (0.071, 0.119) (0.016, 0.104)

Less than H.S. 0.44 (0.41, 0.48) (0.41, 0.49) 0.011 (0.007, 0.013) (0.001, 0.017)

High School 0.60 (0.54, 0.61) (0.56, 0.63) 0.022 (0.018, 0.030) (0.009, 0.029)

More than H.S. 0.76 (0.72, 0.78) (0.72, 0.79) 0.044 (0.054, 0.082) (0.039, 0.075)

College 0.80 (0.78, 0.82) (0.79, 0.82) 0.081 (0.074, 0.104) (0.067, 0.095)

Note. The columns labeled MCMC contain the approximated 95% equal-tailed credible intervals

from the Bayesian analysis and the columns labeled NAEP contain the 95% confidence intervals

derived from the operational analysis.

The widths of the credible intervals and the confidence intervals are very similar, which is

somewhat counterintuitive. Recall in the analysis of the group mean estimates we found that the

intervals from the NAEP analysis tended to be narrower, because the NAEP analysis treats item

parameters as known whereas the Bayesian analysis treats them as unknown.

One possible explanation for why the intervals are wider than expected from the NAEP

analysis is that the approximation of the sampling variance that uses only a single plausible value

provides an overestimate of the sampling variance. When all five plausible values are used to

approximate the sampling variance in the NAEP procedure, the resulting intervals tend to be

slightly narrower than those obtained from the Bayesian analysis. For example, the confidence
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interval for the proportion of students whose parents finished college that are in the advanced level

is (0.068, 0.094), which is narrower than the Bayesian interval for the same group (0.074, 0.104).

NAEP 1998 Reading Assessment at Grade 8

We apply the hierarchical model introduced in Section 5 to the national reading to perform

a task scale in the NAEP 1998 reading assessment at grade 8. There were 4,494 eighth grade

students that were assigned a booklet that contained items from this scale. Three background

variables are included in the analysis: gender, race, and parent’s education. The model is fit under

two conditions: (a) fixing the item parameters at their estimates from the operational analysis of

the data, and (b) treating the items as unknown and estimating them as part of the hierarchical

model.

The posterior median of the total variance (σ2 + τ2 + ω2 + variance between groups) is fixed

to equal one so that the results from the hierarchical models can be compared to the results from

the NAEP analysis of the same data. The total between-school variance (τ2 + ω2) accounted for

approximately one eighth of the total within-subgroup variation

τ2 + ω2

σ2 + τ2 + ω2
=

1
8
.

The between-PSU variance accounted for 19% of the total between-school variance,

ω2

τ2 + ω2
= 0.19.

Group means. Table 4 contains the point estimate and standard errors (the MCMC SEs are

actually posterior standard deviations) for the mean proficiency score for each of the subgroups

defined by gender, race, and parent’s education under the two hierarchical models and the NAEP

estimation methodology. In addition, the table contains point estimates of the variability of the

proficiency scores within each group.

In most cases, the estimates of the average proficiency score for each group calculated using

the hierarchical models are very close to the estimates derived using the NAEP methodology. The

groups with the largest differences are the Hispanic students (difference 0.08) and the students

whose parents did not finish high school (difference 0.06).

The Bayesian model that fixes the item parameters at their maximum likelihood estimates

reports standard deviations that are, on average, 10% smaller than those reported by the model
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Table 4.

Estimates of the Mean Proficiency for Several Groups Under Two Hierarchical

Models and NAEP Operational Model

MCMC MCMC NAEP

Estimated items Fixed items

Group Mean SE Var Mean SE Var Estimate SE Var

Overall 0.000 (0.026) 1.00 0.000 (0.022) 1.00 0.000 (0.023) 1.00

Male −0.229 (0.031) 0.94 −0.237 (0.027) 0.94 −0.211 (0.034) 0.96

Female 0.234 (0.030) 0.95 0.242 (0.027) 0.95 0.221 (0.027) 0.95

White/AI/Othera 0.211 (0.029) 0.89 0.210 (0.026) 0.89 0.221 (0.028) 0.86

Black −0.566 (0.049) 0.89 −0.564 (0.046) 0.89 −0.608 (0.038) 0.86

Hispanic −0.494 (0.046) 0.90 −0.491 (0.042) 0.90 −0.576 (0.062) 0.93

Asian 0.100 (0.075) 0.89 0.100 (0.072) 0.90 0.117 (0.202) 0.96

Less than H.S.b −0.559 (0.045) 0.90 −0.556 (0.041) 0.90 −0.620 (0.055) 0.87

High School −0.258 (0.039) 0.90 −0.258 (0.037) 0.90 −0.269 (0.048) 0.91

More than H.S. 0.173 (0.043) 0.90 0.174 (0.040) 0.90 0.143 (0.041) 0.83

College 0.266 (0.032) 0.89 0.264 (0.028) 0.89 0.306 (0.030) 0.88

Note. SE = standard error. Var = variability. a The White/AI/Other racial group contains all

students that were classified as a race other than Black, Hispanic, or Asian. b The less than H.S.

category also contains students whose parents’ education could not be determined.

that correctly treats them as unknown. The posterior standard deviations for the group means

are similar to the standard errors derived from the NAEP methodology. The biggest difference

between the posterior standard deviations from the hierarchical models and the NAEP standard

errors in Table 4 is the difference for Asian students where the posterior standard deviations

derived from the hierarchical models are less than half the size of the standard error derived from

the operational NAEP analysis.

Further inspection of the data reveals why the standard error derived from the jackknife is

so much larger than that found using the hierarchical method. The 62 replicate means for the
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Asian students are plotted in a series in Figure 1. The figure shows that the mean calculated

from replicate group #28 is very different from the means calculated from the other replicate

groups. When the unusual set of replicate weights is replaced with the set of overall weights, the

Figure 1. The mean proficiency scores for Asian students calculated using each of the

62 replicate weights. The 28th replicate set of weights produces a mean that is very

different from the other 61 sets.

standard error of the mean estimate for Asian students is estimated to be 0.09, much closer to the

posterior standard deviations estimated from the hierarchical models. The unusual replicate mean

can be attributed to the fact that the PSUs or schools that make up the 28th PSU pair perform

very different from one another. Whether the difference in the estimated standard deviation and

the standard errors should be considered a weakness of the hierarchical model or the jackknife

estimator has yet to be determined. The operational analysis is clearly less robust to unusual

PSUs in contrast to the Bayesian analysis.
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Achievement levels. Table 5 and Table 6 contain the estimates of the proportion of students

who have an above basic and advanced understanding of the reading to perform a task scale,

respectively. We report the mean of the posterior distribution of the proportion as the Bayesian

point estimate and the posterior standard deviation as the measure of uncertainty about that

Bayesian estimate. The Bayesian estimates are compared to the estimates calculated from the

NAEP three-stage estimation procedure.

Table 5.

Proportion of Students Who Perform Above Basic Proficiency Level on Reading to

Perform a Task Scale

Above basic (θ > −0.5)

MCMC NAEP

Estimated items

Group Mean SE Estimate SE

Overall 0.693 (0.010) 0.700 (0.011)

Male 0.613 (0.012) 0.625 (0.017)

Female 0.775 (0.010) 0.779 (0.011)

White 0.775 (0.010) 0.784 (0.011)

Black 0.473 (0.021) 0.461 (0.030)

Hispanic 0.502 (0.019) 0.500 (0.028)

Asian 0.738 (0.026) 0.722 (0.097)

Less than H.S. 0.474 (0.019) 0.473 (0.032)

High school 0.602 (0.016) 0.590 (0.022)

More than H.S. 0.760 (0.014) 0.776 (0.020)

College 0.792 (0.010) 0.810 (0.012)

The achievement level results are similar to the group average results when comparing point

estimates. The estimates of the proportion of students in the basic achievement levels are very

similar under the two estimation strategies. All differences in the estimates for the proportion of

students above the basic achievement level are within ±0.02 and within two posterior standard
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deviations.

In a few cases, the estimates are significantly different for the advanced level. The differences

between the proportions of Black and Hispanic students, as well as the proportion of students

whose parents did not finish high school and attended some school after high school, differ

significantly. In each case, the Bayesian model provides estimates higher than those from the

operational analysis. This is likely the result of shrinkage towards the mean, a common occurrence

in Bayesian estimates.

Table 6.

Proportion of Students Who Perform at Advanced Proficiency Level on Reading to

Perform a Task Scale

Advanced (θ > 1.6)

MCMC NAEP

w/ PSU

Group Mean SE Estimate SE

Overall 0.053 (0.004) 0.050 (0.005)

Male 0.028 (0.003) 0.026 (0.005)

Female 0.079 (0.006) 0.075 (0.009)

White 0.070 (0.006) 0.066 (0.007)

Black 0.011 (0.002) 0.005 (0.003)

Hispanic 0.014 (0.002) 0.008 (0.003)

Asian 0.056 (0.010) 0.057 (0.020)

Less than H.S. 0.011 (0.002) 0.006 (0.004)

High School 0.025 (0.003) 0.025 (0.011)

More than H.S. 0.066 (0.007) 0.051 (0.012)

College 0.078 (0.006) 0.078 (0.008)

Unlike the group mean results, the posterior standard deviation and the standard errors are

not that similar. On average, the standard errors derived from the NAEP three-stage procedure

are nearly 1.5 times the posterior standard deviations of the proportion of students above basic.
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The average standard error for the advanced achievement level estimates are almost twice as large

as the posterior standard deviations. These results are in line with what was observed in the

analysis of the simulated data sets: Using only a single plausible value provides an estimate of the

sampling variance that is too large.

7 Conclusions

This paper has proposed a Bayesian hierarchical model for the analysis of large-scale

assessments such as NAEP. The model builds on standard item response models by incorporating

levels of the model that correctly cluster the assessed respondents within schools and schools

within geographic regions. Our model, in contrast to the method currently employed for the

analysis of NAEP data, allows the user to estimate all model parameters simultaneously, rather

than in stages. The analysis of the simulated data shows that the model can recover the simulating

parameters, and the analysis of the reading to perform a task scale for the NAEP 1998 reading

assessment at grade 8 shows that our model provides estimates similar to those derived using the

current NAEP operational analysis method.

Although our Bayesian model has the advantage that it incorporates all sources of uncertainty

into a single model, it requires a computationally intensive MCMC algorithm for the approximation

of the posterior distribution of the model parameters. If the assessment is relatively small, such as

the examples contained in this paper where we had only a few background variables and less than

5,000 examinees, our model is probably preferable; the examples discussed in this paper required

approximately 12 hours of computer time on a 2.0 GHz Pentium workstation. However, when

assessments are much larger the computer time required would be too great. For example, the

full NAEP 1998 reading assessment consisted of both a national assessment and approximately

45 state/district assessments; separate assessments were conducted at fourth, eighth, and twelfth

grade; the assessments were designed to measure a three-dimensional proficiency; and the

assessments each contained well over 100 background variables. For assessments the size of NAEP,

the current operational methodology described in Section 4 is probably preferable because it can

handle multidimensional assessments and it requires far less computer power, but as computers

become faster and cheaper our model will be able to handle these huge assessments.
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