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Abstract 

This simulation study evaluated the potential of alternative loglinear smoothing strategies for 

improving equipercentile equating function accuracy. These alternative strategies use cues from 

the sample data to make automatable and efficient improvements to model fit, either through the 

use of indicator functions for fitting large residuals or by averaging raw and smoothed 

frequencies. The strategies were studied across equating conditions based on rights-scored and 

formula-scored test data. Sample sizes were also manipulated. The results showed that the 

considered strategies produced equating functions with improved on-average accuracy but with 

added random variability. Of the considered alternative strategies, the frequency averaging 

strategy produced the most accurate equating functions for most of the evaluations done in the 

study. The frequency averaging strategy is recommended for circumstances where the desired 

loglinear model appears to fit the data poorly and where time constraints and/or data conditions 

make traditional modeling approaches unrealistic. 
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Introduction 

Since the introduction of polynomial loglinear models as a smoothing method for discrete 

test score distributions and equipercentile equating methods (Holland & Thayer, 1987), researchers 

have wondered how models’ parameterizations affect equating function accuracy (Hanson, 1991; 

Hanson, Zeng, & Colton, 1994; Livingston, 1993; Skaggs, 2004). Research has primarily focused 

on varying the number of overall features of test score distributions (i.e., moments) that are fit by 

the loglinear models, showing that the number of moments has a direct relationship with equating 

variability and an inverse relationship with equating bias. The purpose of this study is to evaluate 

some alternative loglinear modeling strategies that may improve equipercentile equating accuracy 

beyond the accuracy improvements offered by the usual focus on moment selection. 

Univariate Loglinear Smoothing Models 

The loglinear models considered in this study are those used to produce smoothed versions 

of the frequency distribution for one test, X, with possible scores xj = x1,…,xJ. The transposed row 

vector of observed score frequencies, n = (n1,…,nJ )t, sums to the total sample size, N. The 

loglinear model expresses the log of the expected (not observed) score probabilities in terms of a 

polynomial function of the test scores, 

0log ( )
1

D dp xe j d jd
β β= + ∑

=
, (1) 

where the dx j  are functions of the possible score values of test X (e.g., 1x j , 
2x j ,…, Dx j ), and 0β  is 

a normalizing constant that forces the sum of the expected probabilities, jp , to equal 1 and the 

sum of the smoothed frequencies, jm , to equal N. The dβ  are parameters to be estimated in the 

model-fitting process. When (1) is fit using maximum likelihood estimation, the value of D 

determines the number of moments of the observed test score distribution that are preserved in the 

smoothed distribution. 

Test distributions can exhibit complexities that can make models like (1) inadequate even 

when the models are fit with statistically optimal D values. The distribution of a formula-scored 

test, where a portion of examinees’ incorrect responses is subtracted from their total number of 

correct responses, typically has abnormally low frequencies occurring at a small number of scores 
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that are separated by fixed intervals (i.e., teeth).1 Heterogeneous examinee groups may produce 

score distributions with lumps, or bimodality, in formula-scored and rights-scored tests (i.e., tests 

scored as the total number of correct responses). The population models of these data are typically 

regarded as more complex than models like (1) (Holland & Thayer, 2000; von Davier, Holland, & 

Thayer, 2004). 

Finding population models in samples of complex populations can be difficult and perhaps 

even unlikely. Research demonstrations suggest that complex population models can and should be 

found using extensive evaluations of several models’ fit to sample data, based on models’ 

residuals, conditional moments, observed versus smoothed plots, and a large variety of overall 

model fit statistics (e.g., Holland & Thayer, 2000; von Davier et al., 2004). These suggestions can 

seem fanciful to equating practitioners faced with short score reporting timelines, noisy 

distributions from small sample sizes, and unanticipated changes to test score distributions and 

work timelines that arise when items are unexpectedly removed from tests. For example, the 

equating of formula-scored test data at ETS is done using oversimplified loglinear models like (1) 

rather than the loglinear models that are most likely to reflect the population. To find plausible 

population models in search processes that are responsive to the difficulties typically encountered 

in equating practice, alternative loglinear modeling strategies that use cues from the sample data to 

make automatable and efficient improvements to model fit may be useful. Four alternative 

strategies are described and evaluated in this study. 

Alternative Loglinear Modeling Strategies 

One class of alternative loglinear models considered in this study focuses on directly fitting 

subsets of a total test score distribution. When a subset (i.e., S) of the total score range is identified 

as having frequencies that do not follow the pattern of most of the score distribution, this subset 

can be incorporated into a loglinear model with an indicator function, 

0log ( ) ( )11
S

D dp x I je j d j Dd
β β β= + +∑ +=

, (2) 

where ( )SI j  is an indicator function set equal to 1 when score jx  is in subset S and 0 otherwise. 

The ( )SI j  in (2) produces smoothed frequencies that match the first D moments of the observed 

distribution and, for the scores in subset S, smoothed frequencies that sum to the total observed 
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frequencies. The literature’s descriptions of indicator functions and loglinear models are limited to 

anticipated sources of lack of fit, such as distribution structures determined by a test scoring 

method, by rounding negative scores to zero, or by examinee subgroups (Hanson, 1996; Holland & 

Thayer, 2000; von Davier et al., 2004). These sources of lack of fit are addressed with extensive 

model searches and comparisons. 

This study considers the use of indicator functions such as those in (2) as a data based and 

automatable approach to addressing unanticipated lack of fit. When an initial model such as (1) is 

fit, the lack of fit of this model could be addressed using indicator functions such as those in (2) to 

perfectly fit the score frequencies corresponding to initial model (1)’s largest residuals. Such a 

strategy would not require prior knowledge of model (1)’s inadequacies.  

Several residuals for loglinear models could be used for directing the application of 

indicator functions to addressing unanticipated lack of fit. Three residuals considered in this study 

are the Freeman-Tukey residual, the standardized residual and the adjusted residual (Agresti, 2002; 

Cox, 1984; Freeman & Tukey, 1950; Haberman, 1973). The Freeman-Tukey residual is the square 

root of the jth part of the Freeman-Tukey chi-square statistic, 

+ +1 - 4 +1n n mj j j . (3) 

The standardized residual is the square root of the jth part of the Pearson chi-square statistic,  

-n mj j
m j

.  (4) 

Adjusted residuals adjust the standardized residuals in (4) to have asymptotic variances of 1, 

dividing each standardized residual by the square root of its estimated variance found in the 

following variance-covariance matrix, 

1( )t t tI p p A A A A−− − , (5) 
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where I is a J-by-J identity matrix, 1 1/ 2 1( )N N t
p mA D D mm X− − −= − , the mD  matrix is a 

diagonalized matrix of vector m, the 1/ 2
pD−  matrix is a diagonalized matrix of vector of 1/ 2p− , and 

X is the matrix containing the power functions of X shown in (1).  

Another way to improve the fit of an initially chosen loglinear model like (1) may be to 

average the smoothed frequencies with the raw frequencies, 

(1 ) ( ),   0 1j j j j jwn w m m w n m w+ − = + − < < .   (6) 

Frequency averaging addresses a model’s lack of fit by using a portion (w) of the residuals 

( )j jn m−  to rerough (Tukey, 1977) the smoothed frequencies ( jm ) and, in this sense, utilizes 

residuals to improve model fit differently from the previously described indicator function 

approaches. The averaged frequencies from (6) preserve all of the observed moments that are 

preserved in the smoothed distribution. Frequency averaging may have the following benefits:  

• the averaged distribution may not be as influenced as are indicator function 

strategies by sparse data and/or sampling variability because a model’s lack of fit 

is addressed at an overall level that is more stable than score-specific levels,  

• frequency averaging is a more easily implemented approach to addressing 

unanticipated lack of fit than the use of indicator functions for fitting large 

residuals, and 

• because all of the jm  are greater than zero, all of the averaged frequencies are 

also greater than zero, avoiding the use of ad hoc rules needed to address 

difficulties the traditional equipercentile method has with scores where 0jn =  

(Kolen & Brennan, 2004).  

Studying Loglinear Models and Equating Function Accuracy 

To date, studies that evaluate loglinear models in equating have focused on the effects of 

fitting different numbers of distributions’ overall moments on equipercentile equating accuracy 

(Hanson, 1991; Hanson et al., 1994; Livingston, 1993; Moses & Holland, 2008; Skaggs, 2004). 

While these studies are useful for describing the bias-variability tradeoff of loglinear models and 

equating function accuracy, they have not addressed situations where test distributions have 
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structures due to scoring practices and/or heterogeneous examinee groups. In addition, the research 

contexts where test distributions’ complex structures have been modeled emphasized model 

searches that may be more time-intensive than equating timelines can realistically support. This 

study considers how loglinear models and equating functions can be improved by the use of 

alternative strategies that address the misfit of models like (1) through targeting large residuals 

with indicator functions or averaging the observed and smoothed distributions.  

Method 

A simulation study was designed to assess the effects of alternative loglinear modeling 

strategies on equating function accuracy. Population test score distributions and equating functions 

were defined by fitting loglinear models to test score data obtained in large-volume exam 

administrations. Several hundred datasets were drawn from the population distributions, the 

loglinear modeling strategies of interest were fit to the sample data, equipercentile equating 

functions were computed from the loglinear models’ distributions, and the sample equating 

functions were compared to the population equating functions.  

Loglinear Modeling Strategies 

Six loglinear modeling strategies were assessed, including the four previously described 

alternative modeling strategies (averaging, Freeman-Tukey residuals, standardized residuals, and 

adjusted residuals) and two additional strategies used for comparative purposes (no alternative and 

population).  

No alternative. This is the no alternative (no alt) model shown in (1), where D is selected 

from the sample data. The no alt strategy is most germane to equating practice, making it a useful 

baseline model for evaluating the potential improvements of the four alternative modeling 

strategies. 

Residuals. Three strategies applied the indicator functions model in (2) to address large 

residuals in the no alt model. One strategy was based on Freeman-Tukey residuals (FT resid), one 

strategy was based on standardized residuals (std resid), and one strategy was based on adjusted 

residuals (adj resid). For these strategies, each large residual in the no alt model was fit with a 

single indicator function, ( )SI j . Because all three residuals tend to be interpreted as standardized 

deviates, residuals were defined as large enough to warrant indicator functions when they 

exceeded 2 in absolute value. For example, if the no alt model had three FT resids whose absolute 
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values were greater than 2 at scores j = 2, 5 and 9, then the FT resid strategy would use the 

following loglinear smoothing model, 

0log ( ) ( 2) ( 5) ( 9)1 2 31
β β β β β= + + = + = + =∑ + + +=

S S S

D dp x I j I j I je j d j D D Dd
. (7) 

Averaging. For the averaging strategy, each observed frequency was averaged with the 

smoothed frequency in the no alt model by setting w equal to 0.5 in (6). 

Population. The population strategy fit the population loglinear models to all of the sample 

datasets created for the replications of the study. The population models are described in the 

Population Distributions and Equating Functions section in this report. This strategy is the ideal 

scenario for using loglinear models in equating. 

D Selection for the No Alt Model 

To allow for the possibility that the alternative loglinear modeling strategies’ performance 

might reflect how D was chosen, the no alt strategy and the four alternative strategies (averaging, 

Freeman-Tukey residuals [FT resid], standardized residuals [std resid], and adjusted residuals [adj 

resid]) were evaluated based on two methods for picking the no alt model’s D from values ranging 

from 2 through 10. The two considered methods for picking D are the minimization of the Akaike 

information criterion (AIC) statistic (Akaike, 1981) and of the consistent AIC (CAIC) statistic 

(Bozdogan, 1987). Prior research has found that the minimization of the AIC statistic typically 

selects loglinear models with larger D values than the minimization of the CAIC statistic (Moses & 

Holland, 2008). Considering the performance of the alternative loglinear modeling strategies in 

terms of AIC and CAIC minimization allows for the possibility that differences in the alternative 

strategies may be larger when based on no alt loglinear models that fit the data less closely (i.e., 

loglinear models based on the CAIC’s smaller D) than on initial loglinear models that fit the data 

more closely (i.e., loglinear models based on the AIC’s larger D).  

Population Distributions and Equating Functions 

Two equivalent groups equating conditions from Moses and Holland (2008) were used in this 

study. One of the conditions was based on rights-scored tests, where most of the test distributions 

were obtained from large-volume teacher certification exams. The rights-scored X and Y relative 

frequency distributions used as populations in this study were obtained by fitting loglinear model (1) 
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with D = 6 to an observed X distribution and another loglinear model (1) with D = 2 to a different Y 

distribution. These modeled distributions are plotted in Figures 1 and 2 and the overall statistics are 

shown in Table 1. Another equating condition was obtained from large-volume aptitude exams 

where the tests were formula scored and rounded, with negative scores being rounded to score zero. 

The formula-scored X and Y frequency distributions used as populations in this study were obtained 

by fitting loglinear models that preserved the teeth distribution1, the lump at zero, and four overall 

moments in observed X and Y data. These modeled distributions are plotted in Figures 3 and 4 and 

the overall statistics are shown in Table 1.  

The population rights- and formula-scored X-to-Y equating functions were computed from 

the population relative frequency distributions in Figures 1–4. Both equating functions were 

complex equipercentile functions. The formula-scored equating condition presumably warranted 

the alternative loglinear modeling strategies due to structures in its X and Y distributions that were 

beyond what the no alt model would directly address. The rights-scored equating condition was of 

interest because it provided the opportunity to assess the performances of the alternative loglinear 

modeling strategies in a situation where the strategies were not actually needed and where the no 

alt model was expected to produce adequate results.  

Table 1 

Four Univariate Population Distributions and Two Population X-to-Y Equating Functions 

 Rights-scored condition Formula-scored condition 

X Y X Y 

Score range 0–40 0–40 0–78 0–78 

Mean 28.09 20.00 39.25 32.69 

Standard deviation 7.44 6.88 17.23 16.73 

Skew -0.41 0.00 -0.11 0.24 

Kurtosis -0.63 -0.19 -0.77 -0.69 
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Figure 1. Population X distribution for the rights-scored X-to-Y equating condition. 

 

Figure 2. Population Y distribution for the rights-scored X-to-Y equating condition. 
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Figure 3. Population X distribution for the formula-scored X-to-Y equating condition. 

 

Figure 4. Population Y distribution for the formula-scored X-to-Y equating condition. 
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Sample Sizes and Random Datasets 

Datasets were randomly drawn from each of the four population test score distributions, 

some with 1,000 examinees and others with 5,000 examinees. These datasets resembled the 

statistical characteristics and score ranges of their respective population distributions but also had 

random noise. 

Evaluation 

The four alternative loglinear modeling strategies (averaging, FT resid, std resid, and adj 

resid) were evaluated for two methods of selecting D in the no alt model, two sample sizes, and 

two population equating function conditions. For each of the D-by-sample size-by-equating 

function conditions, 200 sample datasets were drawn, the strategies were fit to the sample data, 

equipercentile X-to-Y functions (Kolen & Brennan, 2004) were computed from the loglinear 

models, and the 200 sample equating functions were compared to the population equating function.  

Accuracy Measures 

Accuracy measures for the X-to-Y equating functions ( ( )ye x ) based on different alternative 

loglinear model strategies were developed based on some of the measures used in prior equating 

studies (Hanson, 1991; Livingston, 1993; Moses & Holland, 2008). The measures are based on 

score-level mean squared error ( jMSE ),  

( )

( ) ( )

2

, ,

2 2

, ,

2

1 ( ) ( )
200

1          ( ) ( ) ( ) ( )
200

           

j y i j y Population j
i

y j y Population j y i j y j
i

j j

MSE e x e x

e x e x e x e x

Bias Variance

= −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= +

∑

∑

 (8) 

where j indicates the jth score in the observed score range, j = 1 to J, i indicates one of the 200 

random datasets drawn from one of the population distributions at one of the sample sizes, , ( )y i je x  

is the estimated X-to-Y equated score at the jth score in one of the 200 datasets, ( )y je x  is the 

average of the 200 sample datasets’ equated scores at the jth score, and , ( )y Population je x  is the 

population equated score at the jth score.  
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The measures of interest were averages of the root-squared bias and root-variance of the 

jMSE . Square roots of these quantities were taken to obtain measures in the scale of the equated 

scores being estimated. The root-squared bias is referred to as a mean absolute deviation (MAD), 

averaged with respect to X’s population distribution, ( )Population jP X x= , 

MAD    

2 ( )

( )

j Population j
j

j Population j
j

Bias P X x

Bias P X x

= =

= =

∑

∑
. (9) 

The root-variance is referred to as a mean standard error of equating (MSEE), averaged with 

respect to X’s population distribution, ( )Population jP X x= , 

MSEE      
( )

( )

j Population j
j

j Population j
j

Variance P X x

SEE P X x

= =

= =

∑

∑
. (10) 

To supplement the results of the overall MAD and MSEE values, score-level biases 

( jBias ) and standard errors of equating ( jSEE ) were also evaluated at specific combinations of D 

selections, sample size, and equating condition. 

Results 

Rights-Scored Equating Results 

Tables 2 and 3 present the strategies’ MAD and MSEE results for the rights-scored 

equating condition across the two considered sample sizes and D selection methods. The MAD 

results in Table 2 show that the average equating function produced by the no alt strategy is less 

accurate (i.e., larger MAD values) than the average equating functions of the four alternative 

strategies, which are in turn less accurate than the average equating function from using the 

population models. Of the four alternative strategies, the averaging strategy has the smallest MAD 

values. All strategies are more accurate when based on D values selected by minimizing the AIC 

statistic rather than the CAIC statistic and when based on sample sizes of 5,000 rather than sample 

sizes of 1,000.  
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Table 2 

Mean Absolute Deviation (MAD) Values for the Rights-Scored Equating Situation 

N D No alt FT resid Std resid Adj resid Averaging Population

1,000 CAIC 0.137 0.103 0.091 0.080 0.075 
0.029 

1,000 AIC 0.035 0.037 0.032 0.032 0.030 

5,000 CAIC 0.044 0.033 0.033 0.029 0.024 
0.006 

5,000 AIC 0.007 0.007 0.007 0.007 0.007 

Note. Adj resid = adjusted residuals, AIC = Akaike information criterion, CAIC = consistent AIC, 

FT resid = Freeman-Tukey residuals, no alt = no alternative, std resid = standardized residuals. 

Table 3 

Mean Standard Error of Equating MSEE) Values for the Rights-Scored Equating Situation 

N D No alt FT resid Std resid Adj resid Averaging Population

1,000 CAIC 0.415 0.428 0.427 0.429 0.409 
0.381 

1,000 AIC 0.407 0.420 0.418 0.420 0.416 

5,000 CAIC 0.196 0.198 0.199 0.198 0.197 
0.185 

5,000 AIC 0.194 0.199 0.199 0.200 0.199 

Note. Adj resid = adjusted residuals, AIC = Akaike information criterion, CAIC = consistent AIC, 

FT resid = Freeman-Tukey residuals, no alt = no alternative, std resid = standardized residuals. 
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The MSEE results in Table 3 show that the least variable equating results were produced 

from using the population strategy. The no alt strategy was the second least variable strategy, 

except for when D values were selected with the CAIC statistic in sample sizes of 1,000. Of the 

four alternative strategies, the averaging strategy was the least variable. All strategies become less 

variable when based on sample sizes of 5,000 rather than sample sizes of 1,000. 

Formula-Scored Equating Results 

Tables 4 and 5 present strategies’ MAD and MSEE results for the formula-scored equating 

condition across the two considered sample sizes and D selection methods. The MAD results in 

Table 4 show that the average equating function produced by the no alt strategy is less accurate 

(i.e., larger MAD values) than the average equating functions of the four alternative strategies. 

Results are inconsistent for identifying the best performing strategy in terms of MAD values, 

sometimes showing that the use of the population models is the most accurate strategy, other times 

showing that averaging is the most accurate strategy, and other times showing that adj resid is the 

most accurate strategy. Like the rights-scored results in Table 2, Table 4’s results show that all 

strategies’ MAD values are smallest when based on sample sizes of 5,000 rather than sample sizes 

of 1,000. 

Table 5’s MSEE results show that the least variable results were obtained from the 

population strategy. The second least variable strategy is sometimes the no alt strategy and other 

times the averaging strategy. All strategies become less variable when based on sample sizes of 

5,000 rather than sample sizes of 1,000. 

Score-Level Results 

Figures 5–8 plot the score-level biases and SEEs for some of the rights- and formula-scored 

equating conditions. The plotted results are of the study conditions where the strategies are most 

easily differentiated, based on D selections based on the CAIC statistic and on sample sizes of 

1,000. The score-level results in Figures 5–8 are generally consistent with the overall MAD and 

MSEE results in Tables 2–5, showing that for the majority of scores, the use of population models 

is the least biased and least variable strategy, the averaging strategy is the least biased and least 

variable of the four alternative loglinear modeling strategies, and the no alt strategy is the most 

biased strategy. As suggested in Tables 2–5, the score-level results for the nonplotted conditions 

are much smaller and, hence, would be less visible than what is shown in Figures 5–8. 
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Table 4 

Mean Absolute Deviation (MAD) Values for the Formula-Scored Equating Situation 

N D No alt FT resid Std resid Adj resid Averaging Population

1,000 CAIC 0.321 0.228 0.216 0.207 0.158 
0.061 

1,000 AIC 0.071 0.061 0.064 0.063 0.057 

5,000 CAIC 0.085 0.042 0.043 0.042 0.054 
0.051 

5,000 AIC 0.074 0.047 0.049 0.041 0.047 

Note. Adj resid = adjusted residuals, AIC = Akaike information criterion, CAIC = consistent 

AIC, FT resid = Freeman-Tukey residuals, no alt = no alternative, std resid = standardized 

residuals. 

Table 5 

Mean Standard Error of Equating (MSEE) Values for the Formula-Scored Equating Situation 

N D No alt FT resid. Std resid. Adj resid. Averaging Population

1,000 CAIC 1.129 1.121 1.137 1.133 1.061 
0.982 

1,000 AIC 1.039 1.060 1.059 1.059 1.049 

5,000 CAIC 0.481 0.484 0.485 0.486 0.477 
0.449 

5,000 AIC 0.481 0.492 0.492 0.491 0.484 

Note. Adj resid = adjusted residuals, AIC = Akaike information criterion, CAIC = consistent AIC, 

FT resid = Freeman-Tukey residuals, no alt = no alternative, std resid = standardized residuals. 
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N o  A lt F T  R e s id S td  R e s id A d j R e s id A ve ra g in g P o p u la tio n  

Figure 5. Selection strategies’ biases for the rights-scored equating condition, the consistent 

Akaike information criterion (CAIC) D selection, and sample sizes of 1,000. 

Note. Adj resid = adjusted residuals, FT resid = Freeman-Tukey residuals, no alt = no alternative, 

std resid = standardized residuals. 

N o  A lt F T  R e s id S td  R e s id Ad j R e s id Ave ra g in g Po p u la tio n  

Figure 6. Selection strategies’ standard errors of equating (SEEs) for the rights-scored 

equating condition, the consistent Akaike information criterion (CAIC) D selection, and 

sample sizes of 1,000. 

Note. Adj resid = adjusted residuals, FT resid = Freeman-Tukey residuals, no alt = no alternative, 

std resid = standardized residuals. 
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Figure 7. Selection strategies' biases for the formula-scored equating condition, the CAIC D 

selection and sample sizes of 1,000. 

Note. Adj. resid. = adjusted residuals, FT resid.= Freeman-Tukey residuals, no alt = no alternative, 

std resid. = standardized residuals. 

N o  A lt F T  R e s id S td  R e s id A d j R e s id A ve ra g in g P o p u la tio n  

Figure 8. Selection strategies’ standard errors of equating (SEEs) for the formula-scored 

equating condition, the CAIC D selection, and sample sizes of 1,000. 

Note. Adj. resid. = adjusted residuals, FT resid.= Freeman-Tukey residuals, no alt = no alternative, 

std resid. = standardized residuals. 
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Discussion 

The purpose of this study was to evaluate some data-driven and automatable loglinear 

smoothing strategies that are alternatives to the well-known strategies that predominantly focus of 

fitting distributions’ moments. These alternative strategies use the misfit of a loglinear smoothing 

model as a basis for automatically improving the model. How well these alternative strategies appear 

to perform depends on what strategies they are compared to. One baseline model used in this study 

involved fitting the population models to all of the sample datasets in the simulation (population). 

Another baseline model used a statistical strategy to select the overall number of moments to fit in 

the test score distributions without an alternative strategy (no alt).  

One evaluation of the alternative strategies was with respect to the ideal scenario where the 

population model is always known regardless of the sample data (population). The alternative 

strategies were always worse than the population strategy in terms of equating variability and were 

usually worse than the population strategy in terms of average absolute deviations from the 

population equating function. One apparent implication of comparisons with the population 

strategy is that population models should always be used when applying smoothing methods in 

research and practice. This implication is optimistic, as population models are always unknown in 

unsimulated data, at best are only closely approximated with extensive searches in sample data, 

and at worst are disregarded due to the constraints of time, tasks, and priorities that comprise 

equating practice. Another implication of the population results is that model search strategies that 

are structured to be consistent with the population model should perform well. For example, if 

separate model searches for D in the teeth and nonteeth distributions of formula-scored data 

eventually become feasible for equating practice and these separate searches were implemented 

using AIC minimization in sample sizes that were not too small, these separate searches would 

likely produce accurate equating functions. 

When compared to the no alt strategy, most relevant to current equating practice, the 

alternative modeling strategies produced equating functions that more closely approximated the 

population equating function on average (Tables 2 and 4) but usually introduced more random 

variability (Tables 3 and 5). When the no alt strategy was based on a poor smoothing model, the 

improvements in accuracies of the alternative strategies' equating functions exceeded the increase 

in equating variability. When the no alt strategy was based on a well-chosen smoothing model, the 

improvements in the accuracies of the alternative strategies’ equating functions were small relative 
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to the increase in equating variability. These results suggest that the alternative strategies are most 

useful in circumstances where the desired loglinear model appears to fit the data poorly and where 

time constraints and/or data conditions make traditional modeling approaches unrealistic. 

Of the four alternative modeling strategies, the averaging strategy usually outperformed the 

other three strategies in terms of the accuracy of its average equating functions and its variability. 

The performance and simplicity of the averaging strategy suggest that it can be useful in improving 

equating practice at ETS, particularly when formula-scored test data are being equated and 

smoothing models known to be incorrect are used automatically and without review. Useful 

extensions of the averaging strategy would be to derive estimates of the variance-covariance 

matrices of the averaged smoothed and observed distributions and also to consider different 

approaches for choosing w.  

The results suggest that the use of indicator functions to fit large residuals can be 

recommended when smoothing and equating formula-scored tests with sample sizes of at least 

5,000. The residuals were most likely to reflect structures actually in the population distributions 

for the formula-scored tests rather than for the rights-scored tests. The residuals were most likely 

to be accurate indications of actual structures when based on sample sizes of 5,000 rather than 

1,000. In comparing these residuals-based indicator function strategies to the averaging strategy, 

the important issue is how much of a large residual gets incorporated into the smoothing model 

being improved upon. With smaller sample sizes, the averaging strategy’s incorporation of a 

portion of all residuals was more sensible than the residuals-based strategies’ incorporation of all 

of the large residuals. With large sample sizes and formula-scored distributions, the residuals-

based strategies’ incorporation of all of the large residuals produced average equating functions 

that were more accurate than the averaging strategy, though the individual equating functions were 

also more variable. Of the three residuals-based strategies, the strategy which used adjusted 

residuals performed better than the strategies that used Freeman-Tukey and standardized residuals. 

Throughout this study, the accuracy criteria used to evaluate the alternative strategies was 

with respect to a known population equating function. While population-based evaluations are 

commonly used in smoothing and equating studies (Hanson, 1991; Hanson et al., 1994; 

Livingston, 1993), they represent a limited number of possible criteria that could be used to 

evaluate equating (e.g., Harris & Crouse, 1993). Some smoothing and equating methods not 

addressed in this study have been developed to deliberately incorporate smoothness criteria in their 
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results (e.g., Kolen & Brennan, 2004, p. 86; von Davier et al., 2004, pp. 62–63). To the extent that 

smooth equating functions are valued, measures of an equating function’s smoothness may be 

important supplements to the accuracy measures considered in this study. An important pursuit of 

future research and practice would be to clarify the relative importance of equating accuracy and 

equating smoothness, particularly in situations where test data have systematic irregularities that 

make accuracy and smoothness criteria inconsistent.  
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Notes 
1. Teeth in rounded formula-scored distributions arise because examinees vary in terms of their 

item omission patterns, and groups of examinees with different item omission patterns vary in 

their size. In rounded formula-scored distributions, item omission patterns define sets of total 

scores that are impossible to obtain. The teeth make up a set of impossible scores for the 

relatively large group of examinees that does not omit any items. 




