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Abstract 

This paper describes an approach to item analysis that is based on the estimation of a set of 

response curves for each item.  The response curves show, at a glance, the difficulty and the 

discriminating power of the item and the popularity of each distractor, at any level of the 

criterion variable (e.g., total score).  The curves are estimated by Gaussian kernel smoothing, a 

weighted moving average process with a parameter that can be varied at the user’s discretion.  

The response curve for the correct answer can be accompanied by curves indicating a confidence 

region.  The response curves also form the basis for estimating item statistics for any group of 

examinees for which the distribution of the criterion variable is known.   
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Some things in educational testing have changed greatly over the past half-century.  

Others have not.  Computing capabilities have changed tremendously.  The purpose of item 

analysis has changed very little.  Item analysis is still, as it was 50 years ago, the production of 

statistics to enable test developers to evaluate (a) the difficulty of each test item and (b) the 

relationship between performance on the item and performance on some more general 

measure—typically, the test containing the item.  Fifty years ago, the statistics that could be used 

for this purpose were severely constrained by the limited computing capabilities available.  

Today, these constraints no longer apply.  But in a large testing organization as in other 

environments, procedures tend to take on a life of their own as people become accustomed to 

them.  As long as those procedures serve their purpose adequately, people see no compelling 

reason to look for something better.  Thus it was that ETS found itself using, in the 1990s, item 

analysis procedures developed during the 1950s.  As each new generation of computers arrived, 

the old statistical routines were adapted for the new machines. 

As the 20th century entered its last decade, ETS began a major redesign of its statistical 

analysis procedures.  The statisticians involved in the item analysis portion of this effort (a group 

that included the authors of this article) were asked, “What item analysis statistics should the 

system compute, and how should the results be presented to the test developers?”  The purpose 

of this paper is to describe, explain, and illustrate the answers to those questions. 

Why a Graphical Approach? 

The statisticians working on the statistical analysis redesign project agreed that the most 

useful statistical information an item analysis could provide would be a series of conditional 

probability estimates.  For each possible value of the criterion variable (e.g., the total score), 

these estimates would indicate the examinee’s probability of answering the item correctly—and 

of choosing each distractor.  These estimates could be plotted on a graph showing a response 

curve for the correct option and a response curve for each distractor.  Such a graph would allow 

the test developer to see, at a glance, the most important statistical characteristics of the item: the 

difficulty of the item, the way its difficulty varied with the examinee’s score on the criterion 

variable, the popularity of the individual distractors, and the way their popularity varied with the 

examinee’s score on the criterion variable.  
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Why Not IRT? 

Item response theory (IRT) was not a practical possibility when ETS first developed the 

item analysis procedures used from the 1950s to the 1990s.  The computing technology necessary 

for large-scale operational use of IRT was either nonexistent or prohibitively expensive.  But 

today, IRT and its applications are frequently used in the assembly and scoring of tests.  (Wainer et 

al., 2000, and Thissen & Wainer, 2001, illustrate this point vividly.)  Why did we and our 

colleagues choose not to use IRT? 

The IRT models that are typically used in practice assume that an examinee’s probability 

of choosing a particular response depends only on a single ability factor common to all the items 

on the test.  This strong assumption produces local independence—statistical independence 

among items for examinees having any specified value of the ability factor.  In addition, the 

mathematical form imposed on the response curve by most IRT models (e.g., a logistic ogive) is 

highly restrictive.  IRT, with its use of a strong mathematical model, implies an obligation to test 

for model fit.  But what if the goodness-of-fit test showed that the data for several items did not 

fit the model?  Users of the system would be left without estimates of the response curves for 

those items.  The developers of the ETS system chose a more flexible approach—one that allows 

the estimated response curve to take the shape implied by the data. Nonmonotonic curves, such 

as those observed with distractors, can be easily fit by this approach.   

If Not IRT, Then What? 

The approach we have chosen is a modified version of a technique used by Ramsay 

(1991).  It is based on a weighted-moving-average smoothing procedure.  This procedure is 

applied separately in estimating the response curve for each answer option: the correct answer, 

each incorrect answer, and the option of omitting the item.  Each of the response curves is 

estimated separately.  Each point on the response curve indicates the estimated probability that 

an examinee with a particular score on the criterion variable will choose that option.  

The use of a weighted-moving-average smoothing procedure is based on the assumption 

that if all possible examinees were grouped into score levels on the criterion variable, the 

proportion choosing a given answer to a given item would change gradually—not abruptly—as the 

scores on the criterion increased.  If this assumption is correct, each examinee’s response to an 

item contains information that is useful for estimating performance on the item by examinees at the 
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same score level and also by examinees at nearby score levels.  The closer the score level, the 

more relevant the information, and this varying relevance is incorporated into the weights applied 

to the data. 

What Do the Graphs Look Like? 

Figures 1 to 7 are examples of graphs based on actual data from the pretesting of items in 

a large-scale testing program.  The items are four-option or five-option multiple-choice items.  

For a five-option item, a score of 1 is assigned to a correct responses, -1/4 is assigned to an 

incorrect response, and 0 to a nonresponse.  An examinee responding at random (e.g., without 

reading the question) has a .20 probability of answering correctly.  For a four-option item, an 

incorrect response is assigned a score of -1/3, and an examinee responding at random has a .25 

probability of answering correctly.  

The horizontal axis of the graph represents the score scale of the criterion variable.  In 

these examples, the criterion variable is the examinee’s scaled score on the test, and the numbers 

on the horizontal axis range from 200 to 800.  The vertical axis represents the probability scale, 

from .00 to 1.00.  The graph for each item includes a curve for the correct answer, a curve for 

each distractor, and a curve for omitting the item.  The height of the curve at any point indicates 

the examinee’s probability of choosing that answer option, given the examinee’s score on the 

criterion variable.   

Users of the system have the option to include in the graph a series of dashed vertical lines, 

indicating selected percentiles of the distribution of the criterion variable.  These lines allow the 

test developer to relate the information in the graph to the abilities of the group of examinees.  A 

high correct-answer probability in the middle of the score scale may mean one thing to the test 

developers if that point is near the 50th percentile of the score distribution, but it may mean 

something quite different if that point is near the 10th percentile.  These lines also help the test 

developer see where the data were sparse and where the data were plentiful.  The choice of 

percentiles is up to the user; in the following examples, the vertical lines represent the 20th, 40th, 

60th, 80th, and 90th percentiles.  (The tables to the right of the plot contain various statistics that 

describe the examinees’ responses to the item.  These statistics are described in a later section of 

this report.) 
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Figure 1 shows the graph for an easy item.  Even the weakest examinees have a 50% 

probability of answering correctly, and this probability rises rapidly as the criterion score 

increases.  One single distractor (A) seems to account for most of the item’s effectiveness.  The 

small diagonally hatched area at the far left of the graph indicates a region in which the response 

curves are not well estimated.  

 
Figure 1. An easy item. 

Figure 2 shows an item that discriminates throughout the entire score range.  The weakest 

examinees have a low probability of answering correctly (lower than they would if they 

responded at random).  The strongest examinees have a probability of nearly 100% of answering 

correctly.  The curve for the correct answer (A) rises steeply from the 20th percentile to the 90th 

percentile of the score distribution.  A substantial number of examinees omit the item, and no 

single distractor seems particularly attractive to the examinees who answer incorrectly. 

Figure 3 shows the graph for an item that discriminates well in the lower portion of the 

score range—below the 60th percentile of the score distribution.  The examinee’s probability of 

choosing the correct answer (A) rises from slightly better than chance (20%), for the weakest 

examinees, to nearly 90% at the 60th percentile of the score distribution.  Again, a single 

distractor (B) accounts for most of the item’s effectiveness. 
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Figure 2. An item that discriminates throughout the range score. 

 

 

 

 
Figure 3. An item that discriminates in the lower part of the score range. 
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Figure 4 shows the graph for an item that discriminates well in the upper portion of the 

score range—above the 60th percentile of the score distribution.  Below the 40th percentile, the 

examinee’s probability of choosing the correct answer (B) is about that of a person who responds 

at random.  But above the 60th percentile, the probability rises rapidly, exceeding 90% for the 

strongest examinees.  Again, one distractor (C) is substantially more popular than the others, 

particularly with the middle-ability examinees.  The third most popular choice, after the correct 

option B and distractor C, is to omit the item. 

 
Figure 4. An item that discriminates in the upper portion of the score range. 

Figure 5 shows the graph for an item that is too difficult for this population of examinees.  

The examinee response data do not clearly indicate the correct answer (E); someone attempting 

to infer the correct option from the graph might well choose distractor (C).  Examinees at the 

90th percentile performed at the chance level on this item.  Even the strongest examinees chose 

distractor (C) more frequently than the correct answer.  Note, however, that the slope of the 

curve for the correct option does begin to increase sharply at the upper end of the criterion score 

scale, suggesting that the item might discriminate effectively in a more able population.  Because 

this item was the last item in a timed section, the curve for the examinees who did not respond to 

the item is labeled “N,” for “not reached.” Note that many examinees did not respond to this 

item, either because it was too difficult or because they ran out of time.   
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Figure 5. An item that is too difficult for the population of examinees. 

Figure 6 shows the graph for an item that illustrates the limitations of item response 

theory models for estimating item response curves.  The response curve for the correct answer 

(D) is clearly not monotonic.  The probability of answering this item decreases from the lowest 

score levels to the middle of the score distribution; then it rises sharply.  Distractor C appears to 

be particularly attractive to examinees in the lower-middle portion of the score range, causing 

their probability of choosing the correct answer to be substantially less than it would be if they 

responded at random.  However, even the strongest examinees have only about a 70% 

probability of answering this item correctly. 

Figure 7 shows the graph for an item that is clearly not functioning as a measure of the 

skills measured by the test as a whole.  The probability of answering this item correctly is at or 

below chance for examinees at all score levels.  It is impossible to identify the correct answer (D) 

from the examinee response data.  The most popular answer option throughout almost the entire 

score range is to omit the item.  This item did not survive the pretest screening. 
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Figure 6. An item that is hardest for middle-ability examinees. 

 

 

 
Figure 7. An item that does not work for this population. 
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How Do the Graphs Indicate Sampling Variability? 

The response curves that appear on the item analysis graph are estimates for a population 

of examinees like those included in the analysis.  Because the examinees in the analysis are only 

a sample, the estimated response curves are affected by sampling variability.  In some parts of 

the score range depicted in the graph, these effects can be quite large.  It is important for the test 

developers to have a sense of how much confidence they can place in the information 

communicated by the response curves, particularly the curve for the correct answer.  The item 

analysis procedure can communicate this type of information in two different ways at the 

discretion of the user.  One way is to include in the graph a confidence band—a pair of curves 

above and below the estimated response curve for the correct answer, as in Figure 8.  For any 

given score on the criterion variable, these curves indicate the upper and lower limits of an 

approximate 90% confidence interval for the probability of a correct response in the examinee 

population.1  (The 90% confidence level is a default value; the user has the option to choose a 

confidence level other than 90%.)   

 
Figure 8. A graph that uses confidence bands to indicate sampling variation. 

The item in Figure 8 comes from a different testing program than the items in Figures 1 

to 7.  The item analysis for this test used raw scores on the test as a criterion.  The test consisted 

of four-option multiple-choice items, scored 1 for a correct response and 0 otherwise.  The 
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highest-scoring examinee answered 81 items correctly.  While the samples of examinees (the 

number of examinees reaching the item) in Figures 1 to 7 ranged from 9,785 to 11,659, the 

sample in Figure 8 included only 441 examinees, all of whom reached the item.  (The number of 

examinees reaching the item is listed as “Rch” in the statistics printed at the right of each graph.)   

With samples as large as those in Figures 1 to 7, the confidence bands are so narrow that 

users of the system prefer not to include them in the graph.  The system offers users an 

alternative method of indicating sampling variability.  The user can request graphs with diagonal 

hatching that indicates the regions in which the response curve for the correct option is likely to 

be inaccurately estimated.  (Figures 1 to 6 provide examples.)  The user must specify a maximum 

acceptable value for the size of the confidence interval.  The diagonal hatching indicates those 

portions of the graph where the confidence interval for the correct option is larger than this 

specified maximum.  

Why the Numerical Information? 

Although the graphs make it possible to evaluate the item at a glance, numerical item 

statistics still can be useful.  When a test developer has to review a large number of items in a 

short time, it is useful to have the computer produce a list of items that may require special 

attention.  Decision rules based on item statistics are the basis for this list.  At the option of the 

user, items can be listed for being too difficult, for having too low a correlation with the item 

analysis criterion, for being too frequently omitted, or for having a particular incorrect option 

selected by too many of the examinees with very high scores on the criterion.  

It is also useful to have a statistic that summarizes the difficulty of each item, so that the 

difficulty of a group of items can be summarized in the form of a distribution.  For the same 

reason, it is useful to have a statistic that summarizes the discriminating power of each item.  

Finally, presenting the item statistics along with the graph has helped to ease the transition from 

a primarily numerical approach to a primarily graphic approach. 

To the right of each plot are two tables.  The upper table has a row for each answer option 

(including “omit” and “NR” for “not reached”).  The entries in the row are statistics that refer to 

the examinees who chose that answer option. “N” is the number of examinees who chose the 

option. “% Tot” is the percentage of all the examinees who chose the option; it is “N” divided by 

the total number of examinees.  “Criterion Mean” is the average score of these examinees on the 
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criterion (which, in Figures 1 to 7, is their scaled score on the test).  “Criterion SD” is the 

standard deviation of their scores on the criterion.  The column labeled “Top 10%” shows the 

popularity of each answer option among the 10% of the examinees having the highest scores on 

the criterion variable.  An option that was intended to be incorrect but was chosen by a 

substantial percentage of these high-scoring examinees will get a second look from the test 

developers.  It could be simply a common misconception or a plausible wrong answer, but it 

could be an answer that is correct under some circumstances or under a plausible alternative 

interpretation of the question. 

The information in the upper table reflects an approach opposite to that of the graph.  The 

graph treats the examinee’s score on the criterion as an input measure and the examinee’s 

response to the item as an output.  The statistics in the table effectively do the opposite; they treat 

the examinee’s response to the item as input and the examinee’s score on the criterion as output.  

In these statistics, the criterion scores of examinees who knew the correct answer are lumped 

together with those of examinees who chose the correct answer for the wrong reason and those of 

examinees who chose it by guessing at random.  Inclusion of the mean score on the criterion 

variable for examinees choosing each option was a concession to historical practice.  Some staff 

members were accustomed to using these statistics and would have objected to any item analysis 

system that did not include them.  The standard deviations were added in the hope of 

discouraging overinterpretation of the option means.  A large standard deviation for an option 

indicates that the examinees choosing that option varied substantially in ability, as indicated by 

the criterion variable. 

The lower table contains two sets of summary statistics for the item.  The statistics in the 

column labeled “Observed” refer to the group of all examinees included in the analysis.  The 

statistics in the column labeled “Reference” are estimated for some other group of examinees—a 

reference group.  The reference group can be any group of examinees—an actual group or a 

hypothetical group—whose distribution of scores on the criterion is known.2 

The first row of the lower table contains a difficulty statistic: the average item score.  For 

an item on which the only possible scores are 1 (for a correct answer) and 0 (for any other 

response), this statistic is simply the percentage choosing the correct answer.  On a test, such as 

the SAT® I or SAT II, that is scored with a penalty for incorrect guessing, examinees who choose 

an incorrect response will have a negative score for the item.  Therefore, the average item score 
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will be somewhat lower than the percentage of examinees answering correctly—substantially 

lower, if the item is difficult. 

The second row of the lower table contains the “delta” difficulty statistic.  This statistic is 

simply a nonlinear transformation of the average item score, defined so that a high delta value 

indicates a difficult item.  To transform the average item score to a delta value, let y represent the 

average item score, and compute p = (y – ymin) / (ymax – ymin), where ymin and ymax represent the 

lowest and highest possible y-values.3  Let z represent the pth percentile of the normal (0,1) 

distribution (i.e., the z-score that corresponds to the pth percentile rank in a normal distribution). 

Then the delta value for the item is 13–4z. 

The third row of the table shows the correlation of the item with the criterion.  If the only 

possible scores on the item are 1 and 0, this correlation is a biserial correlation.  If more than two 

different scores on the item are possible, the correlation is a polyserial correlation, which is a 

generalization of the biserial correlation.  The fourth row of the table, labeled “Percent 

Reached,” shows the percentage of the examinees who reached the item (i.e., who answered 

either that item or at least one item appearing later in the same section of the test). 

How Are the Response Curves Estimated? 

The response curve for each answer option is estimated separately, as a series of data 

points—a separate point on the curve for each possible score on the criterion variable.  (If the 

criterion variable is a continuous variable, it must be made discrete by partitioning the range of 

possible scores into discrete score levels.  However, the user may specify as many as 5,000 score 

levels, making the variable effectively continuous.)  The height of the curve at each point 

represents the estimated probability that an examinee with a particular score on the criterion 

variable will choose the answer option.  

The first step in estimating the probabilities is to classify the examinees according to their 

scores on the item analysis criterion.  Next, the procedure counts the number of examinees at each 

score and computes the proportion who chose each answer option.  If the observed proportions for 

an answer option were simply plotted on the graph, the resulting curve would be a jagged, irregular 

line.  The graph would be difficult to read, and the irregularities in the curve would not generalize 

to another group of examinees.4  To produce a useful estimate of the response curve, it is necessary 
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to apply a smoothing process.  This process removes the irregularities while preserving the general 

shape of the curve.5 

“Moving-average” smoothing replaces each observed data point with an estimate that 

averages the data from that point and nearby points.  A simple moving-average process, applied 

at a given score on the criterion variable, would use the data for all examinees whose scores on 

the criterion variable are within a specified distance—and only those examinees.  However, it 

does not seem reasonable to assume that as examinees’ scores on the criterion get farther away 

from the value at which the response probability is to be estimated, the examinees’ responses to 

the item change abruptly from being fully relevant to being completely irrelevant.  It seems more 

reasonable to assume that their responses become gradually less and less relevant.  This 

reasoning leads to the use of “weighted-moving-average” smoothing.  The “smoothed” 

probability estimate at each criterion score level is a weighted average of the observed 

proportions at that score level and at other score levels—the closer the score level, the heavier 

the weight given to the data. 

The particular variety of weighted-moving-average smoothing used in ETS item analysis 

is called “Gaussian kernel smoothing.”6  The weight given to each examinee’s response is 

proportional to a normal (Gaussian) density function 
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where xi is the examinee’s score on the criterion, xk is the score at which the proportion is to be 

estimated, h is a smoothing parameter, and sx is the standard deviation of the scores on the 

criterion.  Putting this formula into words, the weight given to the response of an examinee with 

criterion score xi for determining the response probability at criterion score xk is proportional to 

the height, at criterion score xi , of a normal (Gaussian) density function centered at xk with 

standard deviation hsx .  The Gaussian density function is simply a convenient mathematical 

function that has the desired shape. 

The value of the smoothing parameter is currently a function of the number of examinees 

included in the analysis.  ETS staff are planning to modify the formula so that the default value 

will be a function of both the number of examinees included in the analysis and the number of 

score levels on the criterion variable. 
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How Is the Average Item Score Estimated for a Reference Group? 

The average item score for a reference group—a group of examinees other than the group 

on which the analysis was done—is estimated by a post-stratification procedure.  The stratifying 

variable is the item analysis criterion—the variable depicted in the horizontal axis of the graphs.  

Let i index the possible scores on the criterion variable and j index the possible scores on the 

item.  Let  represent the estimated probability that an examinee with a score of xijp̂ i on the 

criterion variable will earn a score of yj on the item.  The average item score, for examinees in 

the reference group with criterion score xi , is estimated to be 

 

∑=
j

jiji ypy ˆˆ . 

 

Then if ni represents the number of examinees in the reference group with scores of xi on 

the criterion variable, the average item score for the entire reference group is estimated to be  
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The delta statistic for the item in the reference group is estimated by applying the delta 

transformation (described above) to the estimated average item score (on the 0-to-1 scale) in the 

reference group. 

How Is the Polyserial Correlation Estimated? 

The polyserial correlation was originally defined as the correlation of two continuous 

variables in a bivariate normal distribution, when one of the variables can be measured only in 

terms of categories.  However, the estimation procedure used in the ETS item analysis system does 

not assume a bivariate normal distribution.  It is based on a more general model that includes the 

bivariate normal distribution as a special case.  The estimation procedure was developed at ETS by 

Lewis (Lewis, Thayer, & Livingston, 2003), who called the estimated correlation “r-polyreg” (an 

abbreviation for “r-polyserial estimated by regression”).  The procedure assumes that the item 

score Y  is determined by the examinee’s position on an underlying latent continuous variable η, 

14 



which represents the examinee’s ability to perform the task required by that item.  The distribution 

of η for candidates with a given criterion score x is assumed to be normal with mean = βx and 

variance = 1, where β is an item parameter estimated from the data.  The model can be written 

 

)()|()|( xaxPxyYP jjj βαη −Φ=≤=≤ , 

 

where yj is the jth possible score on the item, αj is the value of η corresponding to yj, and Φ is the 

unit normal cumulative distribution function.  The item analysis procedure estimates the value of 

β for each item by maximum likelihood.  It uses this estimate of β to compute the polyserial 

correlation, by the formula 
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where σx is the standard deviation of scores on the criterion variable in the group of examinees 

for which the polyserial correlation is to be estimated.  That group of examinees could be the 

group of all examinees included in the analysis, or it could be any other group for which the 

standard deviation of scores on the criterion variable is known. 

Summary 

ETS’s graphical approach to item analysis is based on the estimation of a set of response 

curves for each item.  The response curves show, at a glance, the difficulty and the 

discriminating power of the item and the popularity of each distractor at any level of the 

criterion variable (e.g., total score).  The curves are estimated by Gaussian kernel smoothing, a 

weighted-moving-average process.  The response curve for the correct answer can be 

accompanied by curves indicating a confidence region.  The response curves also form the basis 

for estimating item statistics for any group of examinees for which the distribution of the 

criterion variable is known. 
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Notes 
1 The procedure for determining the confidence bands is described in Lewis and Livingston 

(2003). 

2 For example, the reference population for the SAT® I: Reasoning Test is the group of 

examinees whose scores were used in the 1990 analysis conducted for the purpose of 

recentering the score scale to a mean of 500 and a standard deviation of 110 (Dorans, 2002).  

3 Computing p in this way, for an item scored (1, 0, -1/[k-1]), has the effect of transforming the 

item scores to (1, 1/k, 0) and computing the average item score. 

4 An exception is the irregularities that are produced when the item analysis criterion is a score 

on a multiple-choice test on which noninteger item scores are possible but the total score is 

rounded to the nearest integer.  These irregularities tend to replicate across groups of examinees 

and tests with the same number of questions, but they do not provide information that is useful 

to the test developers.  

5 There is an exception to the statement that the irregularities would not generalize to another 

group of examinees.  The exception is the irregularities that are produced by the rounding of 

noninteger item scores.  These irregularities tend to replicate across groups of examinees and 

across tests with the same number of questions, but they do not provide information that is 

useful to the test developers. 

6 This procedure is a simplified version of a similar procedure used by Ramsay (1991). 
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