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Abstract

The reporting methods used in large-scale educational assessments such as the National

Assessment of Educational Progress (NAEP) rely on a latent regression model. There is a

lack of research on the assessment of fit of latent regression models. This paper suggests a

simulation-based model-fit technique to assess the fit of such models. The technique consists

of investigating whether basic statistical summaries are predicted adequately by the latent

regression model. Application of the suggested technique to an operational NAEP data set

reveals important information regarding the fit of the latent regression model to the data.
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1 Introduction

The National Assessment of Educational Progress (NAEP), the only regularly

administered and congressionally mandated national assessment program (see, e.g., Beaton

& Zwick, 1992), is an ongoing survey of the academic achievement of U.S. school students

in a number of subject areas such as reading, writing, and mathematics. Since 1984, NAEP

reporting methods have used a multilevel statistical model consisting of two components:

(a) an item response theory (IRT) component and (b) a linear regression component (see,

e.g., Beaton, 1987; Mislevy, Johnson, & Muraki, 1992). Other large-scale educational

assessments such as the International Adult Literacy Study (IALS; Kirsch, 2001), the

Trends in Mathematics and Science Study (TIMSS; Martin & Kelly, 1996), and the Progress

in International Reading Literacy Study (PIRLS; Mullis, Martin, Gonzalez, & Kennedy,

2003) also adopted essentially the same model. This model is often referred to as a latent

regression model (LRM). An algorithm for estimating the parameters of this model is

implemented in the DGROUP set of programs (Rogers, Tang, Lin, & Kandathil, 2006),

which is an ETS product.

Standard 3.9 of the Standards for Educational and Psychological Testing (American

Educational Research Association, American Psychological Association & National Council

on Measurement in Education, [AERA, APA, & NCME], 1999) requires evidence of model

fit when an IRT model is used to make inferences from a data set. Hence, it is important

to assess the fit of the LRM used by NAEP to ensure quality control and an overall

improvement in the long run. Although some model-checking techniques have been applied

to the NAEP model (e.g., Beaton, 2003; Dresher & Thind, 2007; Li, 2005), there is a

substantial scope of further work on the topic.

This paper suggests a simulation-based procedure to assess the goodness of fit of

the LRM used by NAEP and other large-scale assessments mentioned above. The procedure

consists in investigating whether several summary statistics of the data are predicted

adequately by the model. Similar to the parametric bootstrap (e.g., Efron & Tibshirani,

1993) and the posterior predictive model-checking method (e.g., Gelman, Carlin, Stern, &

Rubin, 2003), our procedure generates predicted data sets under the model using the NAEP

operational software and compares several aspects of the predicted data sets to those of the
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observed data sets.

Section 2 gives some background, describing the current NAEP statistical model

and estimation procedure, and the existing NAEP model-checking procedures. Section 3

describes our suggested model checks. Section 4 provides a real data example. Section 5

studies the Type I error rates of the method suggested. Section 6 gives conclusions and

suggestions for future work.

2 The NAEP Latent Regression Model and Estimation

2.1 The Model

Assume that the unique p-dimensional latent proficiency variable for examinee i is

θi = (θi1, θi2, . . . θip)
′. In NAEP, p could be between 1 and 5. Let us denote the response

vector to the test items for examinee i as yi = (yi1, yi2, . . . , yip), where, yik, a vector

of responses, contributes information about θik. For example, yik could be responses of

examinee i to algebra questions in a mathematics test and θik the algebra skill variable of

the examinee. The likelihood for an examinee is given by

f(yi|θi) =

p
∏

k=1

f1(yik|θik) ≡ L(θi; yi)· (1)

The expressions f1(yiq|θiq) in (1) is a product of terms contributed by a univariate IRT

model, usually the two- or three-parameter logistic (2PL, 3PL) model for dichotomous

items, and the generalized partial-credit model (GPCM) for polytomous items.

Suppose xi = (xi1, xi2, . . . xim) are m fully measured demographic and educational

characteristics for the examinee. Conditional on xi, the examinee proficiency vector θi is

assumed to follow a multivariate normal distribution, that is,

θi|xi ∼ N(Γ′xi,Σ). (2)

Together, (1) and (2) form the LRM or conditioning model employed in NAEP. For further

details, see, for example, von Davier, Sinharay, Oranje, and Beaton (2006).

2.2 Estimation

NAEP uses a three-stage estimation process for fitting the previously discussed

LRM to the data:
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1. The first stage, scaling, fits the model given by (1) to the examinee response data and

estimates the item parameters using the PARSCALE software (Allen, Donoghue, &

Schoeps, 2000). The prior distributions on the components of the examinee proficiency

are assumed to be independent discrete univariate distributions in this stage.

2. The second stage, conditioning, assumes that the item parameters are fixed at the

estimates found in the scaling stage and fits the model given by (1) and (2) to the data,

and estimates Γ and Σ. The following versions of the DGROUP program perform the

conditioning step differently:

• BGROUP (Beaton, 1987), employed when p ≤ 2, uses numerical quadrature.

• CGROUP (Thomas, 1993), employed when p > 2, uses Laplace approximations.

• NGROUP (Mislevy, 1985), used to find the starting values for BGROUP or CGROUP,

uses a normal approximation of L(θi; yi).

3. The third stage of the NAEP estimation process generates plausible values, which are

imputed values of the proficiency variables, for all the examinees using the parameter

estimates obtained from the scaling and conditioning stages (the plausible values are

used to estimate examinee subgroup averages). The third stage also estimates the vari-

ances corresponding to the examinee subgroup averages as the sum of two terms: the

variance due to the latency of θis and the variance due to sampling of students; the

computation of the second term involves the use of a jackknife approach, while the com-

putations of both the terms involve the plausible values generated in the conditioning

step.

2.3 Existing Works on Assessing Fit of the NAEP Model

NAEP rigorously monitors data quality and employs a number of qualitative checks

of the results of their statistical analysis. As first-level checks, NAEP employs several

plausibility analysis (which involves examining the computer outputs to make sure that

they make sense) and computer-based checks at different stages of statistical analysis; these

ensure that the data-analysis process is working as intended. The first-level checks include

going through several carefully designed checklists, such as an item analysis checklist
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and a CGROUP/BGROUP conditioning checklist. However, it can be argued that these

first-level checks provide quality control measures that are necessary but not sufficient.

That is, even if they reveal no problems and the programs are running as expected on the

appropriate data sets, the inferences may be problematic if the model does not explain the

data adequately.

Therefore, as second-level checks, additional steps are taken to check the

appropriateness and quality of the IRT model (Allen et al., 2002, p. 233). The item

parameter estimates are examined—extreme estimates often indicate problems. Differential

item functioning (DIF) analyses are used to examine issues of multidimensionality (see, for

example, Roussos & Stout, 1996, for the connection between DIF and multidimensionality).

NAEP operational analyses also employ graphical item fit analyses using residual plots and

a related χ2-type item fit statistic (Allen et al., p. 233) that provide guidelines for treating

the items (such as collapsing categories of polytomous items, treating adjacent-year data

separately in concurrent calibration, or dropping items from the analysis). However, the null

distribution of these residuals and of the χ2-type statistic are unknown, as acknowledged

by Allen et al. (p. 233). Another second-level check used in NAEP operational analyses

is the comparison of observed and model-predicted proportions of examinees obtaining

a particular score on an item (Rogers, Gregory, Davis, & Kulick, 2006); these analyses,

however, do not use the variability of the quantities involved. It will be useful to make

the comparison of the observed and predicted proportions more meaningful by providing a

methodology that incorporates the variability. As will be clear later, our work addresses

this issue.

Beaton (2003) suggested item fit measures involving sums and sum of squares of

residuals obtained from the responses of each examinee to each question. Assuming that

Yij denotes the response of the i-th examinee to the j-th item, Beaton’s fit indices are of

the form
∑

Wi

(Yij − E(Yij|Θ))k

(
√

Var(Yij|Θ))k
,

where k could be 1 or 2, Θ is the collection of all model parameters, and Wi is the NAEP

sampling weight (Allen et al., 2000, pp. 161-225). Then, a bootstrap method is used to

determine the null distribution of these statistics. Li (2005) employed Beaton’s statistics
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to operational test data to determine the effect of accommodations on students with

disabilities. Dresher and Thind (2007) employed Beaton’s statistics to 2003 NAEP and

1999 TIMSS data. Dresher and Thind also employed the χ2 type item fit statistic provided

by the NAEP–PARSCALE program, but obtained the null distribution of the statistic from

its values for one simulated data set. However, these methods have their limitations. For

example, Sinharay (2005, p. 379) argued that fit statistics based on examinee-level residuals

are unreliable because of their excessive variability, a limitation that applies to Beaton’s

statistics.

In a practical application of model fit analysis, it is important to examine

the appropriate aspects of the model using appropriate test statistics. Standard

recommendation (see, e.g., Gelman et al., 2003, p. 172) on this issue is that model checking

in an application should focus on aspects of the model that are relevant to the purposes to

which the inference will be applied. For example, if one is interested in estimating the mean

income of a population using a statistical model, the model fit analysis should focus on the

mean. However, there has been little focus on this issue, both in the context of IRT model

fit in general (e.g., Sinharay, 2005) and in the context of NAEP.

Thus, there is substantial scope of further work on assessing the fit of LRMs to

NAEP data. Note that such work has to properly take into account the idiosyncrasies of

the NAEP model and data such as the matrix sampling (that refers to the fact that each

examinee sees only some of the questions), sampling weights, and missing values.

3 Methods

This study applies a simulation-based model fit technique to NAEP statistical

analysis to investigate whether several data summaries (or test statistics) are predicted

adequately by the LRM employed in NAEP.

3.1 Description of the Suggested Technique

The determination of the null distribution (or the computation of the p-values) of

a test statistic is not straightforward, given the complicated nature of the LRM applied

in NAEP. Hence, we use a simulation-based method, which makes use of existing NAEP
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programs, to determine the null distribution of the test statistics. Plausible values

are generated as in NAEP operational procedures using the DGROUP program. The

operational NAEP analysis generates five plausible values for each candidate, but we

generate 200 plausible values each. These are like draws of θi from its posterior distribution.

Using the generated plausible values and the item parameters estimated in the calibration

step, 200 predicted data sets are generated from the model given by Equations 1 and 2.

Values of the test statistics are computed for each of these predicted data sets. The

flowchart in Figure 1 shows the procedure for the average raw score statistic that will be

described shortly. These values of the statistics (which can be considered to have been

predicted under the model) are compared to the corresponding observed values to judge

the goodness of fit of the model. An observed value that is extreme with respect to the

distribution of the predicted values indicates misfit of the model. The comparison of the

observed and predicted values of the statistics was performed graphically by plotting the

observed and predicted values of the statistics: an observed value that lies at the tail of the

distribution of the predicted values would indicate that the corresponding statistic is not

predicted adequately by the model. In addition, we computed p-values for the statistics;

a p-value is the proportion of the predicted values of a statistic that is larger than the

corresponding observed value. A very low or very high p-value would indicate that the

corresponding statistic is not predicted adequately by the model.

The technique described above is an approximation of the posterior predictive

model-checking (PPMC) method (e.g., Gelman et al., 2003; Sinharay, 2005), a popular

Bayesian model-checking technique. The PPMC method involves the following three steps:

1. Generating a sample (mostly using a Markov chain Monte Carlo method; Gelman et

al., 2003) from the joint posterior distribution of the model parameters

2. Simulating data sets using the generated parameter values

3. Comparing the observed value of a test statistic with its values computed from the

generated data sets

Our suggested method performs the last two of these three steps and hence is similar to

the PPMC method. However, it is an approximation of the latter because it performs only
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Figure 1. A flowchart showing the steps of the simulation procedure to determine

the null distribution of the average raw scores. The item-parameter estimates from

PARSCALE are used in the CGROUP version of the DGROUP program, which gen-

erates 200 sets of plausible values. The plausible values and the item-parameter esti-

mates will be used to generate 200 simulated data sets, which will result in 200 sets

of average raw scores for each booklet for each examinee subgroup. The observed

average raw scores will then be compared to the corresponding 200 simulated values.
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part of the first step involved in a PPMC: it draws plausible values (which are approximate

draws from the examinee posterior distribution), but it does not draw item parameter

values. The PPMC method has been successfully used to detect misfit of simple IRT

models by Sinharay, Johnson, and Stern (2006) and Sinharay (2005), who applied some fit

statistics similar to those in this paper.

The suggested technique is also similar to the parametric bootstrap method (e.g.,

Efron & Tibshirani, 1993) that has been successfully applied to assess the fit of IRT models

and other similar models (see, for example, Stone, 2000; von Davier, 1997).

Our suggested method is simple to understand, as it is similar to two popular

model-checking methods. In addition, it uses existing NAEP software so that operational

implementation of the procedure will be straightforward.

3.2 Description of the Test Statistics

This paper examined if the LRM used in NAEP adequately predicts the test

statistics listed following this paragraph. All of these statistics are computed for each

booklet separately. Researchers van der Linden and Hambleton (1997, p. 16) recommended

the collection of a wide variety of evidence about model fit and then making an informed

judgment about model fit and usefulness of a model with a particular set of data for

assessing the fit of two- and three-parameters IRT models. Sinharay (2005) and Sinharay

et al. (2006) followed the recommendation to assess the fit of simple IRT models using a

variety of simple summaries of the data, which are similar to the ones listed in this section.

The recommendation of van der Linden and Hambleton is equally appropriate for any IRT

model, including the LRM employed in NAEP. Our suggested method, together with the

statistics described here, provides a tool kit that can be used to collect a variety of evidence

about the fit of the LRM to NAEP data or other similar data.

• Average raw score: Let Yij denote the response of the i-th examinee to the j-th item

in a booklet. For a dichotomous item, Yij is 0 or 1, while for a k−category polytomous

item, Yij takes one among the values 0, 1, . . . k − 1. NAEP encounters a substantial

percentage of omitted and not-reached responses. In NAEP, not-reached items are

treated as not-presented items, and an omitted response is assigned a fractional score
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equal to the reciprocal of the number of options in a multiple-choice item and assigned

the score for the lowest scoring category for a constructed-response item (Allen et al.,

2000, pp. 231-232). Hence, the following variation of the average raw score statistic is

used.

As =

∑

i∈s Wi

∑

j Yij/Ri
∑

i∈s Wi

,

where s denotes a subgroup and Ri is the sum of the maximum raw score points on the

items that the i-th examinee reached. The statistic As denotes the average proportion

score in a booklet for the s-th subgroup. Note that if examinee i omitted item j, Yij is

1/m for a m-option multiple-choice item and is equal to the lowest scoring category for

a constructed-response item. As argued earlier, this statistic is related to the examinee

subgroup means.

• Average item score: We used the weighted average item score for item j,

pj =

∑

i WiYij
∑

i Wi

,

as a test statistic. This is closely related to the statistic of interest in Rogers, Gregory,

Davis, & Kulick (2006), the main difference being that pj is defined for a booklet.

• Biserial correlation coefficients: Because of the way NAEP operational analysis treats

the omitted and the not-reached items, the standard definition of the biserial correlation

is not appropriate here. Hence, for each item in a booklet, we compute the correlation

between the item response vector and the vector of proportion correct scores
∑

j Yij/Ri

(using notations introduced earlier) using the sampling weights Wi in the computations.

• Item pair correlation: This is the correlation between the response vectors for two

items, where the sampling weights Wi were used in the computations.

We chose the above mentioned statistics because they are simple data summaries and most

of them were found to be useful in research by Sinharay (2005) and Sinharay et al. (2006).

The average raw score statistic deserves special mention. Ideally, model-checking in an

application should focus on aspects of the model that are relevant to the purposes to which

the inference will be applied (Gelman et al., 2003, p. 172). The quantities of primary
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interest in NAEP are the mean scale scores for the different subgroups, so it is necessary to

determine if these quantities are estimated adequately. Ideally, one would like to compare

the observed value of a test statistic based on the mean scale scores to the model-predicted

values of the test statistic. However, the mean scale scores are functions of the unobserved

examinee proficiency variables, so it is impossible to obtain a test statistic based on these

that will have an observed value. The average raw scores in examinee subgroups are

observed proxies of the unobserved mean scale scores; these raw scores, while simple to

compute, are expected to be highly correlated with the mean scale scores. If the NAEP

model predicts the average raw scores for examinee subgroups accurately for the data sets

under consideration, one should be confident that the subgroup estimates provided by the

NAEP model are accurate.

4 Analysis of Data From 2002 NAEP Reading Assessment

4.1 The Data

The NAEP 2002 Reading assessment grade-12 data, with about 15,000 examinees,

was used for this study. Primary reasons for choosing the reading assessment are that

reading is a No Child Left Behind subject, and, historically, reading items have been more

likely to display problematic item fit than mathematics (another No Child Left Behind

subject) items. The reading assessment measures three skills: (a) reading for literary

experience, (b) reading for information, and (c) reading to perform a task. The reading

assessment had 38 booklets. The first 36 booklets were given to a few hundred students

each, while the remaining two booklets were given to a few thousand students each.

Another difference is that each of the remaining two booklets consists of one long block

(out of a total of two long blocks) of items, whereas each of the first 36 booklets consists

of two shorter blocks (out of a total of nine short blocks) of items. The number of items

in a booklet is around 20 (about one-third multiple-choice items and about two-thirds

constructed-response items) for the first 37 booklets and about 10 (all constructed-response

items) for the remaining booklet. About 50% of all students taking the reading assessment

were male, about 65% were White, and about 15% were Black. The proportion of omitted

and not-reached responses ranged from 4% to 10% for the different booklets.
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4.2 The procedure

The data analysis consisted of the following steps:

1. Calculating the test statistics described in Section 3.2 from the original data set

2. Estimating the item parameters using the NAEP PARSCALE program

3. Running the CGROUP version of the DGROUP program to fit the LRM to the data

and to generate 200 plausible values

4. Simulating 200 data sets using the plausible values generated in the third step and the

estimated item parameters obtained in the second step

5. Calculating the test statistics for each of the 200 simulated data sets (resulting in 200

predicted values for each statistic) and comparing the results with the corresponding

observed values of the test statistics computed from the original data set using graphical

plots and p-values.

4.3 Results

4.3.1 Average raw scores

Figure 2 shows the p-values for the average raw-score statistic. The four panels

show results for all the examinees, for male students, for White students, and for Black

students. Each panel shows 38 points, each point denoting the p-value for a booklet.

A horizontal dashed line in each panel denotes the value of 0.025; a p-value below that

will indicate that the predicted values of the statistic are significantly lower than the

corresponding observed value. The range of the Y -axis is the same in all the four panels.

The figure shows the following:

• There is some evidence of misfit for all students (top left panel), with about half of the

p-values lying below 0.025.

• In all the panels, the p-values lie mostly below 0.5, which indicates that the predicted

values are mostly lower than the observed value of the statistic.
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Figure 2. The p-values for the average score statistics for all students, male students,

white students, and black students for all booklets.
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• The plots for the male, White, and Black students do not show overwhelming evidence

of misfit.

Figure 3 shows the observed value and predicted value of the average score statistic

for four booklets (1, 2, 37, and 38) for all the examinees, for male students, for White

students, and for Black students. Each row corresponds to a booklet and has four panels.

In any panel, a histogram denotes the predicted values and a vertical dashed line denotes

the observed value.

There are some differences in observed and predicted values of the test statistic,

especially for Booklets 2 and 37. For Booklet 37, the observed values are significantly

different from the corresponding predicted values. However, the magnitude of the difference

is not too large, even for this booklet. For example, for all students (the first panel in the

third row in Figure 3), the observed value of the average score statistic is about 0.58 while

the mean of the predicted values is approximately 0.57. So the differences between the

observed and predicted values, while statistically significant, are most likely not practically

significant. However, further research is required to study the practical significance of these

differences.

4.3.2 Average Item Score

Figure 4 shows all the p-values for the statistic. Two vertical lines are drawn at

values 0.025 and 0.975. If an item appears in two different booklets, it is treated as two

different items and has two p-values associated with it.

The figure shows that more than half of the p-values are less than 0.5. The

percentage of p-values that are larger than 0.975 or smaller than 0.025 is 9–not much larger

than the nominal level.

4.3.3 Biserial Correlation

Figure 5 shows all the p-values for the biserial correlation. Two vertical lines are

drawn at values 0.025 and 0.975. If an item appears in two different booklets, it is treated

as two different items and has two p-values associated with it.
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Figure 3. The observed and predicted values of the average score statistics for all

students, male students, White students and Black students for Booklets 1, 2, 37, and

38.
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Figure 4. The p-values for the average item score statistic.
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Figure 5. The p-values for the biserial correlations.

The figure shows that there are not too many extreme p-values for the biserial

correlation—that is exactly what is expected when a model predicts a statistic adequately.

The percentage of p-values that are larger than 0.975 or smaller than 0.025 is 10–not much

larger than the nominal level.
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4.3.4 Item-Pair Correlation

Figure 6 shows all the p-values for the item-pair correlation statistic. Two vertical

lines are drawn at values 0.025 and 0.975. If an item appears in two different booklets, it is

treated as two different items.
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Figure 6. The p-values for the item-pair correlations.

The figure shows that there are not too many extreme p-values for the item-pair

correlations. The percentage of p-values that are larger than 0.975 or smaller than 0.025 is

9–not much larger than the nominal level.

4.3.5 Discussion

We find the LRM employed in NAEP to adequately predict the average item score,

the biserial correlation, and item-pair correlation. The model does not seem to predict the

average raw scores of the students adequately. It often underpredicts the scores; however,

the differences between the observed and predicted scores seem to be rather small so that

the differences are most likely not practically significant. Overall, as the model is found to

adequately predict several summaries of the NAEP data, we are quite confident that the

model is adequate for the data.
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5 Studying the Type I Error Rate of the Suggested Method

It is important to study the Type I error rate of any statistic used for model

checking. Our suggested technique is similar to the bootstrap method (Efron & Tibshirani,

1993) and the posterior predictive model-checking method (Gelman et al., 2003). Both of

these methods are expected to have Type I error rates close to the nominal level. However,

we still perform a limited study to make sure that the Type I error rate of our suggested

method is not too high. To perform this study, we need a data set generated from the

model; The earlier section described the procedure to generate several data sets that can be

considered to have come from the NAEP model, that is, they are data sets that we would

have seen if the NAEP model were true. We replaced the item responses in the observed

data set by those in the first generated data set and repeated the whole analysis (which

included running PARSCALE, DGROUP, simulating 200 data sets, and computing the test

statistics) described earlier. The results from applying our method are described in the

following section for different test statistics.

5.1 Average Raw Scores

Figure 7 shows the p-values for the average raw-score statistic from all the 38

booklets from all students, from male students, from White students, and from Black

students. The proportion of significant p-values in Figure 7 is not much higher than the

nominal level of 5%, which points to the respectable Type I error rate of our suggested

method.

However, Figure 7 shows some patterns similar to those in Figure 2. For example,

all p-values are below 0.6 for all students, and there are no p-values larger than 0.85 in any

of the four panels. Ideally, under the null model, the p-values for a good-fit statistic should

be distributed uniformly between 0 and 1, which is not the case here. Further research

might be done to explore this phenomenon.

5.2 Average Item Score

Figure 8 shows all the p-values for the average item-score statistic. The percentage

of p-values that are larger than 0.975 or smaller than 0.025 is 5, the same as the nominal
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Figure 7. The p-values for the average score statistics for all students, male students,

White students and Black students for all booklets in the Type I error study.
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level. However, the figure shows, as does Figure 4, that more than half of the p-values lie

below 0.5.
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Figure 8. The p-values for the average item-score statistic in the Type I error study.

5.3 Biserial Correlation

Figure 9 shows all the p-values for the statistic. The figure shows that the p-values

are more or less uniformly distributed between 0 and 1. The percentage of p-values that are

larger than 0.975 or smaller than 0.025 is 6, very close to the nominal level.

5.4 Item-Pair Correlation

Figure 10 shows all the p-values for the statistic. The figure shows that p-values

are more or less uniformly distributed between 0 and 1. The percentage of p-values that are

larger than 0.975 or smaller than 0.025 is 5, exactly the same as the nominal level.

5.5 Discussion on the Type I Error Rate

The results discussed in the previous section indicate that our suggested method

has a satisfactory Type I error rate. The proportion of significant p-values is very close to

or the same as the nominal level for all the test statistics we examined. However, for the
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Figure 9. The p-values for the biserial correlations in the Type I error study.
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Figure 10. The p-values for the Item-Pair correlations in the Type I error study.

average raw-score statistic and the average item score statistic, the p-values do not seem to

follow a uniform distribution; further research might be done on this issue.
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6 Conclusions

To ensure quality control and overall improvement of the NAEP statistical analysis,

there is a constant need to assess the fit of the NAEP statistical model. The task is far from

straightforward given the complex nature of the NAEP statistical model and estimation

procedure. This paper applied a simulation-based model-fit technique to NAEP data to

investigate whether basic statistical summaries like the average raw scores for different

subgroups are predicted adequately by the LRM employed in NAEP. Our suggested

procedure is simple to understand and uses existing NAEP software, so that operational

implementation of the procedure will be easy. The analysis of a real data set provided

us with limited evidence of misfit of the NAEP model. However, the magnitude of the

misfit does not seem to be drastic (i.e., the misfit most likely does not have any practical

significance).

The distribution of the p-values for the average raw-score and the average item-score

statistics under the null model were found to be non-uniform and not centered around 0.5:

the model seems to underpredict these quantities. We do not have an explanation for this

phenomenon as of now. It is possible that the phenomenon has to do with the way NAEP

generates plausible values or with the discrepancy between the scaling stage (where the

ability parameters are assumed to follow independent discrete univariate distributions) and

the conditioning stage (where the ability parameters are assumed to follow a multivariate

regression model) of NAEP estimation. Further research might be conducted on this issue.

There are a number of related issues that could be examined in the future. Our

suggested technique is similar to the PPMC method and the parametric bootstrap method,

both of which were found to have satisfactory Type I error and power rate for a variety

of IRT models. Hence, we expect the suggested method to have satisfactory Type I error

rate and power. However, a more detailed study of Type I error rate and power of the

method are a future research issue to pursue. It is possible to examine raw-score-based

graphical item fit, like that employed in Sinharay (2006). It is also possible to compute

correlations between the scaled composite scores and the raw scores of the examinees—a

high correlation and adequate prediction of booklet-level raw scores by the model will

provide additional assurance that the subgroup averages of scaled scores are accurate. In
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this work, we examined booklet-level statistics only. It may be informative to examine

test statistics that combine information from several booklets (e.g., an overall average item

score) by combining information over booklets and a weighted average of booklet averages

for a subgroup. As NAEP reports the percentage of examinees at or above different

performance levels (e.g., basic, proficient), it will be helpful to focus on a statistic related

to percentages. Running an MCMC algorithm and then employing the PPMC method to

assess the fit of the NAEP model can be a topic of future research, especially after the

recent works on an MCMC algorithm for fitting the NAEP model (e.g., Johnson & Jenkins,

2004).
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